organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-(4-methyl­benzyl­­idene)carbazate

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, bDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and cMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 26 May 2010; accepted 31 May 2010; online 5 June 2010)

There are two mol­ecules in the asymmetric unit of the title compound, C11H14N2O2, which have similar conformations. In the crystal, the mol­ecules are linked by N—H⋯O hydrogen bonds, generating C(4) chains propagating in [001].

Related literature

For background to Schiff bases with additional donor groups, see: Borisova et al. (2007[Borisova, N. E., Reshetova, M. D. & Ustynyuk, Y. A. (2007). Chem. Rev. 107, 46-79.]); Gradinaru et al. (2007[Gradinaru, J., Forni, A. & Druta, V. (2007). Inorg. Chem. 46, 884-895.]). For a related structure, see: Li et al. (2009[Li, Y.-F., Liu, H.-X. & Jian, F.-F. (2009). Acta Cryst. E65, o2959.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14N2O2

  • Mr = 206.24

  • Monoclinic, P 21 /c

  • a = 15.251 (3) Å

  • b = 8.2853 (17) Å

  • c = 18.139 (4) Å

  • β = 101.85 (3)°

  • V = 2243.3 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.22 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 21172 measured reflections

  • 5128 independent reflections

  • 3927 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.185

  • S = 1.08

  • 5128 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1B—H1BA⋯O1A 0.86 2.03 2.8747 (17) 165
N1A—H1AA⋯O1Bi 0.86 2.13 2.9383 (17) 157
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases bearing additional donor groups represent the important class of heteropolydentate ligands capable of forming mono-, bi-, and polynuclear complexes with metals in coordination chemistry.(Borisova, et al., 2007). Meanwhile, it is an important intermediate compound which have been reported to be compounds with second-order nonlinear optical (NLO) materials (Gradinaru et al., 2007). As part of our search for new schiff base compounds we synthesized the title compound (I), and describe its structure here. The title compound contains two independent molecules in the unit. The dihedral angle between the two independent benzene rings is [72.32 (11)°]. The C1A/C2A/O2A/C3A/O1A/N1A/N2A and C1B/C2B/O2B/C3B/O1B/N1B/N2B planes form dihedral angles of 4.43 (11)° and 2.33 (12)°, respectively, with the benzene planes. In the crystal lattice, the N—H···O intramolecular hydrogen bonds which form chains stable the molecule structures.

Bond lengths and angles are comparable to a related compound (Li et al., 2009).

Related literature top

For background to Schiff bases with additional donor groups, see: Borisova et al. (2007); Gradinaru et al. (2007). For a related structure, see: Li et al. (2009).

Experimental top

A mixture of 4-methylbenzaldehyde (0.1 mol), and ethyl carbazate (0.1 mol) was stirred in refluxing ethanol (20 ml) for 4 h to afford the title compound (0.092 mol, yield 92%). Colourless blocks of (I) were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances=0.97 Å, and with Uiso=1.2–1.5Ueq.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids. The dashed line indicates a hydrogen bond.
Ethyl 3-(4-methylbenzylidene)carbazate top
Crystal data top
C11H14N2O2F(000) = 880
Mr = 206.24Dx = 1.221 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3927 reflections
a = 15.251 (3) Åθ = 3.1–27.5°
b = 8.2853 (17) ŵ = 0.09 mm1
c = 18.139 (4) ÅT = 293 K
β = 101.85 (3)°Block, colorless
V = 2243.3 (8) Å30.22 × 0.21 × 0.20 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
3927 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
ω scansh = 1919
21172 measured reflectionsk = 1010
5128 independent reflectionsl = 2023
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.185 w = 1/[σ2(Fo2) + (0.1115P)2 + 0.1779P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
5128 reflectionsΔρmax = 0.24 e Å3
272 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.064 (6)
Crystal data top
C11H14N2O2V = 2243.3 (8) Å3
Mr = 206.24Z = 8
Monoclinic, P21/cMo Kα radiation
a = 15.251 (3) ŵ = 0.09 mm1
b = 8.2853 (17) ÅT = 293 K
c = 18.139 (4) Å0.22 × 0.21 × 0.20 mm
β = 101.85 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3927 reflections with I > 2σ(I)
21172 measured reflectionsRint = 0.037
5128 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.185H-atom parameters constrained
S = 1.08Δρmax = 0.24 e Å3
5128 reflectionsΔρmin = 0.30 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N2A0.37582 (8)0.81674 (15)0.31081 (7)0.0581 (3)
O2A0.59141 (7)0.95340 (14)0.38400 (6)0.0669 (3)
O1B0.46162 (7)0.81088 (16)0.00172 (6)0.0724 (4)
N1A0.46022 (8)0.83572 (16)0.35399 (7)0.0617 (3)
H1AA0.47600.78440.39580.074*
O2B0.57247 (7)0.80498 (16)0.10534 (6)0.0720 (3)
N1B0.44923 (9)0.93461 (17)0.11143 (6)0.0642 (4)
H1BA0.47570.95770.15680.077*
N2B0.36356 (8)0.98639 (16)0.08381 (6)0.0607 (3)
C5A0.23044 (9)0.70401 (17)0.29857 (8)0.0542 (3)
O1A0.50636 (8)1.00212 (17)0.26947 (6)0.0762 (4)
C3A0.51804 (10)0.93606 (19)0.32980 (7)0.0570 (3)
C5B0.23472 (10)1.12384 (18)0.10486 (7)0.0574 (4)
C3B0.49157 (10)0.84683 (19)0.06658 (8)0.0602 (4)
C8A0.04993 (10)0.66046 (18)0.22712 (9)0.0599 (4)
C4A0.32349 (10)0.72637 (19)0.33783 (8)0.0598 (4)
H4AA0.34440.67340.38320.072*
C4B0.32641 (11)1.06587 (18)0.12903 (8)0.0598 (4)
H4BA0.35781.08710.17770.072*
C9A0.10661 (10)0.7566 (2)0.19601 (8)0.0646 (4)
H9AA0.08450.80790.15040.077*
C10A0.19508 (10)0.77894 (19)0.23044 (8)0.0613 (4)
H10A0.23140.84470.20790.074*
C6B0.19536 (12)1.2192 (2)0.15151 (9)0.0701 (4)
H6BA0.22771.24590.19920.084*
C6A0.17352 (12)0.6081 (2)0.32983 (9)0.0718 (4)
H6AA0.19540.55600.37530.086*
C2A0.65982 (10)1.0586 (2)0.36603 (10)0.0683 (4)
H2AB0.63371.16040.34610.082*
H2AC0.68831.00870.32860.082*
C10B0.18358 (12)1.0863 (2)0.03459 (9)0.0721 (4)
H10B0.20831.02250.00190.087*
C8B0.05775 (12)1.2381 (2)0.05846 (10)0.0684 (4)
C9B0.09748 (13)1.1412 (2)0.01226 (10)0.0763 (5)
H9BA0.06491.11280.03510.092*
C2B0.62646 (11)0.7096 (3)0.06543 (10)0.0753 (5)
H2BB0.63910.76940.02280.090*
H2BC0.59540.61080.04700.090*
C7A0.08469 (12)0.5880 (2)0.29489 (10)0.0742 (5)
H7AA0.04780.52400.31770.089*
C11A0.04662 (11)0.6351 (3)0.18905 (11)0.0790 (5)
H11A0.05930.69430.14260.118*
H11B0.08480.67260.22140.118*
H11C0.05720.52220.17890.118*
C1B0.71149 (13)0.6717 (3)0.12010 (12)0.0866 (6)
H1BB0.74930.60690.09570.130*
H1BC0.69790.61370.16220.130*
H1BD0.74180.77040.13750.130*
C11B0.03689 (13)1.2974 (3)0.03316 (13)0.0880 (6)
H11D0.05311.36220.07220.132*
H11E0.07681.20680.02280.132*
H11F0.04131.36110.01170.132*
C7B0.10868 (13)1.2758 (2)0.12853 (10)0.0751 (5)
H7BA0.08411.34060.16090.090*
C1A0.72665 (12)1.0856 (3)0.43748 (11)0.0850 (5)
H1AB0.77311.15600.42800.127*
H1AC0.75230.98420.45630.127*
H1AD0.69751.13420.47410.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N2A0.0505 (6)0.0690 (8)0.0487 (6)0.0009 (5)0.0044 (5)0.0021 (5)
O2A0.0542 (6)0.0850 (7)0.0551 (6)0.0096 (5)0.0035 (5)0.0072 (5)
O1B0.0614 (6)0.1030 (9)0.0472 (6)0.0021 (6)0.0020 (5)0.0095 (5)
N1A0.0536 (6)0.0772 (8)0.0471 (6)0.0042 (6)0.0061 (5)0.0053 (5)
O2B0.0601 (6)0.1023 (9)0.0481 (5)0.0065 (6)0.0017 (5)0.0001 (5)
N1B0.0608 (7)0.0869 (9)0.0402 (6)0.0023 (6)0.0008 (5)0.0012 (5)
N2B0.0597 (7)0.0715 (8)0.0474 (6)0.0014 (6)0.0031 (5)0.0050 (5)
C5A0.0523 (7)0.0578 (8)0.0488 (7)0.0031 (5)0.0018 (6)0.0010 (5)
O1A0.0757 (7)0.1016 (9)0.0463 (6)0.0109 (6)0.0007 (5)0.0080 (5)
C3A0.0547 (7)0.0680 (9)0.0450 (7)0.0018 (6)0.0023 (6)0.0040 (6)
C5B0.0662 (8)0.0594 (8)0.0453 (7)0.0043 (6)0.0082 (6)0.0064 (6)
C3B0.0567 (8)0.0755 (9)0.0442 (7)0.0056 (6)0.0007 (6)0.0042 (6)
C8A0.0523 (7)0.0629 (8)0.0612 (8)0.0035 (6)0.0042 (6)0.0077 (6)
C4A0.0572 (8)0.0666 (9)0.0496 (7)0.0027 (6)0.0034 (6)0.0031 (6)
C4B0.0657 (8)0.0679 (9)0.0431 (6)0.0045 (7)0.0051 (6)0.0040 (6)
C9A0.0560 (8)0.0822 (10)0.0514 (7)0.0064 (7)0.0014 (6)0.0093 (7)
C10A0.0529 (7)0.0740 (9)0.0550 (8)0.0014 (6)0.0061 (6)0.0110 (7)
C6B0.0803 (10)0.0777 (10)0.0496 (8)0.0010 (8)0.0072 (7)0.0044 (7)
C6A0.0706 (9)0.0798 (11)0.0590 (8)0.0036 (8)0.0009 (7)0.0188 (7)
C2A0.0554 (8)0.0760 (10)0.0712 (9)0.0050 (7)0.0075 (7)0.0037 (8)
C10B0.0715 (10)0.0894 (12)0.0523 (8)0.0067 (8)0.0053 (7)0.0092 (7)
C8B0.0705 (9)0.0667 (9)0.0666 (9)0.0018 (7)0.0104 (8)0.0097 (7)
C9B0.0732 (10)0.0930 (12)0.0564 (8)0.0049 (9)0.0014 (8)0.0046 (8)
C2B0.0592 (9)0.1050 (13)0.0598 (9)0.0058 (8)0.0076 (7)0.0037 (8)
C7A0.0643 (9)0.0819 (11)0.0731 (10)0.0112 (8)0.0068 (8)0.0157 (8)
C11A0.0554 (8)0.0934 (13)0.0820 (11)0.0039 (8)0.0001 (8)0.0089 (9)
C1B0.0635 (10)0.1040 (14)0.0834 (12)0.0040 (9)0.0052 (9)0.0051 (10)
C11B0.0766 (12)0.0861 (13)0.0963 (14)0.0124 (9)0.0058 (10)0.0095 (10)
C7B0.0807 (11)0.0774 (11)0.0670 (10)0.0106 (8)0.0146 (9)0.0050 (8)
C1A0.0609 (9)0.1028 (14)0.0836 (12)0.0139 (9)0.0028 (9)0.0013 (10)
Geometric parameters (Å, º) top
N2A—C4A1.2641 (19)C6B—H6BA0.9300
N2A—N1A1.3716 (17)C6A—C7A1.383 (2)
O2A—C3A1.3371 (17)C6A—H6AA0.9300
O2A—C2A1.4471 (19)C2A—C1A1.492 (2)
O1B—C3B1.2086 (18)C2A—H2AB0.9700
N1A—C3A1.349 (2)C2A—H2AC0.9700
N1A—H1AA0.8600C10B—C9B1.370 (3)
O2B—C3B1.3345 (18)C10B—H10B0.9300
O2B—C2B1.439 (2)C8B—C7B1.382 (3)
N1B—C3B1.350 (2)C8B—C9B1.386 (3)
N1B—N2B1.3687 (18)C8B—C11B1.505 (3)
N1B—H1BA0.8600C9B—H9BA0.9300
N2B—C4B1.2722 (19)C2B—C1B1.495 (2)
C5A—C6A1.382 (2)C2B—H2BB0.9700
C5A—C10A1.389 (2)C2B—H2BC0.9700
C5A—C4A1.4631 (19)C7A—H7AA0.9300
O1A—C3A1.2036 (17)C11A—H11A0.9600
C5B—C6B1.382 (2)C11A—H11B0.9600
C5B—C10B1.386 (2)C11A—H11C0.9600
C5B—C4B1.458 (2)C1B—H1BB0.9600
C8A—C7A1.373 (2)C1B—H1BC0.9600
C8A—C9A1.379 (2)C1B—H1BD0.9600
C8A—C11A1.507 (2)C11B—H11D0.9600
C4A—H4AA0.9300C11B—H11E0.9600
C4B—H4BA0.9300C11B—H11F0.9600
C9A—C10A1.378 (2)C7B—H7BA0.9300
C9A—H9AA0.9300C1A—H1AB0.9600
C10A—H10A0.9300C1A—H1AC0.9600
C6B—C7B1.384 (2)C1A—H1AD0.9600
C4A—N2A—N1A116.09 (12)C1A—C2A—H2AC110.3
C3A—O2A—C2A115.62 (12)H2AB—C2A—H2AC108.6
C3A—N1A—N2A118.98 (12)C9B—C10B—C5B121.43 (16)
C3A—N1A—H1AA120.5C9B—C10B—H10B119.3
N2A—N1A—H1AA120.5C5B—C10B—H10B119.3
C3B—O2B—C2B116.12 (12)C7B—C8B—C9B116.98 (16)
C3B—N1B—N2B119.14 (12)C7B—C8B—C11B121.96 (17)
C3B—N1B—H1BA120.4C9B—C8B—C11B121.05 (16)
N2B—N1B—H1BA120.4C10B—C9B—C8B121.66 (16)
C4B—N2B—N1B116.38 (12)C10B—C9B—H9BA119.2
C6A—C5A—C10A117.40 (13)C8B—C9B—H9BA119.2
C6A—C5A—C4A120.10 (13)O2B—C2B—C1B106.82 (15)
C10A—C5A—C4A122.49 (13)O2B—C2B—H2BB110.4
O1A—C3A—O2A124.40 (14)C1B—C2B—H2BB110.4
O1A—C3A—N1A126.25 (14)O2B—C2B—H2BC110.4
O2A—C3A—N1A109.35 (12)C1B—C2B—H2BC110.4
C6B—C5B—C10B117.28 (15)H2BB—C2B—H2BC108.6
C6B—C5B—C4B120.97 (13)C8A—C7A—C6A121.28 (15)
C10B—C5B—C4B121.75 (15)C8A—C7A—H7AA119.4
O1B—C3B—O2B124.93 (15)C6A—C7A—H7AA119.4
O1B—C3B—N1B125.97 (15)C8A—C11A—H11A109.5
O2B—C3B—N1B109.10 (12)C8A—C11A—H11B109.5
C7A—C8A—C9A117.39 (14)H11A—C11A—H11B109.5
C7A—C8A—C11A120.69 (15)C8A—C11A—H11C109.5
C9A—C8A—C11A121.92 (15)H11A—C11A—H11C109.5
N2A—C4A—C5A120.84 (13)H11B—C11A—H11C109.5
N2A—C4A—H4AA119.6C2B—C1B—H1BB109.5
C5A—C4A—H4AA119.6C2B—C1B—H1BC109.5
N2B—C4B—C5B120.22 (13)H1BB—C1B—H1BC109.5
N2B—C4B—H4BA119.9C2B—C1B—H1BD109.5
C5B—C4B—H4BA119.9H1BB—C1B—H1BD109.5
C10A—C9A—C8A122.00 (14)H1BC—C1B—H1BD109.5
C10A—C9A—H9AA119.0C8B—C11B—H11D109.5
C8A—C9A—H9AA119.0C8B—C11B—H11E109.5
C9A—C10A—C5A120.56 (14)H11D—C11B—H11E109.5
C9A—C10A—H10A119.7C8B—C11B—H11F109.5
C5A—C10A—H10A119.7H11D—C11B—H11F109.5
C5B—C6B—C7B121.16 (15)H11E—C11B—H11F109.5
C5B—C6B—H6BA119.4C8B—C7B—C6B121.48 (16)
C7B—C6B—H6BA119.4C8B—C7B—H7BA119.3
C5A—C6A—C7A121.36 (14)C6B—C7B—H7BA119.3
C5A—C6A—H6AA119.3C2A—C1A—H1AB109.5
C7A—C6A—H6AA119.3C2A—C1A—H1AC109.5
O2A—C2A—C1A106.88 (14)H1AB—C1A—H1AC109.5
O2A—C2A—H2AB110.3C2A—C1A—H1AD109.5
C1A—C2A—H2AB110.3H1AB—C1A—H1AD109.5
O2A—C2A—H2AC110.3H1AC—C1A—H1AD109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1BA···O1A0.862.032.8747 (17)165
N1A—H1AA···O1Bi0.862.132.9383 (17)157
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H14N2O2
Mr206.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.251 (3), 8.2853 (17), 18.139 (4)
β (°) 101.85 (3)
V3)2243.3 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21172, 5128, 3927
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.185, 1.08
No. of reflections5128
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.30

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1BA···O1A0.862.032.8747 (17)165
N1A—H1AA···O1Bi0.862.132.9383 (17)157
Symmetry code: (i) x, y+3/2, z+1/2.
 

References

First citationBorisova, N. E., Reshetova, M. D. & Ustynyuk, Y. A. (2007). Chem. Rev. 107, 46–79.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGradinaru, J., Forni, A. & Druta, V. (2007). Inorg. Chem. 46, 884–895.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, Y.-F., Liu, H.-X. & Jian, F.-F. (2009). Acta Cryst. E65, o2959.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds