organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1566-o1567

Redetermination and absolute configuration of 7α-hy­dr­oxy­royleanone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 25 May 2010; accepted 30 May 2010; online 5 June 2010)

The title compound [systematic name: 7α,12-dihy­droxy-8,12-abietadiene,11,14-dione or (4bS,8aS,10R)-3,10-dihy­droxy-2-isopropyl-4b,8,8-trimethyl-1,4,4b,5,6,7,8,8a,9,10-deca­hydro­phenanthrene-1,4-dione], C20H28O4, is an abietane diterpen­oid, which was isolated from the roots of Premna obtusifolia (Verbenaceae). Its crystal structure has been reported previously [Chen et al. (2000[Chen, X., Liao, R.-A., Weng, L.-H., Xie, Q.-L. & Deng, F.-J. (2000). Jiegou Huaxue, 19, 122-125.]). Jiegou Huaxue, 19, 122–125], but the absolute configuration could not be determined using data collected with Mo radiation. This redetermination using Cu radiation shows the the absolute configurations of the stereogenic centres at positions 4b, 8a and 10 to be S, S and R, respectively. Two intra­molecular O—H⋯O hydrogen bonds [one generating an S(5) ring and one generating an S(6) ring] and a number of short C—H⋯O contacts occur. In the crystal, mol­ecules are linked into infinite chains propagating in [100] by O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions.

Related literature

For background to Verbenaceae, diterpenes and their biological activity, see: Batista et al. (1994[Batista, O., Duarte, A., Nascimento, J. M. & Simoes, F. (1994). J. Nat. Prod. 57, 858-861.]); Bunluepuech & Tewtrakul (2009[Bunluepuech, K. & Tewtrakul, S. (2009). Songklanakarin J. Sci. Technol. 31, 289-292]); Jonathan et al. (1989[Jonathan, L. T., Che, C. -T., Pezzuto, J. M., Fong, H. H. S. & Farnsworth, N. R. (1989). J. Nat. Prod. 59, 734-737.]); Kabouche et al. (2007[Kabouche, A., Kabouche, Z., Öztürk, M., Kolak, U. & Topçu, G. (2007). Food Chem. 102, 1281-1287.]); Kupchan et al. (1968[Kupchan, S. M., Karim, A. & Marcks, C. (1968). J. Am. Chem. Soc. 90, 5923-5924.], 1969[Kupchan, S. M., Karim, A. & Marcks, C. (1969). J. Org. Chem. 34, 3912-3918.]); Nagy et al. (1999[Nagy, G., Günther, G., Máthé, I., Blunden, G., Yang, M.-H. & Crabb, T. A. (1999). Phytochemistry, 51, 809-812.]); Ulubelen et al. (2001[Ulubelen, A., Oksuz, S., Topgu, G., Goren, A. C. & Voelter, W. (2001). J. Nat. Prod. 64, 549-551.]). For the previous structure determination, see: Chen et al. (2000[Chen, X., Liao, R.-A., Weng, L.-H., Xie, Q.-L. & Deng, F.-J. (2000). Jiegou Huaxue, 19, 122-125.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) and for ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H28O4

  • Mr = 332.42

  • Orthorhombic, P 21 21 21

  • a = 7.6729 (1) Å

  • b = 9.3972 (1) Å

  • c = 24.1946 (3) Å

  • V = 1744.52 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 100 K

  • 0.28 × 0.28 × 0.20 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.829, Tmax = 0.871

  • 6475 measured reflections

  • 2578 independent reflections

  • 2564 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.074

  • S = 1.04

  • 2578 reflections

  • 230 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 970 Friedel pairs

  • Flack parameter: 0.13 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2i 0.88 (2) 2.24 (3) 2.9502 (15) 137 (2)
O1—H1O1⋯O4 0.88 (2) 2.52 (3) 2.9399 (14) 109.8 (19)
O3—H1O3⋯O2 0.83 (2) 2.075 (19) 2.5892 (14) 119.8 (19)
O3—H1O3⋯O4ii 0.83 (2) 2.42 (2) 3.1635 (14) 148.8 (18)
C1—H1A⋯O2 0.97 2.33 2.9493 (18) 121
C5—H5A⋯O1 0.98 2.52 2.9933 (17) 110
C7—H7A⋯O2i 0.98 2.42 3.0998 (17) 126
C15—H15A⋯O4 0.98 2.38 2.8549 (17) 109
C16—H16C⋯O3 0.96 2.58 3.1654 (19) 119
C17—H17B⋯O3 0.96 2.53 3.1204 (18) 119
C20—H20A⋯O2 0.96 2.51 3.1451 (18) 124
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The extracts of Verbenaceae plants were found to possess anti-HIV-1 integrase activity (Bunluepuech & Tewtrakul, 2009). Premna obtusifolia (Verbenaceae), a small tree found in the mangrove forests, is one of the Verbenaceae plants. As part of our study of chemical constituents and bioactive compounds from the roots of Premna obtusifolia (Verbenaceae) which were collected from Satun province in the southern part of Thailand, the title abietane diterpenoid (I) was isolated. It was known as horminone (Batista et al., 1994) or 7α-hydroxyroyleanone (Nagy et al., 1999) and the previous reports show that (I) exhibits significant biological activities as tumor inhibitors (Kupchan et al., 1968, 1969; Jonathan et al., 1989), antioxidant (Kabouche et al., 2007) and antibacterial agents (Ulubelen et al., 2001). The crystal structure of (I) has been reported (Chen et al., 2000) but the absolute configuration could not be determined due to no large anomalous dispersion using a data set collected with Mo radiation. Our data of (I) was collected using Cu radiation with Bruker Apex-Duo CCD diffractometer and the absolute configuration at atoms C10, C5 and C7 (or positions 4b, 8a and 10 of abietane diterpenoid) were determined as S,S,R making use of the large anomalous scattering of Cu Kα X-radiation with the Flack parameter being refined to 0.13 (16). We report herein the crystal structure of (I) determined from the Cu data.

The molecule of (I) has three fused six membered rings (Fig. 1). The two cyclohexanes rings are trans fused. One cyclohexane ring (C1–C5/C10) is in a standard chair conformation whereas the other (C5–C10) is in half chair conformation, with the puckering parameter Q = 0.5419 (15) Å, θ = 51.68 (16)° and ϕ = 21.6 (2)° (Cremer & Pople, 1975). The benzoquinone ring (C8–C9/C11–C14/O2/O4) is slightly twisted with the maximum deviations of 0.060 (1) and -0.052 (1) Å for atoms C9 and C11, respectively. The O2, O3 and O4 atoms lie close to the mean plane of the C8–C9/C11–C14 ring with the r.m.s. of 0.0543 (1). The bond angles around C11 and C14 are indicative of sp2 hybridization for these atoms. The orientation of the propanyl group is described by the torsion angles C14–C13–C15–C17 = -118.43 (14)° and C14–C13–C15–C16 = 116.53 (14)°. Intramolecular O1—H1O1···O4 and O3—H1O3···O2 hydrogen bonds (Table 1) generate S(6) and S(5) ring motifs, respectively (Fig. 1) (Bernstein et al., 1995). The bond distances in (I) are within normal ranges (Allen et al., 1987).

The crystal packing of (I) is stabilized by intermolecular O—H···O hydrogen bonds and weak C—H···O interactions (Fig. 2 and Table 1). The molecules are linked into infinite one dimensional chains along the [1 0 0] (Fig. 2) through O1—H1O1···O2 and O3—H1O3···O4 hydrogen bonds and weak C7—H7A···O2 interactions (Table 1).

Related literature top

For background to Verbenaceae, diterpenes and their biological activity, see: Batista et al. (1994); Bunluepuech & Tewtrakul (2009); Jonathan et al. (1989); Kabouche et al. (2007); Kupchan et al. (1968, 1969); Nagy et al. (1999); Ulubelen et al. (2001). For the previous structure determination, see: Chen et al. (2000). For hydrogen-bond motifs, see: Bernstein et al. (1995) and for ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

Experimental top

The air-dried roots of premna obtusifolia (4.5 kg) were extracted with CH2Cl2 (2 × 20 L) at room temperature. The combined extracts were concentrated under reduced pressure to afford a dark yellow extract (40.5 g) which was subjected to quick column chromatography (QCC) over silica gel using solvents of increasing polarity from n-hexane to EtOAc to afford 12 fractions (F1—F12). Fraction F4 was further purified by QCC using hexane-acetone (9:1), yielding the title compound (57.5 mg). Yellow blocks of (I) were recrystallized from n-hexane after several days.

Refinement top

Hydroxy H atoms attached to O1 and O3 were located from the difference map and isotropically refined. The remaining H atoms were placed in calculated positions with (C—H) = 0.98 for CH, 0.97 for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.78 Å from H7A and the deepest hole is located at 0.95 Å from C11. 970 Friedel pairs were used to determine the absolute configuration.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids. Intramolecular O—H···O hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the b axis, showing one dimensional chains along the [1 0 0]. Hydrogen bonds are shown as dashed lines.
(4bS,8aS,10R)-3,10-dihydroxy-2-isopropyl-4b,8,8-trimethyl- 1,4,4b,5,6,7,8,8a,9,10-decahydrophenanthrene-1,4-dione top
Crystal data top
C20H28O4F(000) = 720
Mr = 332.42Dx = 1.266 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 2578 reflections
a = 7.6729 (1) Åθ = 5.1–62.5°
b = 9.3972 (1) ŵ = 0.70 mm1
c = 24.1946 (3) ÅT = 100 K
V = 1744.52 (4) Å3Block, yellow
Z = 40.28 × 0.28 × 0.20 mm
Data collection top
Bruker APEXII DUO CCD
diffractometer
2578 independent reflections
Radiation source: sealed tube2564 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 62.5°, θmin = 5.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 78
Tmin = 0.829, Tmax = 0.871k = 1010
6475 measured reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.3997P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2578 reflectionsΔρmax = 0.22 e Å3
230 parametersΔρmin = 0.13 e Å3
0 restraintsAbsolute structure: Flack (1983), 970 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.13 (16)
Crystal data top
C20H28O4V = 1744.52 (4) Å3
Mr = 332.42Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 7.6729 (1) ŵ = 0.70 mm1
b = 9.3972 (1) ÅT = 100 K
c = 24.1946 (3) Å0.28 × 0.28 × 0.20 mm
Data collection top
Bruker APEXII DUO CCD
diffractometer
2578 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2564 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 0.871Rint = 0.015
6475 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074Δρmax = 0.22 e Å3
S = 1.04Δρmin = 0.13 e Å3
2578 reflectionsAbsolute structure: Flack (1983), 970 Friedel pairs
230 parametersAbsolute structure parameter: 0.13 (16)
0 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.39089 (14)0.84016 (12)0.26305 (4)0.0253 (3)
H1O10.310 (3)0.830 (3)0.2374 (11)0.077 (9)*
O21.09134 (13)0.67838 (11)0.21951 (4)0.0216 (2)
O31.04729 (13)0.73182 (11)0.11546 (4)0.0209 (2)
H1O31.132 (3)0.720 (2)0.1363 (8)0.040 (6)*
O40.44447 (13)0.73046 (14)0.15053 (4)0.0300 (3)
C10.98219 (19)0.80709 (16)0.32516 (6)0.0198 (3)
H1A1.09030.77750.30790.024*
H1B0.95190.90010.31060.024*
C21.00975 (19)0.81849 (16)0.38772 (6)0.0228 (3)
H2A1.05080.72780.40180.027*
H2B1.09880.88920.39520.027*
C30.8428 (2)0.85964 (17)0.41773 (6)0.0233 (3)
H3A0.81240.95640.40760.028*
H3B0.86480.85840.45720.028*
C40.68635 (19)0.76239 (16)0.40536 (6)0.0204 (3)
C50.66970 (18)0.74674 (15)0.34161 (5)0.0173 (3)
H5A0.64660.84350.32840.021*
C60.51347 (18)0.66017 (16)0.32182 (6)0.0199 (3)
H6A0.54010.55940.32390.024*
H6B0.41370.67900.34530.024*
C70.47085 (18)0.70050 (16)0.26259 (6)0.0200 (3)
H7A0.38970.63100.24680.024*
C80.63225 (18)0.70964 (15)0.22719 (6)0.0181 (3)
C90.79457 (18)0.70681 (15)0.24799 (5)0.0158 (3)
C100.83719 (18)0.70011 (15)0.31011 (6)0.0169 (3)
C110.93920 (17)0.70252 (15)0.20709 (6)0.0171 (3)
C120.90331 (18)0.72713 (15)0.14720 (6)0.0168 (3)
C130.74123 (19)0.74250 (15)0.12654 (6)0.0182 (3)
C140.59663 (18)0.72713 (15)0.16633 (6)0.0188 (3)
C150.70086 (18)0.77406 (17)0.06671 (6)0.0211 (3)
H15A0.57380.77930.06320.025*
C160.7741 (2)0.91900 (17)0.04969 (7)0.0285 (4)
H16A0.72970.99120.07400.043*
H16B0.73970.93980.01240.043*
H16C0.89900.91690.05200.043*
C170.7642 (2)0.65721 (17)0.02752 (6)0.0260 (4)
H17A0.71540.56750.03860.039*
H17B0.88900.65190.02890.039*
H17C0.72780.67890.00950.039*
C180.5232 (2)0.83806 (18)0.42719 (6)0.0266 (3)
H18A0.54170.86600.46490.040*
H18B0.42530.77460.42520.040*
H18C0.50040.92090.40510.040*
C190.7033 (2)0.62112 (17)0.43667 (6)0.0248 (3)
H19A0.68470.63720.47540.037*
H19B0.81780.58270.43100.037*
H19C0.61790.55510.42310.037*
C200.8991 (2)0.54667 (15)0.32229 (6)0.0202 (3)
H20A0.97970.51710.29420.030*
H20B0.80050.48380.32250.030*
H20C0.95540.54390.35770.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0192 (5)0.0318 (6)0.0248 (5)0.0057 (5)0.0006 (5)0.0037 (5)
O20.0130 (5)0.0305 (6)0.0214 (5)0.0023 (4)0.0010 (4)0.0002 (5)
O30.0147 (5)0.0290 (6)0.0191 (5)0.0004 (5)0.0017 (4)0.0021 (5)
O40.0148 (5)0.0531 (7)0.0221 (5)0.0006 (5)0.0031 (4)0.0068 (5)
C10.0162 (7)0.0237 (7)0.0194 (7)0.0028 (6)0.0004 (6)0.0023 (6)
C20.0203 (7)0.0257 (7)0.0224 (7)0.0049 (7)0.0038 (6)0.0034 (6)
C30.0261 (8)0.0248 (8)0.0190 (7)0.0001 (7)0.0014 (7)0.0037 (6)
C40.0194 (7)0.0250 (8)0.0168 (7)0.0035 (6)0.0000 (6)0.0000 (6)
C50.0167 (7)0.0185 (7)0.0165 (6)0.0012 (6)0.0003 (6)0.0031 (6)
C60.0159 (7)0.0256 (7)0.0183 (7)0.0006 (6)0.0021 (6)0.0016 (6)
C70.0142 (6)0.0268 (7)0.0189 (7)0.0002 (7)0.0001 (6)0.0019 (6)
C80.0168 (7)0.0183 (7)0.0192 (7)0.0001 (6)0.0008 (6)0.0000 (6)
C90.0160 (7)0.0140 (6)0.0173 (7)0.0003 (6)0.0000 (6)0.0010 (6)
C100.0138 (6)0.0193 (7)0.0177 (6)0.0001 (6)0.0003 (6)0.0003 (6)
C110.0160 (7)0.0149 (7)0.0205 (7)0.0008 (6)0.0005 (6)0.0026 (5)
C120.0163 (7)0.0163 (6)0.0178 (7)0.0003 (6)0.0028 (6)0.0030 (6)
C130.0176 (7)0.0184 (7)0.0186 (7)0.0004 (6)0.0007 (6)0.0023 (6)
C140.0159 (7)0.0207 (7)0.0198 (7)0.0012 (6)0.0017 (6)0.0002 (6)
C150.0169 (7)0.0291 (8)0.0174 (7)0.0006 (7)0.0012 (6)0.0005 (6)
C160.0341 (9)0.0277 (8)0.0237 (7)0.0022 (8)0.0033 (7)0.0057 (7)
C170.0295 (8)0.0317 (8)0.0169 (7)0.0059 (8)0.0004 (7)0.0019 (6)
C180.0247 (8)0.0348 (8)0.0204 (7)0.0048 (7)0.0022 (6)0.0003 (7)
C190.0257 (8)0.0315 (8)0.0171 (7)0.0025 (7)0.0007 (7)0.0039 (6)
C200.0195 (7)0.0211 (7)0.0199 (7)0.0019 (6)0.0028 (6)0.0007 (6)
Geometric parameters (Å, º) top
O1—C71.4488 (18)C8—C91.344 (2)
O1—H1O10.88 (3)C8—C141.5066 (19)
O2—C111.2266 (17)C9—C111.4874 (19)
O3—C121.3461 (17)C9—C101.5394 (18)
O3—H1O30.83 (2)C10—C201.546 (2)
O4—C141.2288 (18)C11—C121.4931 (19)
C1—C21.5322 (19)C12—C131.348 (2)
C1—C101.543 (2)C13—C141.476 (2)
C1—H1A0.9700C13—C151.5098 (19)
C1—H1B0.9700C15—C171.530 (2)
C2—C31.522 (2)C15—C161.530 (2)
C2—H2A0.9700C15—H15A0.9800
C2—H2B0.9700C16—H16A0.9600
C3—C41.538 (2)C16—H16B0.9600
C3—H3A0.9700C16—H16C0.9600
C3—H3B0.9700C17—H17A0.9600
C4—C181.534 (2)C17—H17B0.9600
C4—C191.534 (2)C17—H17C0.9600
C4—C51.5547 (18)C18—H18A0.9600
C5—C61.526 (2)C18—H18B0.9600
C5—C101.5570 (19)C18—H18C0.9600
C5—H5A0.9800C19—H19A0.9600
C6—C71.5178 (19)C19—H19B0.9600
C6—H6A0.9700C19—H19C0.9600
C6—H6B0.9700C20—H20A0.9600
C7—C81.5082 (19)C20—H20B0.9600
C7—H7A0.9800C20—H20C0.9600
C7—O1—H1O1101.4 (19)C1—C10—C20109.94 (11)
C12—O3—H1O3107.0 (14)C9—C10—C5106.92 (11)
C2—C1—C10112.22 (12)C1—C10—C5107.24 (11)
C2—C1—H1A109.2C20—C10—C5115.00 (12)
C10—C1—H1A109.2O2—C11—C9123.52 (13)
C2—C1—H1B109.2O2—C11—C12116.22 (13)
C10—C1—H1B109.2C9—C11—C12120.26 (12)
H1A—C1—H1B107.9O3—C12—C13122.83 (12)
C3—C2—C1111.88 (12)O3—C12—C11114.03 (12)
C3—C2—H2A109.2C13—C12—C11123.13 (12)
C1—C2—H2A109.2C12—C13—C14116.18 (12)
C3—C2—H2B109.2C12—C13—C15124.46 (13)
C1—C2—H2B109.2C14—C13—C15119.36 (13)
H2A—C2—H2B107.9O4—C14—C13120.59 (13)
C2—C3—C4114.40 (12)O4—C14—C8118.62 (13)
C2—C3—H3A108.7C13—C14—C8120.78 (12)
C4—C3—H3A108.7C13—C15—C17112.84 (12)
C2—C3—H3B108.7C13—C15—C16110.95 (12)
C4—C3—H3B108.7C17—C15—C16110.82 (12)
H3A—C3—H3B107.6C13—C15—H15A107.3
C18—C4—C19107.48 (12)C17—C15—H15A107.3
C18—C4—C3107.13 (12)C16—C15—H15A107.3
C19—C4—C3110.61 (12)C15—C16—H16A109.5
C18—C4—C5108.58 (11)C15—C16—H16B109.5
C19—C4—C5114.52 (12)H16A—C16—H16B109.5
C3—C4—C5108.26 (11)C15—C16—H16C109.5
C6—C5—C4115.24 (11)H16A—C16—H16C109.5
C6—C5—C10110.17 (11)H16B—C16—H16C109.5
C4—C5—C10116.38 (11)C15—C17—H17A109.5
C6—C5—H5A104.5C15—C17—H17B109.5
C4—C5—H5A104.5H17A—C17—H17B109.5
C10—C5—H5A104.5C15—C17—H17C109.5
C7—C6—C5109.42 (12)H17A—C17—H17C109.5
C7—C6—H6A109.8H17B—C17—H17C109.5
C5—C6—H6A109.8C4—C18—H18A109.5
C7—C6—H6B109.8C4—C18—H18B109.5
C5—C6—H6B109.8H18A—C18—H18B109.5
H6A—C6—H6B108.2C4—C18—H18C109.5
O1—C7—C8107.49 (11)H18A—C18—H18C109.5
O1—C7—C6108.07 (12)H18B—C18—H18C109.5
C8—C7—C6111.93 (12)C4—C19—H19A109.5
O1—C7—H7A109.8C4—C19—H19B109.5
C8—C7—H7A109.8H19A—C19—H19B109.5
C6—C7—H7A109.8C4—C19—H19C109.5
C9—C8—C14122.44 (12)H19A—C19—H19C109.5
C9—C8—C7123.18 (12)H19B—C19—H19C109.5
C14—C8—C7114.35 (12)C10—C20—H20A109.5
C8—C9—C11116.29 (12)C10—C20—H20B109.5
C8—C9—C10124.29 (12)H20A—C20—H20B109.5
C11—C9—C10119.34 (12)C10—C20—H20C109.5
C9—C10—C1110.91 (11)H20A—C20—H20C109.5
C9—C10—C20106.82 (12)H20B—C20—H20C109.5
C10—C1—C2—C356.85 (16)C2—C1—C10—C555.46 (15)
C1—C2—C3—C454.11 (17)C6—C5—C10—C952.09 (15)
C2—C3—C4—C18166.79 (12)C4—C5—C10—C9174.34 (12)
C2—C3—C4—C1976.36 (15)C6—C5—C10—C1171.09 (11)
C2—C3—C4—C549.87 (16)C4—C5—C10—C155.33 (16)
C18—C4—C5—C660.53 (17)C6—C5—C10—C2066.31 (15)
C19—C4—C5—C659.57 (16)C4—C5—C10—C2067.26 (16)
C3—C4—C5—C6176.51 (12)C8—C9—C11—O2168.73 (14)
C18—C4—C5—C10168.22 (12)C10—C9—C11—O28.2 (2)
C19—C4—C5—C1071.68 (16)C8—C9—C11—C1210.76 (19)
C3—C4—C5—C1052.23 (16)C10—C9—C11—C12172.31 (12)
C4—C5—C6—C7157.64 (12)O2—C11—C12—O35.63 (19)
C10—C5—C6—C768.21 (14)C9—C11—C12—O3174.85 (12)
C5—C6—C7—O173.43 (14)O2—C11—C12—C13174.01 (13)
C5—C6—C7—C844.75 (16)C9—C11—C12—C135.5 (2)
O1—C7—C8—C9107.73 (15)O3—C12—C13—C14176.88 (13)
C6—C7—C8—C910.8 (2)C11—C12—C13—C142.7 (2)
O1—C7—C8—C1470.35 (15)O3—C12—C13—C153.3 (2)
C6—C7—C8—C14171.12 (12)C11—C12—C13—C15177.11 (13)
C14—C8—C9—C117.9 (2)C12—C13—C14—O4175.35 (15)
C7—C8—C9—C11174.19 (13)C15—C13—C14—O44.8 (2)
C14—C8—C9—C10175.36 (13)C12—C13—C14—C85.73 (19)
C7—C8—C9—C102.6 (2)C15—C13—C14—C8174.11 (13)
C8—C9—C10—C1134.70 (14)C9—C8—C14—O4179.11 (15)
C11—C9—C10—C148.64 (17)C7—C8—C14—O41.0 (2)
C8—C9—C10—C20105.50 (16)C9—C8—C14—C130.2 (2)
C11—C9—C10—C2071.16 (15)C7—C8—C14—C13177.93 (13)
C8—C9—C10—C518.10 (19)C12—C13—C15—C1761.75 (19)
C11—C9—C10—C5165.24 (11)C14—C13—C15—C17118.43 (14)
C2—C1—C10—C9171.86 (12)C12—C13—C15—C1663.29 (18)
C2—C1—C10—C2070.22 (15)C14—C13—C15—C16116.53 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.88 (2)2.24 (3)2.9502 (15)137 (2)
O1—H1O1···O40.88 (2)2.52 (3)2.9399 (14)109.8 (19)
O3—H1O3···O20.83 (2)2.075 (19)2.5892 (14)119.8 (19)
O3—H1O3···O4ii0.83 (2)2.42 (2)3.1635 (14)148.8 (18)
C1—H1A···O20.972.332.9493 (18)121
C5—H5A···O10.982.522.9933 (17)110
C7—H7A···O2i0.982.423.0998 (17)126
C15—H15A···O40.982.382.8549 (17)109
C16—H16C···O30.962.583.1654 (19)119
C17—H17B···O30.962.533.1204 (18)119
C20—H20A···O20.962.513.1451 (18)124
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H28O4
Mr332.42
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)7.6729 (1), 9.3972 (1), 24.1946 (3)
V3)1744.52 (4)
Z4
Radiation typeCu Kα
µ (mm1)0.70
Crystal size (mm)0.28 × 0.28 × 0.20
Data collection
DiffractometerBruker APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.829, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
6475, 2578, 2564
Rint0.015
(sin θ/λ)max1)0.575
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.074, 1.04
No. of reflections2578
No. of parameters230
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.13
Absolute structureFlack (1983), 970 Friedel pairs
Absolute structure parameter0.13 (16)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.88 (2)2.24 (3)2.9502 (15)137 (2)
O1—H1O1···O40.88 (2)2.52 (3)2.9399 (14)109.8 (19)
O3—H1O3···O20.83 (2)2.075 (19)2.5892 (14)119.8 (19)
O3—H1O3···O4ii0.83 (2)2.42 (2)3.1635 (14)148.8 (18)
C1—H1A···O20.972.332.9493 (18)121
C5—H5A···O10.982.522.9933 (17)110
C7—H7A···O2i0.982.423.0998 (17)126
C15—H15A···O40.982.382.8549 (17)109
C16—H16C···O30.962.583.1654 (19)119
C17—H17B···O30.962.533.1204 (18)119
C20—H20A···O20.962.513.1451 (18)124
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

AWS thanks the Graduate School, Prince of Songkla University, for partial financial support. The authors thank the Prince of Songkla University for financial support through the Crystal Materials Research Unit. The authors also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811151.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBatista, O., Duarte, A., Nascimento, J. M. & Simoes, F. (1994). J. Nat. Prod. 57, 858–861.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBunluepuech, K. & Tewtrakul, S. (2009). Songklanakarin J. Sci. Technol. 31, 289–292  Google Scholar
First citationChen, X., Liao, R.-A., Weng, L.-H., Xie, Q.-L. & Deng, F.-J. (2000). Jiegou Huaxue, 19, 122–125.  CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJonathan, L. T., Che, C. -T., Pezzuto, J. M., Fong, H. H. S. & Farnsworth, N. R. (1989). J. Nat. Prod. 59, 734–737.  Google Scholar
First citationKabouche, A., Kabouche, Z., Öztürk, M., Kolak, U. & Topçu, G. (2007). Food Chem. 102, 1281–1287.  Web of Science CrossRef CAS Google Scholar
First citationKupchan, S. M., Karim, A. & Marcks, C. (1968). J. Am. Chem. Soc. 90, 5923–5924.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKupchan, S. M., Karim, A. & Marcks, C. (1969). J. Org. Chem. 34, 3912–3918.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNagy, G., Günther, G., Máthé, I., Blunden, G., Yang, M.-H. & Crabb, T. A. (1999). Phytochemistry, 51, 809–812.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUlubelen, A., Oksuz, S., Topgu, G., Goren, A. C. & Voelter, W. (2001). J. Nat. Prod. 64, 549–551.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1566-o1567
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds