organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­methyl-N-[(E)-4-nitro­benzyl­­idene]aniline

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 22 May 2010; accepted 23 May 2010; online 5 June 2010)

In the title compound, C15H14N2O2, the aromatic rings are oriented at a dihedral angle of 24.52 (5)°. The dihedral angle between the nitro group and its parent benzene ring is 9.22 (16)°. In the crystal, mol­ecules inter­act through aromatic ππ stacking inter­actions [centroid–centroid separations = 3.8158 (14) and 3.9139 (14) Å].

Related literature

For structural systematics of related compounds, see: Harada et al. (2004[Harada, J., Harakawa, M. & Ogawa, K. (2004). Acta Cryst. B60, 578-588.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O2

  • Mr = 254.28

  • Orthorhombic, P 21 21 21

  • a = 7.1969 (5) Å

  • b = 11.8023 (7) Å

  • c = 15.3721 (8) Å

  • V = 1305.71 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.32 × 0.14 × 0.14 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.986, Tmax = 0.987

  • 13172 measured reflections

  • 1917 independent reflections

  • 1253 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.111

  • S = 1.02

  • 1917 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Torsional, vibration and central bond length of N-benzylideneanilines (Harada et al., 2004) has been studied for seven compounds at different temperatures. The title compound (I, Fig. 1) is another example due to change of substitutions at both phenyl rings for which the same study can be undertaken. The title compound has been prepared for derivatization.

The molecules of (I) are essentially monomeric having no intra or inter-molecular H-bondings. The phenyl rings A (C1—C6) and B (C10—C15) are planar with r. m. s. deviation of 0.0065 and 0.0022 Å respectively. The dihedral angle between A/B is 24.52 (5)°. The nitro group C (O1/N2/O2) is oriented at 9.22 (16)° with the parent phenyl ring. It is to be noted that the nitro substituated phenyl ring B has smaller bond lengths [1.365 (3)–1.387 (3) Å], whereas the 2,3-dimethyl substituated ring has longer bond lengths 1.373 (3)—1.401 (3) Å. The value of CN bond length at room temperature for (I) is 1.262 (3) Å which is in compatible with the studies of Harada et al., 2004. The molecules are stabilized due to ππ interactions between the centroids of phenyl rings with separation of 3.8158 (14) and 3.9139 (14) Å.

Related literature top

For structural systematics of related compounds, see: Harada et al. (2004).

Experimental top

Equimolar quantities of 2,3-dimethylaniline and 4-nitro benzaldehyde were refluxed in methanol for 15 minutes resulting in yellow color precipitates. The contents of the flask were dried at room temperature and washed with methanol and ethanol, respectively. The washed crude material affoarded yellow needles of (I) in the solution of diethyl ether at room temperature by slow evaporation after 24 h.

Refinement top

In the absence of anomalous scattering, all Friedal pairs were merged. Although all H-atoms were appeared in Fourier difference map but positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x =1.2 for aryl C–H and x = 1.5 methyl H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level.
2,3-Dimethyl-N-[(E)-4-nitrobenzylidene]aniline top
Crystal data top
C15H14N2O2F(000) = 536
Mr = 254.28Dx = 1.294 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1334 reflections
a = 7.1969 (5) Åθ = 2.1–25.4°
b = 11.8023 (7) ŵ = 0.09 mm1
c = 15.3721 (8) ÅT = 296 K
V = 1305.71 (14) Å3Needle, yellow
Z = 40.32 × 0.14 × 0.14 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1917 independent reflections
Radiation source: fine-focus sealed tube1253 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 7.40 pixels mm-1θmax = 28.6°, θmin = 2.2°
ω scansh = 89
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1515
Tmin = 0.986, Tmax = 0.987l = 2020
13172 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.0883P]
where P = (Fo2 + 2Fc2)/3
1917 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C15H14N2O2V = 1305.71 (14) Å3
Mr = 254.28Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.1969 (5) ŵ = 0.09 mm1
b = 11.8023 (7) ÅT = 296 K
c = 15.3721 (8) Å0.32 × 0.14 × 0.14 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1917 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1253 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.987Rint = 0.057
13172 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.02Δρmax = 0.12 e Å3
1917 reflectionsΔρmin = 0.14 e Å3
174 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1409 (4)0.19301 (18)0.70198 (14)0.0997 (9)
O20.1083 (4)0.06237 (19)0.79842 (12)0.0941 (9)
N10.1128 (3)0.34130 (16)0.47092 (11)0.0485 (7)
N20.1253 (3)0.0943 (2)0.72311 (16)0.0684 (9)
C10.1231 (3)0.42218 (18)0.40278 (13)0.0457 (7)
C20.1509 (3)0.5351 (2)0.42653 (14)0.0488 (8)
C30.1581 (4)0.61833 (19)0.36160 (15)0.0549 (8)
C40.1353 (4)0.5864 (2)0.27595 (17)0.0624 (10)
C50.1052 (4)0.4755 (2)0.25272 (16)0.0650 (10)
C60.0972 (4)0.3935 (2)0.31593 (14)0.0550 (8)
C70.1768 (4)0.5654 (2)0.52133 (14)0.0679 (10)
C80.1878 (5)0.7409 (2)0.38401 (19)0.0820 (13)
C90.1573 (4)0.23940 (19)0.45751 (14)0.0495 (8)
C100.1434 (3)0.15342 (18)0.52625 (14)0.0448 (7)
C110.1832 (3)0.04156 (19)0.50760 (15)0.0525 (8)
C120.1753 (4)0.0397 (2)0.57139 (15)0.0551 (9)
C130.1287 (3)0.0075 (2)0.65402 (14)0.0500 (8)
C140.0878 (3)0.1021 (2)0.67504 (15)0.0523 (8)
C150.0953 (3)0.18289 (19)0.61064 (14)0.0496 (8)
H40.140390.641450.232740.0748*
H50.090270.456170.194500.0779*
H60.074480.318540.300590.0659*
H7A0.091120.624290.536960.1016*
H7B0.301670.591280.530590.1016*
H7C0.153990.499720.556630.1016*
H8A0.184330.785580.331840.1229*
H8B0.306550.749810.411660.1229*
H8C0.091610.765710.422850.1229*
H90.200070.218220.402780.0594*
H110.215720.021050.451200.0630*
H120.201160.115090.558670.0661*
H140.055430.121650.731650.0627*
H150.068020.257970.623820.0596*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.131 (2)0.0586 (12)0.1094 (16)0.0005 (15)0.0004 (17)0.0307 (12)
O20.1205 (19)0.1055 (16)0.0563 (11)0.0025 (15)0.0044 (13)0.0275 (12)
N10.0509 (12)0.0484 (11)0.0463 (11)0.0052 (10)0.0029 (10)0.0042 (9)
N20.0614 (15)0.0707 (16)0.0731 (16)0.0068 (14)0.0072 (13)0.0266 (13)
C10.0431 (14)0.0477 (12)0.0463 (12)0.0035 (11)0.0067 (11)0.0043 (10)
C20.0454 (15)0.0529 (13)0.0482 (12)0.0020 (12)0.0069 (11)0.0015 (11)
C30.0515 (16)0.0504 (13)0.0628 (15)0.0051 (12)0.0070 (12)0.0082 (11)
C40.0660 (19)0.0615 (16)0.0596 (16)0.0045 (15)0.0068 (14)0.0193 (13)
C50.079 (2)0.0708 (17)0.0453 (12)0.0029 (16)0.0008 (14)0.0040 (12)
C60.0614 (16)0.0526 (14)0.0509 (14)0.0027 (13)0.0009 (13)0.0010 (12)
C70.081 (2)0.0651 (16)0.0577 (14)0.0020 (16)0.0041 (14)0.0097 (13)
C80.105 (3)0.0539 (15)0.087 (2)0.0044 (18)0.009 (2)0.0079 (15)
C90.0467 (15)0.0539 (13)0.0479 (12)0.0039 (12)0.0081 (12)0.0010 (11)
C100.0406 (13)0.0467 (12)0.0471 (13)0.0009 (11)0.0030 (11)0.0026 (10)
C110.0578 (16)0.0514 (13)0.0483 (12)0.0057 (12)0.0043 (11)0.0031 (11)
C120.0608 (17)0.0424 (12)0.0621 (15)0.0015 (12)0.0011 (13)0.0007 (11)
C130.0436 (14)0.0550 (14)0.0515 (12)0.0029 (12)0.0050 (12)0.0116 (11)
C140.0521 (15)0.0601 (16)0.0447 (12)0.0018 (13)0.0007 (11)0.0014 (12)
C150.0521 (15)0.0456 (12)0.0512 (13)0.0046 (12)0.0015 (12)0.0005 (11)
Geometric parameters (Å, º) top
O1—N21.215 (3)C12—C131.368 (3)
O2—N21.224 (3)C13—C141.365 (3)
N1—C11.419 (3)C14—C151.376 (3)
N1—C91.262 (3)C4—H40.9300
N2—C131.476 (3)C5—H50.9300
C1—C21.396 (3)C6—H60.9300
C1—C61.390 (3)C7—H7A0.9600
C2—C31.401 (3)C7—H7B0.9600
C2—C71.512 (3)C7—H7C0.9600
C3—C41.379 (3)C8—H8A0.9600
C3—C81.502 (3)C8—H8B0.9600
C4—C51.374 (3)C8—H8C0.9600
C5—C61.373 (3)C9—H90.9300
C9—C101.468 (3)C11—H110.9300
C10—C111.381 (3)C12—H120.9300
C10—C151.387 (3)C14—H140.9300
C11—C121.373 (3)C15—H150.9300
C1—N1—C9120.49 (18)C5—C4—H4119.00
O1—N2—O2123.9 (2)C4—C5—H5120.00
O1—N2—C13118.2 (2)C6—C5—H5120.00
O2—N2—C13118.0 (2)C1—C6—H6120.00
N1—C1—C2117.16 (18)C5—C6—H6120.00
N1—C1—C6122.56 (19)C2—C7—H7A109.00
C2—C1—C6120.2 (2)C2—C7—H7B109.00
C1—C2—C3119.2 (2)C2—C7—H7C109.00
C1—C2—C7119.7 (2)H7A—C7—H7B110.00
C3—C2—C7121.1 (2)H7A—C7—H7C109.00
C2—C3—C4118.9 (2)H7B—C7—H7C109.00
C2—C3—C8121.1 (2)C3—C8—H8A109.00
C4—C3—C8119.9 (2)C3—C8—H8B109.00
C3—C4—C5121.8 (2)C3—C8—H8C109.00
C4—C5—C6119.6 (2)H8A—C8—H8B109.00
C1—C6—C5120.2 (2)H8A—C8—H8C109.00
N1—C9—C10121.6 (2)H8B—C8—H8C109.00
C9—C10—C11119.8 (2)N1—C9—H9119.00
C9—C10—C15121.1 (2)C10—C9—H9119.00
C11—C10—C15119.1 (2)C10—C11—H11120.00
C10—C11—C12120.7 (2)C12—C11—H11120.00
C11—C12—C13118.7 (2)C11—C12—H12121.00
N2—C13—C12118.7 (2)C13—C12—H12121.00
N2—C13—C14118.9 (2)C13—C14—H14121.00
C12—C13—C14122.4 (2)C15—C14—H14121.00
C13—C14—C15118.6 (2)C10—C15—H15120.00
C10—C15—C14120.6 (2)C14—C15—H15120.00
C3—C4—H4119.00
C9—N1—C1—C2153.3 (2)C2—C3—C4—C50.2 (4)
C9—N1—C1—C630.1 (4)C8—C3—C4—C5179.1 (3)
C1—N1—C9—C10178.4 (2)C3—C4—C5—C60.1 (4)
O1—N2—C13—C129.2 (3)C4—C5—C6—C11.3 (4)
O1—N2—C13—C14171.7 (2)N1—C9—C10—C11176.3 (2)
O2—N2—C13—C12170.3 (3)N1—C9—C10—C155.4 (4)
O2—N2—C13—C148.8 (3)C9—C10—C11—C12178.5 (2)
N1—C1—C2—C3178.7 (2)C15—C10—C11—C120.1 (3)
N1—C1—C2—C72.6 (3)C9—C10—C15—C14178.2 (2)
C6—C1—C2—C32.0 (3)C11—C10—C15—C140.2 (3)
C6—C1—C2—C7179.3 (2)C10—C11—C12—C130.5 (4)
N1—C1—C6—C5178.8 (2)C11—C12—C13—N2178.3 (2)
C2—C1—C6—C52.3 (4)C11—C12—C13—C140.8 (4)
C1—C2—C3—C40.8 (4)N2—C13—C14—C15178.6 (2)
C1—C2—C3—C8180.0 (3)C12—C13—C14—C150.5 (3)
C7—C2—C3—C4179.4 (2)C13—C14—C15—C100.0 (3)
C7—C2—C3—C81.3 (4)

Experimental details

Crystal data
Chemical formulaC15H14N2O2
Mr254.28
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)7.1969 (5), 11.8023 (7), 15.3721 (8)
V3)1305.71 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.14 × 0.14
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.986, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
13172, 1917, 1253
Rint0.057
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.111, 1.02
No. of reflections1917
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.14

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarada, J., Harakawa, M. & Ogawa, K. (2004). Acta Cryst. B60, 578–588.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds