organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Chloro-8-meth­­oxy­quinolin-3-yl)methanol monohydrate

aOrganic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 25 May 2010; accepted 29 May 2010; online 5 June 2010)

In the title compound, C11H10ClNO2·H2O, the organic mol­ecule is roughly planar (r.m.s. deviation = 0.074 Å). In the crystal structure, molecues are linked by O—H⋯O and O—H⋯N hydrogen bonds and weak C—H⋯π and ππ inter­actions [centroid–centroid distance = 3.578 (3) Å] consolidate the packing. A short Cl⋯O contact [3.147 (3) Å] is also observed.

Related literature

For further information on the starting material, see: Subashini et al. (2009[Subashini, R., Khan, F. N., Gund, M., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2723.]). For general background to the title compound, see: Roopan et al. (2009[Roopan, S. M., Khan, F. N., Subashini, R., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2711.]). For related structures, see: Khan et al. (2010a[Khan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010a). Acta Cryst. E66, o200.],b[Khan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010b). Acta Cryst. E66, o201.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10ClNO2·H2O

  • Mr = 241.67

  • Monoclinic, P 21 /n

  • a = 9.161 (5) Å

  • b = 14.246 (5) Å

  • c = 9.464 (5) Å

  • β = 116.819 (5)°

  • V = 1102.3 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 290 K

  • 0.31 × 0.21 × 0.10 mm

Data collection
  • Oxford Xcalibur Eos (Nova) CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton,England.]) Tmin = 0.903, Tmax = 0.967

  • 8360 measured reflections

  • 2044 independent reflections

  • 1212 reflections with I > 2σ(I)

  • Rint = 0.100

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.134

  • S = 0.90

  • 2044 reflections

  • 153 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C1–C3/C8/C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O3i 0.82 1.90 2.705 (4) 165
O3—H1W⋯N1ii 0.85 (5) 2.17 (5) 2.988 (4) 163 (4)
O3—H2W⋯O1iii 0.83 (4) 2.02 (4) 2.836 (4) 171 (5)
C10—H10BCg1i 0.97 2.93 3.738 (5) 142
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z; (iii) x+1, y, z+1.

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton,England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton,England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The importance and general background of the title compound is given in our earler paper (Roopan et al., 2009).

In the main molecule of the title compound (I), (Fig. 1), all the non-H atoms are roughly coplanar (r.m.s. deviation = 0.074 Å). The bond lengths and angles are comparable to the similar structures 2-chloro-3-hydroxymethyl-7,8-dimethylquinoline and 2-chloro-3-hydroxymethyl-6-methoxyquinoline (Khan et al., 2010a,b), and also those in literature (Allen et al., 1987).

The crystal structure is stabilized by intermolecular O—H···O and O—H···N interactions between the symmetry-related molecues (Table 1, Fig. 2). Adjacent molecules are stacked along the b axis through weak C—H···π interactions (Table 1) and π-π interactions [Cg1···Cg2(-x, 1 - y, -z) = 3.578 (3) Å, where Cg1 and Cg2 are centroids of the N1/C1–C3/C8/C9 and C4–C9 rings, respectively]. In addition a short Cl1.. O2 contact of 3.15 Å is also observed.

Related literature top

For further information on the starting material, see: Subashini et al. (2009). For general background to the title compound, see: Roopan et al. (2009). For related structures, see: Khan et al. (2010a,b). For bond-length data, see: Allen et al. (1987).

Experimental top

2-Chloro-8-methoxyquinoline-3-carbaldehyde (222 mg, 1 mmol), sodium borohydride (38 mg, 1 mmol) and catalytic amount of montmorillonite K-10 were taken in an open vessel and the resulting mixture was irradiated at 500 W for 5 min. Ethylacetate was poured into the reaction mixture and filtered off. The filtrated after removal of solvent was subjected to column chromatography packed with silica and ethyl acetate/petroleum ether was used as the eluant. Colourless slabs of (I) were grown by solvent evaporation from a solution of the compound in chloroform.

Refinement top

The H atoms of the water molecule were located in difference map and its positional parameters were refined freely [O3—H1W = 0.85 (5) and O3—H2W = 0.83 (4) Å]. The remaining H atoms were positioned geometrically, with O—H = 0.82 Å (for OH) and C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and refined as riding with Uiso(H) = 1.2 or 1.5 Ueq(O, C).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines. The H atoms not involved in hydrogen bonds have been omitted for clarity.
(2-Chloro-8-methoxyquinolin-3-yl)methanol monohydrate top
Crystal data top
C11H10ClNO2·H2OF(000) = 504
Mr = 241.67Dx = 1.456 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1021 reflections
a = 9.161 (5) Åθ = 1.9–20.2°
b = 14.246 (5) ŵ = 0.34 mm1
c = 9.464 (5) ÅT = 290 K
β = 116.819 (5)°Slab, colourless
V = 1102.3 (9) Å30.31 × 0.21 × 0.10 mm
Z = 4
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
2044 independent reflections
Radiation source: Enhance (Mo) X-ray Source1212 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.100
ω scansθmax = 25.5°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1111
Tmin = 0.903, Tmax = 0.967k = 1717
8360 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 0.90 w = 1/[σ2(Fo2) + (0.0692P)2]
where P = (Fo2 + 2Fc2)/3
2044 reflections(Δ/σ)max < 0.001
153 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C11H10ClNO2·H2OV = 1102.3 (9) Å3
Mr = 241.67Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.161 (5) ŵ = 0.34 mm1
b = 14.246 (5) ÅT = 290 K
c = 9.464 (5) Å0.31 × 0.21 × 0.10 mm
β = 116.819 (5)°
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
2044 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1212 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.967Rint = 0.100
8360 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 0.90Δρmax = 0.40 e Å3
2044 reflectionsΔρmin = 0.26 e Å3
153 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.12994 (10)0.21700 (5)0.05478 (9)0.0525 (3)
O10.0858 (3)0.2656 (2)0.3822 (3)0.0713 (10)
O20.1487 (3)0.46372 (14)0.3536 (2)0.0515 (8)
N10.0521 (3)0.35801 (15)0.0948 (3)0.0371 (8)
C10.0114 (4)0.30580 (19)0.0297 (3)0.0399 (10)
C20.0664 (4)0.3140 (2)0.1453 (3)0.0435 (10)
C30.1715 (4)0.3870 (2)0.1243 (3)0.0493 (11)
C40.3261 (4)0.5254 (2)0.0313 (4)0.0558 (12)
C50.3720 (4)0.5792 (2)0.1620 (5)0.0603 (14)
C60.3158 (4)0.5601 (2)0.2743 (4)0.0545 (12)
C70.2105 (4)0.4875 (2)0.2525 (3)0.0436 (10)
C80.1595 (3)0.43029 (18)0.1160 (3)0.0379 (9)
C90.2198 (4)0.4484 (2)0.0056 (3)0.0444 (11)
C100.0147 (4)0.2459 (3)0.2813 (4)0.0573 (11)
C110.2035 (5)0.5135 (3)0.4973 (4)0.0678 (16)
O30.8868 (3)0.3074 (2)0.2937 (3)0.0716 (10)
H1O0.181200.247800.340700.1070*
H30.211800.396300.197500.0590*
H40.364700.539000.042000.0670*
H50.441900.629700.177600.0730*
H60.350700.597200.364600.0660*
H10A0.045100.182900.239500.0690*
H10B0.103400.247800.342100.0690*
H11A0.320500.509000.554600.1020*
H11B0.155200.487000.559600.1020*
H11C0.172300.578200.475500.1020*
H1W0.943 (5)0.331 (3)0.252 (5)0.1080*
H2W0.949 (6)0.301 (3)0.389 (5)0.1080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0537 (5)0.0487 (5)0.0489 (5)0.0099 (4)0.0176 (4)0.0054 (4)
O10.0644 (17)0.112 (2)0.0369 (13)0.0262 (15)0.0223 (13)0.0030 (12)
O20.0555 (15)0.0550 (14)0.0428 (12)0.0026 (11)0.0212 (11)0.0056 (10)
N10.0369 (14)0.0372 (14)0.0321 (13)0.0029 (11)0.0112 (11)0.0046 (11)
C10.0379 (17)0.0400 (17)0.0342 (17)0.0072 (14)0.0096 (14)0.0066 (13)
C20.0369 (17)0.054 (2)0.0324 (17)0.0087 (15)0.0094 (14)0.0063 (13)
C30.047 (2)0.067 (2)0.0379 (18)0.0167 (18)0.0228 (16)0.0161 (16)
C40.042 (2)0.056 (2)0.072 (2)0.0051 (17)0.0280 (18)0.0169 (19)
C50.043 (2)0.040 (2)0.090 (3)0.0063 (16)0.023 (2)0.0051 (19)
C60.047 (2)0.044 (2)0.061 (2)0.0025 (16)0.0141 (18)0.0045 (16)
C70.0358 (17)0.0434 (18)0.0448 (19)0.0081 (15)0.0122 (15)0.0033 (14)
C80.0317 (16)0.0343 (16)0.0396 (16)0.0055 (14)0.0089 (14)0.0054 (13)
C90.0380 (18)0.0480 (19)0.0458 (19)0.0053 (15)0.0176 (16)0.0110 (15)
C100.056 (2)0.076 (2)0.0358 (19)0.0121 (18)0.0170 (17)0.0025 (16)
C110.071 (3)0.078 (3)0.046 (2)0.000 (2)0.019 (2)0.0121 (17)
O30.0575 (17)0.108 (2)0.0480 (15)0.0196 (15)0.0226 (13)0.0007 (15)
Geometric parameters (Å, º) top
Cl1—C11.748 (4)C4—C91.413 (5)
O1—C101.406 (5)C5—C61.401 (6)
O2—C71.356 (4)C6—C71.365 (5)
O2—C111.410 (4)C7—C81.417 (4)
O1—H1O0.8200C8—C91.409 (4)
O3—H1W0.85 (5)C3—H30.9300
O3—H2W0.83 (4)C4—H40.9300
N1—C11.298 (4)C5—H50.9300
N1—C81.375 (4)C6—H60.9300
C1—C21.401 (5)C10—H10B0.9700
C2—C31.369 (5)C10—H10A0.9700
C2—C101.507 (5)C11—H11C0.9600
C3—C91.408 (4)C11—H11A0.9600
C4—C51.351 (5)C11—H11B0.9600
Cl1···O2i3.147 (3)
C7—O2—C11118.3 (3)C3—C9—C8117.4 (3)
C10—O1—H1O109.00O1—C10—C2112.8 (3)
H1W—O3—H2W107 (5)C2—C3—H3119.00
C1—N1—C8117.1 (3)C9—C3—H3119.00
Cl1—C1—N1115.5 (3)C5—C4—H4120.00
Cl1—C1—C2117.4 (2)C9—C4—H4120.00
N1—C1—C2127.2 (3)C6—C5—H5120.00
C1—C2—C10121.9 (3)C4—C5—H5119.00
C1—C2—C3115.3 (3)C7—C6—H6120.00
C3—C2—C10122.8 (3)C5—C6—H6120.00
C2—C3—C9121.5 (3)O1—C10—H10A109.00
C5—C4—C9120.2 (3)C2—C10—H10A109.00
C4—C5—C6121.0 (3)C2—C10—H10B109.00
C5—C6—C7120.6 (3)O1—C10—H10B109.00
O2—C7—C8115.4 (3)H10A—C10—H10B108.00
C6—C7—C8119.6 (3)O2—C11—H11B109.00
O2—C7—C6125.0 (3)O2—C11—H11C110.00
N1—C8—C9121.6 (2)O2—C11—H11A109.00
N1—C8—C7118.9 (3)H11A—C11—H11C109.00
C7—C8—C9119.5 (3)H11B—C11—H11C110.00
C3—C9—C4123.6 (3)H11A—C11—H11B109.00
C4—C9—C8119.0 (3)
C11—O2—C7—C64.0 (5)C2—C3—C9—C81.8 (5)
C11—O2—C7—C8175.5 (3)C9—C4—C5—C60.0 (6)
C8—N1—C1—Cl1178.2 (2)C5—C4—C9—C3177.5 (3)
C8—N1—C1—C20.8 (5)C5—C4—C9—C81.6 (5)
C1—N1—C8—C7178.4 (3)C4—C5—C6—C71.3 (6)
C1—N1—C8—C91.5 (4)C5—C6—C7—O2179.7 (3)
Cl1—C1—C2—C3177.3 (2)C5—C6—C7—C80.9 (5)
Cl1—C1—C2—C103.6 (4)O2—C7—C8—N11.1 (4)
N1—C1—C2—C31.7 (5)O2—C7—C8—C9178.8 (3)
N1—C1—C2—C10177.4 (3)C6—C7—C8—N1179.3 (3)
C1—C2—C3—C90.3 (5)C6—C7—C8—C90.8 (5)
C10—C2—C3—C9178.8 (3)N1—C8—C9—C32.7 (4)
C1—C2—C10—O1179.0 (3)N1—C8—C9—C4178.1 (3)
C3—C2—C10—O10.1 (5)C7—C8—C9—C3177.1 (3)
C2—C3—C9—C4179.1 (3)C7—C8—C9—C42.0 (4)
Symmetry code: (i) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1–C3/C8/C9 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O···O3i0.821.902.705 (4)165
O3—H1W···N1ii0.85 (5)2.17 (5)2.988 (4)163 (4)
O3—H2W···O1iii0.83 (4)2.02 (4)2.836 (4)171 (5)
C10—H10B···Cg1i0.972.933.738 (5)142
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y, z; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC11H10ClNO2·H2O
Mr241.67
Crystal system, space groupMonoclinic, P21/n
Temperature (K)290
a, b, c (Å)9.161 (5), 14.246 (5), 9.464 (5)
β (°) 116.819 (5)
V3)1102.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.31 × 0.21 × 0.10
Data collection
DiffractometerOxford Xcalibur Eos (Nova) CCD detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.903, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
8360, 2044, 1212
Rint0.100
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.134, 0.90
No. of reflections2044
No. of parameters153
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.26

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1–C3/C8/C9 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O···O3i0.821.902.705 (4)165
O3—H1W···N1ii0.85 (5)2.17 (5)2.988 (4)163 (4)
O3—H2W···O1iii0.83 (4)2.02 (4)2.836 (4)171 (5)
C10—H10B···Cg1i0.972.933.738 (5)142
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y, z; (iii) x+1, y, z+1.
 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the FIST–DST program at SSCU, IISc. We also thank Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010a). Acta Cryst. E66, o200.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010b). Acta Cryst. E66, o201.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton,England.  Google Scholar
First citationRoopan, S. M., Khan, F. N., Subashini, R., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2711.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubashini, R., Khan, F. N., Gund, M., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2723.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds