organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-[4-(Di­methyl­amino)­benzyl­­idene]-4-hy­dr­oxy­benzohydrazide hemihydrate

aSchool of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528453, People's Republic of China
*Correspondence e-mail: liuhuanyu03@163.com

(Received 28 May 2010; accepted 31 May 2010; online 5 June 2010)

In the title compound, C16H17N3O2·0.5H2O, the two hydrazide mol­ecules are approximately planar: the dihedral angles between the two substituted benzene rings are 7.7 (2) and 4.2 (2)°. Both hydrazone mol­ecules exist in a trans geometry with respect to their methyl­idene units. In the crystal, the water mol­ecule lies between the two organic mol­ecules and makes bifurcated O—H⋯(N,O) hydrogen bonds to both of them. The hydrazide mol­ecules form N—H⋯O and O—H⋯O hydrogen bonds, resulting in a three-dimensional network.

Related literature

For the biological activity of hydrazone compounds, see: Banerjee et al. (2009[Banerjee, S., Mondal, S., Chakraborty, W., Sen, S., Gachhui, R., Butcher, R. J., Slawin, A. M. Z., Mandal, C. & Mitra, S. (2009). Polyhedron, 28, 2785-2793.]). For the structures of hydrazone compounds, see: Ahmad et al. (2010[Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.]); Li et al. (2010[Li, C., Wang, P. & Su, Y.-Q. (2010). Acta Cryst. E66, o520.]); Naveenkumar et al. (2010[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1337-o1338.]); Zhang (2009[Zhang, X. (2009). Acta Cryst. E65, o2200.]); Fun et al. (2008[Fun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S. & Kalluraya, B. (2008). Acta Cryst. E64, o1907-o1908.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17N3O2·0.5H2O

  • Mr = 292.34

  • Monoclinic, P 21

  • a = 6.1514 (9) Å

  • b = 18.098 (3) Å

  • c = 13.356 (2) Å

  • β = 95.489 (2)°

  • V = 1480.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.28 × 0.27 × 0.27 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.976

  • 8336 measured reflections

  • 3254 independent reflections

  • 2593 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.094

  • S = 1.04

  • 3254 reflections

  • 407 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5C⋯O2i 0.90 (1) 2.56 (3) 3.171 (3) 125 (3)
N2—H2A⋯O5ii 0.90 (1) 2.12 (1) 3.003 (3) 168 (3)
O4—H4⋯O1iii 0.82 1.90 2.688 (2) 160
O2—H2B⋯O3iv 0.82 1.89 2.693 (3) 166
O5—H5A⋯O3 0.85 (1) 2.43 (2) 3.178 (3) 146 (3)
O5—H5A⋯N4 0.85 (1) 2.34 (2) 3.038 (3) 140 (3)
O5—H5B⋯O1 0.85 (1) 2.36 (2) 3.100 (3) 145 (3)
O5—H5B⋯N1 0.85 (1) 2.61 (2) 3.375 (3) 150 (3)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+1]; (ii) x-1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z]; (iv) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, much attention has been focused on the biological properties of hydrazone compounds (e.g. Banerjee et al., 2009). A number of hydrazone compounds have been prepared and investigated for their structures (Ahmad et al., 2010; Li et al., 2010; Naveenkumar et al., 2010; Zhang, 2009; Fun et al., 2008). In the present work, a new hydrazone compound with interesting structure is reported.

The title compound consists of two hydrazone molecules and one water molecule (Fig. 1). The two hydrazone molecules are approximately parallel to each other, and are linked together by the water molecule through O—H···N and O—H···O hydrogen bonds (Table 1). Both hydrazone molecules exist in trans geometry with respect to the methylidene units. The dihedral angles between the two substituted benzene rings in the hydrazone molecules are 7.7 (2) and 4.2 (2)°.

In the crystal structure, the hydrazone molecules and the water molecules are linked through N—H···O, O—H···O and O—H···N hydrogen bonds (Table 1), forming a three dimensional network (Fig. 2).

Related literature top

For the biological activity of hydrazone compounds, see: Banerjee et al. (2009). For the structures of hydrazone compounds, see: Ahmad et al. (2010); Li et al. (2010); Naveenkumar et al. (2010); Zhang (2009); Fun et al. (2008).

Experimental top

4-Dimethylaminobenzaldehyde (1.0 mmol, 149 mg) and 4-hydroxybenzohydrazide (1.0 mmol, 152 mg) were mixed in 50 ml methanol. The mixture was stirred at ambient temperature for 2 h and filtered. Colorless blocks of (I) were formed by slow evaporation of the filtrate for a week; presumably water was incorporated from the atmosphere.

Refinement top

The amino hydrogen atoms were located in a difference map and refined isotropically, with the N—H distance restrained to 0.90 (1)Å. Other hydrogen atoms were placed in calculated positions (C—H = 0.93 - 0.96 Å, O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and Cmethyl). In the absence of significant anomalous scattering effects, Friedel pairs were averaged.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with 30% probability displacement ellipsoids. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Packing structure of (I), viewed along the a axis. Hydrogen bonds are shown as dashed lines.
(E)-N'-[4-(Dimethylamino)benzylidene]-4-hydroxybenzohydrazide hemihydrate top
Crystal data top
C16H17N3O2·0.5H2OF(000) = 620
Mr = 292.34Dx = 1.312 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2665 reflections
a = 6.1514 (9) Åθ = 2.6–24.5°
b = 18.098 (3) ŵ = 0.09 mm1
c = 13.356 (2) ÅT = 298 K
β = 95.489 (2)°Block, colorless
V = 1480.1 (4) Å30.28 × 0.27 × 0.27 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3254 independent reflections
Radiation source: fine-focus sealed tube2593 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 76
Tmin = 0.975, Tmax = 0.976k = 2323
8336 measured reflectionsl = 917
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.0137P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3254 reflectionsΔρmax = 0.13 e Å3
407 parametersΔρmin = 0.11 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (2)
Crystal data top
C16H17N3O2·0.5H2OV = 1480.1 (4) Å3
Mr = 292.34Z = 4
Monoclinic, P21Mo Kα radiation
a = 6.1514 (9) ŵ = 0.09 mm1
b = 18.098 (3) ÅT = 298 K
c = 13.356 (2) Å0.28 × 0.27 × 0.27 mm
β = 95.489 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3254 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2593 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.976Rint = 0.028
8336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0376 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.13 e Å3
3254 reflectionsΔρmin = 0.11 e Å3
407 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4602 (3)0.17321 (13)0.29539 (14)0.0654 (6)
O20.0189 (3)0.07939 (12)0.68381 (15)0.0651 (6)
H2B0.11810.05480.71260.098*
O30.7089 (4)0.48243 (11)0.21582 (13)0.0603 (5)
O40.3140 (3)0.69296 (12)0.13484 (15)0.0649 (6)
H40.40720.69100.17470.097*
O50.7330 (3)0.31729 (12)0.2971 (2)0.0688 (6)
N10.2364 (3)0.27325 (12)0.18320 (15)0.0465 (5)
N20.1558 (4)0.24130 (13)0.26688 (16)0.0486 (5)
N30.2760 (4)0.48063 (14)0.21084 (17)0.0611 (6)
N40.3944 (4)0.43505 (13)0.32898 (16)0.0540 (6)
N50.3526 (4)0.47696 (14)0.24264 (17)0.0565 (6)
N60.2273 (4)0.26319 (14)0.73893 (17)0.0574 (6)
C10.2382 (5)0.44061 (15)0.1264 (2)0.0478 (6)
C20.3964 (4)0.39311 (15)0.0790 (2)0.0500 (6)
H20.53110.38870.10470.060*
C30.3556 (4)0.35288 (15)0.0050 (2)0.0496 (6)
H30.46370.32190.03490.059*
C40.1567 (4)0.35769 (13)0.04580 (19)0.0423 (6)
C50.0014 (5)0.40579 (16)0.0010 (2)0.0523 (7)
H50.13250.41060.02530.063*
C60.0391 (5)0.44617 (15)0.0841 (2)0.0540 (7)
H60.06880.47770.11300.065*
C70.4777 (6)0.4754 (2)0.2563 (2)0.0733 (9)
H7A0.57240.51520.23270.110*
H7B0.44870.47850.32810.110*
H7C0.54680.42910.23860.110*
C80.1119 (6)0.5281 (2)0.2596 (3)0.0777 (10)
H8A0.01020.49890.28670.117*
H8B0.17150.55440.31310.117*
H8C0.06460.56270.21180.117*
C90.1034 (4)0.31732 (14)0.13410 (19)0.0475 (6)
H90.03430.32380.15600.057*
C100.2801 (4)0.19211 (14)0.32054 (19)0.0446 (6)
C110.1976 (4)0.16137 (13)0.41294 (18)0.0403 (5)
C120.3309 (4)0.11208 (16)0.4684 (2)0.0518 (7)
H120.46200.09790.44490.062*
C130.2740 (5)0.08319 (17)0.5585 (2)0.0537 (7)
H130.36630.05010.59490.064*
C140.0801 (5)0.10396 (14)0.59334 (19)0.0486 (6)
C150.0585 (5)0.15106 (16)0.5375 (2)0.0548 (7)
H150.19260.16340.55980.066*
C160.0001 (4)0.18011 (15)0.4486 (2)0.0510 (6)
H160.09370.21270.41200.061*
C170.2277 (4)0.30157 (14)0.65040 (19)0.0442 (6)
C180.0467 (5)0.34222 (16)0.6109 (2)0.0529 (7)
H180.07780.34370.64520.063*
C190.0500 (5)0.38022 (16)0.5216 (2)0.0565 (7)
H190.07340.40640.49650.068*
C200.2329 (4)0.38037 (14)0.4682 (2)0.0484 (6)
C210.4131 (4)0.34006 (14)0.5066 (2)0.0485 (6)
H210.53700.33910.47180.058*
C220.4125 (4)0.30143 (15)0.5953 (2)0.0490 (6)
H220.53590.27480.61930.059*
C230.0321 (5)0.25746 (19)0.7900 (2)0.0673 (9)
H23A0.01820.30610.80510.101*
H23B0.06340.23020.85140.101*
H23C0.07900.23230.74760.101*
C240.4155 (6)0.2222 (2)0.7789 (2)0.0712 (9)
H24A0.45200.18610.73040.107*
H24B0.38420.19760.83950.107*
H24C0.53640.25530.79330.107*
C250.2250 (5)0.42193 (15)0.3751 (2)0.0546 (7)
H250.09080.43990.34760.065*
C260.5169 (5)0.50093 (14)0.19151 (19)0.0473 (6)
C270.4562 (4)0.55060 (13)0.10541 (17)0.0421 (6)
C280.2589 (4)0.58769 (15)0.09028 (19)0.0503 (6)
H280.15420.58040.13510.060*
C290.2144 (4)0.63495 (16)0.0107 (2)0.0517 (7)
H290.08060.65920.00210.062*
C300.3686 (4)0.64671 (14)0.05740 (18)0.0456 (6)
C310.5696 (4)0.61128 (15)0.04239 (19)0.0491 (6)
H310.67530.61930.08650.059*
C320.6112 (4)0.56435 (14)0.03792 (19)0.0462 (6)
H320.74640.54110.04760.055*
H2A0.030 (3)0.2603 (18)0.284 (2)0.080*
H5C0.213 (2)0.4898 (19)0.223 (2)0.080*
H5A0.694 (5)0.3625 (7)0.297 (3)0.080*
H5B0.617 (3)0.2919 (14)0.285 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0554 (12)0.0931 (15)0.0510 (11)0.0225 (11)0.0224 (9)0.0161 (11)
O20.0711 (14)0.0726 (14)0.0561 (12)0.0083 (11)0.0306 (11)0.0069 (10)
O30.0715 (14)0.0634 (12)0.0472 (11)0.0164 (11)0.0119 (10)0.0052 (9)
O40.0611 (13)0.0811 (14)0.0558 (12)0.0156 (11)0.0230 (10)0.0279 (11)
O50.0549 (12)0.0606 (12)0.0941 (16)0.0071 (10)0.0228 (12)0.0077 (12)
N10.0485 (13)0.0501 (11)0.0426 (12)0.0022 (10)0.0124 (10)0.0019 (10)
N20.0461 (12)0.0555 (12)0.0461 (12)0.0021 (11)0.0149 (10)0.0063 (10)
N30.0613 (16)0.0686 (15)0.0532 (15)0.0010 (12)0.0045 (12)0.0180 (13)
N40.0742 (17)0.0493 (12)0.0392 (12)0.0003 (11)0.0093 (11)0.0065 (10)
N50.0670 (15)0.0566 (13)0.0470 (13)0.0007 (12)0.0109 (12)0.0151 (11)
N60.0596 (15)0.0673 (15)0.0471 (13)0.0063 (12)0.0153 (11)0.0144 (12)
C10.0507 (16)0.0488 (14)0.0429 (14)0.0061 (12)0.0004 (12)0.0005 (12)
C20.0466 (15)0.0570 (15)0.0470 (15)0.0005 (13)0.0070 (12)0.0040 (13)
C30.0486 (15)0.0507 (14)0.0495 (15)0.0032 (12)0.0052 (13)0.0044 (12)
C40.0421 (14)0.0442 (13)0.0407 (13)0.0021 (11)0.0041 (11)0.0012 (11)
C50.0446 (15)0.0592 (16)0.0539 (16)0.0081 (12)0.0076 (12)0.0011 (13)
C60.0537 (17)0.0557 (16)0.0520 (16)0.0112 (13)0.0017 (14)0.0067 (13)
C70.081 (2)0.082 (2)0.0582 (19)0.0092 (19)0.0156 (17)0.0109 (17)
C80.083 (2)0.080 (2)0.068 (2)0.0059 (19)0.0020 (18)0.0280 (18)
C90.0431 (14)0.0523 (14)0.0479 (15)0.0009 (12)0.0084 (12)0.0007 (12)
C100.0447 (15)0.0486 (14)0.0416 (14)0.0001 (11)0.0102 (11)0.0040 (11)
C110.0405 (13)0.0415 (12)0.0398 (13)0.0002 (10)0.0073 (11)0.0042 (10)
C120.0474 (15)0.0624 (16)0.0477 (15)0.0042 (13)0.0155 (12)0.0019 (13)
C130.0568 (17)0.0601 (16)0.0460 (14)0.0065 (13)0.0135 (13)0.0075 (13)
C140.0553 (16)0.0485 (14)0.0440 (14)0.0101 (13)0.0154 (12)0.0038 (12)
C150.0459 (15)0.0631 (17)0.0582 (17)0.0015 (14)0.0196 (13)0.0019 (14)
C160.0466 (15)0.0539 (15)0.0540 (15)0.0003 (12)0.0116 (12)0.0015 (13)
C170.0456 (14)0.0443 (12)0.0429 (14)0.0077 (11)0.0054 (11)0.0036 (11)
C180.0466 (16)0.0582 (16)0.0561 (16)0.0023 (13)0.0165 (13)0.0041 (14)
C190.0514 (17)0.0561 (16)0.0626 (18)0.0050 (13)0.0087 (14)0.0123 (14)
C200.0573 (17)0.0447 (13)0.0442 (15)0.0021 (12)0.0103 (13)0.0045 (12)
C210.0513 (16)0.0502 (14)0.0463 (14)0.0049 (12)0.0165 (12)0.0013 (12)
C220.0466 (15)0.0527 (14)0.0485 (15)0.0020 (12)0.0095 (12)0.0061 (12)
C230.075 (2)0.075 (2)0.0553 (17)0.0181 (17)0.0228 (16)0.0084 (16)
C240.086 (2)0.074 (2)0.0537 (18)0.0081 (18)0.0090 (17)0.0218 (16)
C250.0645 (19)0.0485 (15)0.0511 (17)0.0020 (13)0.0079 (14)0.0081 (13)
C260.0670 (19)0.0406 (13)0.0351 (13)0.0054 (12)0.0090 (13)0.0043 (11)
C270.0557 (15)0.0371 (12)0.0349 (12)0.0009 (11)0.0109 (11)0.0040 (10)
C280.0543 (16)0.0564 (15)0.0431 (14)0.0005 (13)0.0198 (12)0.0027 (12)
C290.0468 (15)0.0615 (16)0.0490 (16)0.0078 (12)0.0165 (12)0.0070 (13)
C300.0527 (15)0.0495 (14)0.0368 (13)0.0015 (12)0.0158 (11)0.0041 (11)
C310.0488 (15)0.0559 (15)0.0453 (15)0.0045 (12)0.0191 (12)0.0020 (12)
C320.0505 (16)0.0465 (14)0.0428 (14)0.0080 (11)0.0103 (12)0.0010 (11)
Geometric parameters (Å, º) top
O1—C101.236 (3)C10—C111.487 (3)
O2—C141.373 (3)C11—C121.379 (4)
O2—H2B0.8200C11—C161.388 (3)
O3—C261.240 (3)C12—C131.387 (4)
O4—C301.348 (3)C12—H120.9300
O4—H40.8200C13—C141.374 (4)
O5—H5A0.852 (10)C13—H130.9300
O5—H5B0.853 (10)C14—C151.374 (4)
N1—C91.278 (3)C15—C161.378 (4)
N1—N21.391 (3)C15—H150.9300
N2—C101.337 (3)C16—H160.9300
N2—H2A0.896 (10)C17—C181.396 (4)
N3—C11.379 (3)C17—C221.412 (3)
N3—C81.434 (4)C18—C191.379 (4)
N3—C71.436 (4)C18—H180.9300
N4—C251.283 (4)C19—C201.389 (4)
N4—N51.384 (3)C19—H190.9300
N5—C261.345 (3)C20—C211.384 (4)
N5—H5C0.903 (10)C20—C251.449 (4)
N6—C171.371 (3)C21—C221.375 (4)
N6—C241.435 (4)C21—H210.9300
N6—C231.441 (3)C22—H220.9300
C1—C61.400 (4)C23—H23A0.9600
C1—C21.403 (4)C23—H23B0.9600
C2—C31.380 (4)C23—H23C0.9600
C2—H20.9300C24—H24A0.9600
C3—C41.389 (4)C24—H24B0.9600
C3—H30.9300C24—H24C0.9600
C4—C51.395 (4)C25—H250.9300
C4—C91.451 (4)C26—C271.479 (4)
C5—C61.368 (4)C27—C281.385 (4)
C5—H50.9300C27—C321.396 (3)
C6—H60.9300C28—C291.372 (4)
C7—H7A0.9600C28—H280.9300
C7—H7B0.9600C29—C301.391 (3)
C7—H7C0.9600C29—H290.9300
C8—H8A0.9600C30—C311.390 (4)
C8—H8B0.9600C31—C321.373 (4)
C8—H8C0.9600C31—H310.9300
C9—H90.9300C32—H320.9300
C14—O2—H2B109.5O2—C14—C15118.1 (2)
C30—O4—H4109.5C13—C14—C15120.0 (2)
H5A—O5—H5B107 (2)C14—C15—C16120.3 (3)
C9—N1—N2114.3 (2)C14—C15—H15119.9
C10—N2—N1118.5 (2)C16—C15—H15119.9
C10—N2—H2A126 (2)C15—C16—C11120.8 (3)
N1—N2—H2A115 (2)C15—C16—H16119.6
C1—N3—C8121.3 (3)C11—C16—H16119.6
C1—N3—C7122.1 (3)N6—C17—C18121.7 (2)
C8—N3—C7116.5 (3)N6—C17—C22121.1 (2)
C25—N4—N5114.0 (2)C18—C17—C22117.2 (2)
C26—N5—N4120.7 (2)C19—C18—C17120.8 (2)
C26—N5—H5C120 (2)C19—C18—H18119.6
N4—N5—H5C119 (2)C17—C18—H18119.6
C17—N6—C24121.0 (2)C18—C19—C20121.7 (3)
C17—N6—C23121.0 (2)C18—C19—H19119.2
C24—N6—C23117.8 (2)C20—C19—H19119.2
N3—C1—C6121.0 (3)C21—C20—C19117.9 (2)
N3—C1—C2121.8 (3)C21—C20—C25123.5 (2)
C6—C1—C2117.3 (2)C19—C20—C25118.6 (3)
C3—C2—C1121.2 (3)C22—C21—C20121.3 (2)
C3—C2—H2119.4C22—C21—H21119.3
C1—C2—H2119.4C20—C21—H21119.3
C2—C3—C4121.4 (2)C21—C22—C17121.1 (2)
C2—C3—H3119.3C21—C22—H22119.5
C4—C3—H3119.3C17—C22—H22119.5
C3—C4—C5117.0 (2)N6—C23—H23A109.5
C3—C4—C9124.3 (2)N6—C23—H23B109.5
C5—C4—C9118.7 (2)H23A—C23—H23B109.5
C6—C5—C4122.4 (3)N6—C23—H23C109.5
C6—C5—H5118.8H23A—C23—H23C109.5
C4—C5—H5118.8H23B—C23—H23C109.5
C5—C6—C1120.8 (3)N6—C24—H24A109.5
C5—C6—H6119.6N6—C24—H24B109.5
C1—C6—H6119.6H24A—C24—H24B109.5
N3—C7—H7A109.5N6—C24—H24C109.5
N3—C7—H7B109.5H24A—C24—H24C109.5
H7A—C7—H7B109.5H24B—C24—H24C109.5
N3—C7—H7C109.5N4—C25—C20123.1 (3)
H7A—C7—H7C109.5N4—C25—H25118.5
H7B—C7—H7C109.5C20—C25—H25118.5
N3—C8—H8A109.5O3—C26—N5121.5 (2)
N3—C8—H8B109.5O3—C26—C27122.1 (2)
H8A—C8—H8B109.5N5—C26—C27116.4 (2)
N3—C8—H8C109.5C28—C27—C32117.6 (2)
H8A—C8—H8C109.5C28—C27—C26124.1 (2)
H8B—C8—H8C109.5C32—C27—C26118.2 (2)
N1—C9—C4123.2 (2)C29—C28—C27121.5 (2)
N1—C9—H9118.4C29—C28—H28119.2
C4—C9—H9118.4C27—C28—H28119.2
O1—C10—N2121.4 (2)C28—C29—C30120.3 (2)
O1—C10—C11120.5 (2)C28—C29—H29119.9
N2—C10—C11118.1 (2)C30—C29—H29119.9
C12—C11—C16117.9 (2)O4—C30—C31123.4 (2)
C12—C11—C10117.1 (2)O4—C30—C29117.5 (2)
C16—C11—C10124.9 (2)C31—C30—C29119.2 (2)
C11—C12—C13121.6 (3)C32—C31—C30119.7 (2)
C11—C12—H12119.2C32—C31—H31120.2
C13—C12—H12119.2C30—C31—H31120.2
C14—C13—C12119.3 (3)C31—C32—C27121.8 (2)
C14—C13—H13120.3C31—C32—H32119.1
C12—C13—H13120.3C27—C32—H32119.1
O2—C14—C13122.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5C···O2i0.90 (1)2.56 (3)3.171 (3)125 (3)
N2—H2A···O5ii0.90 (1)2.12 (1)3.003 (3)168 (3)
O4—H4···O1iii0.821.902.688 (2)160
O2—H2B···O3iv0.821.892.693 (3)166
O5—H5A···O30.85 (1)2.43 (2)3.178 (3)146 (3)
O5—H5A···N40.85 (1)2.34 (2)3.038 (3)140 (3)
O5—H5B···O10.85 (1)2.36 (2)3.100 (3)145 (3)
O5—H5B···N10.85 (1)2.61 (2)3.375 (3)150 (3)
Symmetry codes: (i) x, y+1/2, z+1; (ii) x1, y, z; (iii) x+1, y+1/2, z; (iv) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC16H17N3O2·0.5H2O
Mr292.34
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)6.1514 (9), 18.098 (3), 13.356 (2)
β (°) 95.489 (2)
V3)1480.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.27 × 0.27
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.975, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
8336, 3254, 2593
Rint0.028
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 1.04
No. of reflections3254
No. of parameters407
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.11

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5C···O2i0.903 (10)2.56 (3)3.171 (3)125 (3)
N2—H2A···O5ii0.896 (10)2.120 (13)3.003 (3)168 (3)
O4—H4···O1iii0.821.902.688 (2)160
O2—H2B···O3iv0.821.892.693 (3)166
O5—H5A···O30.852 (10)2.43 (2)3.178 (3)146 (3)
O5—H5A···N40.852 (10)2.34 (2)3.038 (3)140 (3)
O5—H5B···O10.853 (10)2.364 (19)3.100 (3)145 (3)
O5—H5B···N10.853 (10)2.611 (19)3.375 (3)150 (3)
Symmetry codes: (i) x, y+1/2, z+1; (ii) x1, y, z; (iii) x+1, y+1/2, z; (iv) x+1, y1/2, z+1.
 

Acknowledgements

The work was supported by the Guangdong Pharmaceutical University Young Teachers' Fund and the Ten Hundred Thousand Project of the Bureau of Education of Guangdong Province, China.

References

First citationAhmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBanerjee, S., Mondal, S., Chakraborty, W., Sen, S., Gachhui, R., Butcher, R. J., Slawin, A. M. Z., Mandal, C. & Mitra, S. (2009). Polyhedron, 28, 2785–2793.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S. & Kalluraya, B. (2008). Acta Cryst. E64, o1907–o1908.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, C., Wang, P. & Su, Y.-Q. (2010). Acta Cryst. E66, o520.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1337–o1338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. (2009). Acta Cryst. E65, o2200.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds