organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Di­methyl-4-{[1-(3-methyl-5-oxo-1-phenyl-4,5-di­hydro-1H-pyrazol-4-yl­­idene)eth­yl]amino}-2-phenyl-1H-pyrazol-3(2H)-one

aDepartment of Basic Science, Tianjin Agricultural College, Tianjin Jinjing Road No. 22, Tianjin 300384, People's Republic of China
*Correspondence e-mail: zhuhualing2004@126.com

(Received 25 May 2010; accepted 30 May 2010; online 5 June 2010)

In the title compound, C23H23N5O2, an intra­molecular N—H⋯O hydrogen bond generates an S(6) ring, and the dihedral angle between the pyrazole rings is 48.42 (8)°. The dihedral angles between the pyrazole rings and their attached phenyl rings are 10.06 (8) and 47.53 (8)°.

Related literature

For related structures and background references, see: Zhang et al. (2010[Zhang, X., Huang, M., Du, C. & Han, J. (2010). Acta Cryst. E66, o273.]); Zhu et al. (2010[Zhu, H., Shi, J., Wei, Z., Dai, R. & Zhang, X. (2010). Acta Cryst. E66, o1352.]).

[Scheme 1]

Experimental

Crystal data
  • C23H23N5O2

  • Mr = 401.46

  • Monoclinic, C 2/c

  • a = 20.486 (4) Å

  • b = 10.209 (2) Å

  • c = 19.753 (4) Å

  • β = 102.76 (3)°

  • V = 4029.3 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.983, Tmax = 0.990

  • 13299 measured reflections

  • 3553 independent reflections

  • 2858 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.105

  • S = 1.00

  • 3553 reflections

  • 280 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1 0.90 (1) 1.85 (1) 2.6459 (15) 146 (2)

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our onging studies of pyrazole derivatives (Zhu et al., 2010), we now report the structure of the title compound, (I).

In the molecule of the title compound, (Fig.1) there is one molecule in the asymmetric unit. Atom O1, C7, C8, C11 and atom N3 form a plane, the largest deviation being 0.0132 (15) Å for atom C11. The dihedral angle between this plane and the pyrazolone ring of PMAP is 0.46 (4)°, indicating that they are essentially coplanar, as seen in Ethyl 2–{[(1Z)–(3– methyl–5–oxo–1–phenyl–4,5–dihydro–1H–pyrazol–4–ylidene) (p–tolyl)methyl]amino}–3–phenylpropanoate (1.52 (4)°; Zhang et al., 2010). The bond lengths within this part of the molecular lie between classical single–and double–bond lengths, indicating extensive conjugation. Atoms N5,N4, C14, C13,C17 and O2 are also nearly coplanar, the largest deviation being 0.0417 (15) Å for atom C14.The dihedral angle between this plane and the phenyl ring of antipyrine is 47.41 (5)°, A strong intramolecular hydrogen bond N3—H3···O1 is observed (Table 1 & Fig. 1), stabilizing to an enamine–keto form.

Related literature top

For related structures and background references, see: Zhang et al. (2010); Zhu et al. (2010).

Experimental top

A mixture of HPMAP (15m mol) and 4-antipyrine (15m mol) in ethanol (100 ml) was refluxed over a steam bath for about 4 h, then the solution was cooled down to room temperature. After one day, pale yellow blocks were obtained and dried in air. The product was recrystallized from ethanol which afforded pale yellow blocks of (I).

Refinement top

The N-bound H atom was located in a difference map and freely refined. All C-bound H atoms were geometrically positioned and refined using a riding model, with C—H = 0.95 Å for the aryl, 0.98 Å for the methyl H atoms. Uiso(H)= 1.2 Ueq(C) for aryl, 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms are presented as spheres of arbitrary radius.
1,5-Dimethyl-4-{[1-(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4- ylidene)ethyl]amino}-2-phenyl-1H-pyrazol-3(2H)-one top
Crystal data top
C23H23N5O2F(000) = 1696
Mr = 401.46Dx = 1.324 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5835 reflections
a = 20.486 (4) Åθ = 2.0–27.9°
b = 10.209 (2) ŵ = 0.09 mm1
c = 19.753 (4) ÅT = 113 K
β = 102.76 (3)°Block, pale yellow
V = 4029.3 (14) Å30.20 × 0.18 × 0.12 mm
Z = 8
Data collection top
Rigaku Saturn CCD
diffractometer
3553 independent reflections
Radiation source: rotating anode2858 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.038
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 2.0°
ω and ϕ scansh = 2421
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1112
Tmin = 0.983, Tmax = 0.990l = 2320
13299 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0698P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3553 reflectionsΔρmax = 0.24 e Å3
280 parametersΔρmin = 0.20 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0113 (7)
Crystal data top
C23H23N5O2V = 4029.3 (14) Å3
Mr = 401.46Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.486 (4) ŵ = 0.09 mm1
b = 10.209 (2) ÅT = 113 K
c = 19.753 (4) Å0.20 × 0.18 × 0.12 mm
β = 102.76 (3)°
Data collection top
Rigaku Saturn CCD
diffractometer
3553 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2858 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.990Rint = 0.038
13299 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.24 e Å3
3553 reflectionsΔρmin = 0.20 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36779 (5)0.46740 (9)0.06459 (5)0.0331 (3)
O20.30384 (5)0.76857 (9)0.14645 (5)0.0320 (3)
N10.48756 (6)0.27136 (11)0.04420 (6)0.0290 (3)
N20.44223 (6)0.29879 (11)0.01884 (6)0.0258 (3)
N30.36650 (6)0.64889 (11)0.03072 (6)0.0275 (3)
N40.31259 (6)0.98296 (10)0.01180 (6)0.0265 (3)
N50.29411 (6)0.95272 (11)0.07449 (6)0.0267 (3)
C10.44049 (7)0.21464 (12)0.07603 (7)0.0250 (3)
C20.39265 (7)0.23181 (13)0.13788 (7)0.0302 (4)
H20.35990.29880.14140.036*
C30.39318 (8)0.15100 (13)0.19403 (8)0.0340 (4)
H30.36080.16330.23610.041*
C40.44038 (8)0.05234 (14)0.18963 (8)0.0334 (4)
H40.44080.00210.22850.040*
C50.48688 (8)0.03395 (13)0.12788 (8)0.0325 (4)
H50.51880.03460.12430.039*
C60.48738 (7)0.11448 (13)0.07107 (8)0.0284 (3)
H60.51960.10120.02900.034*
C70.40969 (7)0.41613 (13)0.01570 (7)0.0252 (3)
C80.43465 (7)0.46416 (12)0.05373 (7)0.0246 (3)
C90.48298 (7)0.36845 (13)0.08621 (7)0.0265 (3)
C100.52713 (8)0.36606 (15)0.15746 (8)0.0383 (4)
H10A0.54990.28120.16550.057*
H10B0.49990.37930.19190.057*
H10C0.56050.43610.16170.057*
C110.41305 (7)0.58307 (13)0.07650 (7)0.0242 (3)
C120.43823 (8)0.63774 (13)0.14760 (7)0.0296 (4)
H12A0.43850.73360.14530.044*
H12B0.48380.60610.16630.044*
H12C0.40890.60940.17790.044*
C130.34091 (7)0.77511 (12)0.03765 (7)0.0236 (3)
C140.33636 (7)0.87041 (12)0.01143 (7)0.0238 (3)
C150.35030 (8)0.86237 (14)0.08178 (7)0.0302 (4)
H15A0.38410.79460.08240.045*
H15B0.36700.94710.09400.045*
H15C0.30900.84010.11550.045*
C160.26801 (8)1.07262 (14)0.03498 (8)0.0340 (4)
H16A0.29311.11670.06530.051*
H16B0.25021.13810.00760.051*
H16C0.23091.02290.06340.051*
C170.31227 (7)0.82187 (13)0.09295 (7)0.0252 (3)
C180.29907 (7)1.05520 (13)0.12492 (7)0.0268 (3)
C190.26278 (7)1.04378 (15)0.17587 (7)0.0325 (4)
H190.23450.97030.17650.039*
C200.26814 (8)1.14062 (16)0.22600 (8)0.0412 (4)
H200.24391.13260.26160.049*
C210.30837 (9)1.24844 (17)0.22456 (9)0.0454 (5)
H210.31161.31470.25890.054*
C220.34389 (9)1.25982 (15)0.17310 (9)0.0429 (4)
H220.37121.33450.17180.052*
C230.33989 (8)1.16264 (13)0.12312 (8)0.0344 (4)
H230.36491.16980.08810.041*
H3A0.3562 (8)0.6116 (14)0.0115 (6)0.045 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0351 (6)0.0329 (5)0.0257 (6)0.0095 (5)0.0053 (5)0.0022 (4)
O20.0367 (6)0.0363 (6)0.0236 (6)0.0021 (5)0.0081 (5)0.0049 (5)
N10.0286 (7)0.0338 (7)0.0217 (7)0.0052 (5)0.0003 (5)0.0042 (5)
N20.0265 (7)0.0284 (6)0.0198 (6)0.0039 (5)0.0006 (5)0.0006 (5)
N30.0322 (7)0.0267 (6)0.0216 (6)0.0026 (5)0.0016 (6)0.0033 (5)
N40.0322 (7)0.0294 (6)0.0186 (6)0.0050 (5)0.0073 (5)0.0030 (5)
N50.0322 (7)0.0296 (6)0.0198 (6)0.0045 (5)0.0092 (5)0.0016 (5)
C10.0270 (8)0.0253 (7)0.0230 (8)0.0017 (6)0.0063 (6)0.0005 (6)
C20.0311 (9)0.0308 (7)0.0264 (8)0.0043 (6)0.0011 (7)0.0012 (6)
C30.0401 (9)0.0357 (8)0.0236 (8)0.0003 (7)0.0012 (7)0.0004 (6)
C40.0404 (10)0.0324 (8)0.0296 (9)0.0027 (7)0.0126 (7)0.0045 (7)
C50.0318 (9)0.0279 (7)0.0398 (9)0.0030 (6)0.0123 (7)0.0008 (7)
C60.0271 (8)0.0280 (7)0.0291 (8)0.0001 (6)0.0038 (6)0.0032 (6)
C70.0234 (8)0.0276 (7)0.0232 (8)0.0020 (6)0.0019 (6)0.0021 (6)
C80.0240 (8)0.0281 (7)0.0207 (8)0.0008 (6)0.0027 (6)0.0025 (6)
C90.0261 (8)0.0310 (7)0.0223 (7)0.0017 (6)0.0049 (6)0.0035 (6)
C100.0404 (10)0.0485 (9)0.0226 (8)0.0144 (8)0.0001 (7)0.0007 (7)
C110.0236 (8)0.0271 (7)0.0213 (7)0.0031 (6)0.0035 (6)0.0035 (6)
C120.0313 (8)0.0320 (8)0.0233 (8)0.0014 (6)0.0015 (6)0.0008 (6)
C130.0239 (7)0.0248 (7)0.0209 (7)0.0005 (6)0.0023 (6)0.0013 (6)
C140.0207 (7)0.0298 (7)0.0200 (7)0.0001 (6)0.0025 (6)0.0027 (6)
C150.0316 (9)0.0378 (8)0.0213 (8)0.0026 (7)0.0061 (6)0.0007 (6)
C160.0387 (9)0.0323 (8)0.0308 (9)0.0100 (7)0.0073 (7)0.0076 (7)
C170.0237 (8)0.0294 (7)0.0207 (7)0.0022 (6)0.0009 (6)0.0006 (6)
C180.0266 (8)0.0315 (7)0.0205 (7)0.0087 (6)0.0015 (6)0.0018 (6)
C190.0276 (8)0.0443 (9)0.0244 (8)0.0095 (7)0.0030 (6)0.0002 (7)
C200.0355 (10)0.0633 (11)0.0232 (8)0.0165 (8)0.0029 (7)0.0056 (8)
C210.0475 (11)0.0484 (10)0.0339 (10)0.0148 (8)0.0048 (8)0.0161 (8)
C220.0455 (11)0.0378 (9)0.0407 (10)0.0037 (8)0.0009 (8)0.0095 (8)
C230.0340 (9)0.0354 (8)0.0328 (9)0.0044 (7)0.0052 (7)0.0015 (7)
Geometric parameters (Å, º) top
O1—C71.2559 (17)C9—C101.496 (2)
O2—C171.2341 (16)C10—H10A0.9800
N1—C91.3093 (18)C10—H10B0.9800
N1—N21.4073 (16)C10—H10C0.9800
N2—C71.3792 (17)C11—C121.4933 (19)
N2—C11.4133 (17)C12—H12A0.9800
N3—C111.3408 (18)C12—H12B0.9800
N3—C131.4091 (17)C12—H12C0.9800
N3—H3A0.899 (9)C13—C141.3622 (19)
N4—C141.3664 (16)C13—C171.4314 (19)
N4—N51.4068 (16)C14—C151.4814 (19)
N4—C161.4673 (18)C15—H15A0.9800
N5—C171.4128 (17)C15—H15B0.9800
N5—C181.4327 (17)C15—H15C0.9800
C1—C61.391 (2)C16—H16A0.9800
C1—C21.398 (2)C16—H16B0.9800
C2—C31.384 (2)C16—H16C0.9800
C2—H20.9500C18—C191.382 (2)
C3—C41.386 (2)C18—C231.385 (2)
C3—H30.9500C19—C201.386 (2)
C4—C51.385 (2)C19—H190.9500
C4—H40.9500C20—C211.379 (3)
C5—C61.3893 (19)C20—H200.9500
C5—H50.9500C21—C221.379 (3)
C6—H60.9500C21—H210.9500
C7—C81.4396 (19)C22—C231.389 (2)
C8—C111.4000 (19)C22—H220.9500
C8—C91.4373 (19)C23—H230.9500
C9—N1—N2106.53 (11)N3—C11—C12119.56 (12)
C7—N2—N1111.35 (10)C8—C11—C12123.93 (12)
C7—N2—C1129.57 (11)C11—C12—H12A109.5
N1—N2—C1118.78 (11)C11—C12—H12B109.5
C11—N3—C13128.11 (12)H12A—C12—H12B109.5
C11—N3—H3A113.6 (11)C11—C12—H12C109.5
C13—N3—H3A117.5 (11)H12A—C12—H12C109.5
C14—N4—N5107.23 (10)H12B—C12—H12C109.5
C14—N4—C16122.11 (12)C14—C13—N3123.54 (13)
N5—N4—C16116.12 (11)C14—C13—C17109.25 (12)
N4—N5—C17109.15 (10)N3—C13—C17127.10 (12)
N4—N5—C18117.40 (11)C13—C14—N4109.58 (12)
C17—N5—C18122.47 (11)C13—C14—C15129.12 (12)
C6—C1—C2119.56 (13)N4—C14—C15121.23 (12)
C6—C1—N2119.69 (13)C14—C15—H15A109.5
C2—C1—N2120.74 (12)C14—C15—H15B109.5
C3—C2—C1119.82 (13)H15A—C15—H15B109.5
C3—C2—H2120.1C14—C15—H15C109.5
C1—C2—H2120.1H15A—C15—H15C109.5
C2—C3—C4120.79 (14)H15B—C15—H15C109.5
C2—C3—H3119.6N4—C16—H16A109.5
C4—C3—H3119.6N4—C16—H16B109.5
C5—C4—C3119.24 (14)H16A—C16—H16B109.5
C5—C4—H4120.4N4—C16—H16C109.5
C3—C4—H4120.4H16A—C16—H16C109.5
C4—C5—C6120.81 (13)H16B—C16—H16C109.5
C4—C5—H5119.6O2—C17—N5124.01 (13)
C6—C5—H5119.6O2—C17—C13131.67 (13)
C5—C6—C1119.75 (14)N5—C17—C13104.32 (11)
C5—C6—H6120.1C19—C18—C23120.71 (13)
C1—C6—H6120.1C19—C18—N5118.54 (13)
O1—C7—N2125.62 (12)C23—C18—N5120.74 (13)
O1—C7—C8128.99 (13)C18—C19—C20119.31 (15)
N2—C7—C8105.38 (11)C18—C19—H19120.3
C11—C8—C9132.97 (13)C20—C19—H19120.3
C11—C8—C7122.03 (12)C21—C20—C19120.52 (16)
C9—C8—C7104.97 (12)C21—C20—H20119.7
N1—C9—C8111.75 (12)C19—C20—H20119.7
N1—C9—C10118.09 (12)C20—C21—C22119.82 (15)
C8—C9—C10130.15 (13)C20—C21—H21120.1
C9—C10—H10A109.5C22—C21—H21120.1
C9—C10—H10B109.5C21—C22—C23120.38 (16)
H10A—C10—H10B109.5C21—C22—H22119.8
C9—C10—H10C109.5C23—C22—H22119.8
H10A—C10—H10C109.5C18—C23—C22119.25 (15)
H10B—C10—H10C109.5C18—C23—H23120.4
N3—C11—C8116.50 (12)C22—C23—H23120.4
C9—N1—N2—C70.73 (15)C9—C8—C11—N3179.24 (14)
C9—N1—N2—C1175.01 (12)C7—C8—C11—N31.6 (2)
C14—N4—N5—C175.07 (15)C9—C8—C11—C121.4 (2)
C16—N4—N5—C17145.59 (12)C7—C8—C11—C12179.06 (13)
C14—N4—N5—C18150.16 (12)C11—N3—C13—C14130.25 (16)
C16—N4—N5—C1869.32 (15)C11—N3—C13—C1753.9 (2)
C7—N2—C1—C6167.10 (13)N3—C13—C14—N4177.17 (12)
N1—N2—C1—C65.98 (19)C17—C13—C14—N46.37 (16)
C7—N2—C1—C212.1 (2)N3—C13—C14—C155.8 (2)
N1—N2—C1—C2174.78 (12)C17—C13—C14—C15170.70 (13)
C6—C1—C2—C31.4 (2)N5—N4—C14—C137.03 (15)
N2—C1—C2—C3177.88 (13)C16—N4—C14—C13144.66 (13)
C1—C2—C3—C40.4 (2)N5—N4—C14—C15170.30 (12)
C2—C3—C4—C50.8 (2)C16—N4—C14—C1532.7 (2)
C3—C4—C5—C61.1 (2)N4—N5—C17—O2178.14 (12)
C4—C5—C6—C10.2 (2)C18—N5—C17—O235.2 (2)
C2—C1—C6—C51.0 (2)N4—N5—C17—C131.27 (14)
N2—C1—C6—C5178.23 (12)C18—N5—C17—C13144.24 (13)
N1—N2—C7—O1178.08 (13)C14—C13—C17—O2177.62 (14)
C1—N2—C7—O14.6 (2)N3—C13—C17—O21.3 (2)
N1—N2—C7—C81.39 (15)C14—C13—C17—N53.03 (15)
C1—N2—C7—C8174.88 (13)N3—C13—C17—N5179.33 (13)
O1—C7—C8—C110.3 (2)N4—N5—C18—C19159.88 (12)
N2—C7—C8—C11179.69 (12)C17—N5—C18—C1959.97 (18)
O1—C7—C8—C9177.98 (14)N4—N5—C18—C2320.81 (19)
N2—C7—C8—C91.45 (15)C17—N5—C18—C23119.34 (15)
N2—N1—C9—C80.27 (16)C23—C18—C19—C200.7 (2)
N2—N1—C9—C10178.89 (13)N5—C18—C19—C20178.58 (13)
C11—C8—C9—N1179.06 (14)C18—C19—C20—C211.1 (2)
C7—C8—C9—N11.10 (16)C19—C20—C21—C220.4 (2)
C11—C8—C9—C100.0 (3)C20—C21—C22—C230.7 (2)
C7—C8—C9—C10177.93 (15)C19—C18—C23—C220.3 (2)
C13—N3—C11—C8173.48 (13)N5—C18—C23—C22179.56 (13)
C13—N3—C11—C127.1 (2)C21—C22—C23—C181.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.90 (1)1.85 (1)2.6459 (15)146 (2)

Experimental details

Crystal data
Chemical formulaC23H23N5O2
Mr401.46
Crystal system, space groupMonoclinic, C2/c
Temperature (K)113
a, b, c (Å)20.486 (4), 10.209 (2), 19.753 (4)
β (°) 102.76 (3)
V3)4029.3 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.983, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
13299, 3553, 2858
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.105, 1.00
No. of reflections3553
No. of parameters280
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.20

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.899 (9)1.853 (12)2.6459 (15)145.9 (15)
 

Acknowledgements

The authors thank the Science Development Committee of Tianjin Agricultural College for partial funding (research grant No. 2007029).

References

First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X., Huang, M., Du, C. & Han, J. (2010). Acta Cryst. E66, o273.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, H., Shi, J., Wei, Z., Dai, R. & Zhang, X. (2010). Acta Cryst. E66, o1352.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds