metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m756-m757

Tris(2,2′-bi­pyridine)­cobalt(II) μ6-oxido-dodeca-μ2-oxido-hexa­oxidohexa­molydate(VI)

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: yllctu@yahoo.com.cn

(Received 31 May 2010; accepted 1 June 2010; online 5 June 2010)

In the title compound, [Co(C10H8N2)3][Mo6O19], the Co2+ cation is surrounded in a distorted octa­hedral coordination by six N atoms from three 2,2′-bipyridine ligands. The distribution of Mo—O bond lengths in the Lindqvist isopolyanion is consistent with other structures containing the same unit. In the crystal, the cations and anions are linked by C—H⋯O inter­actions.

Related literature

For general background to polyoxometalates, see: Pope & Müller (1991[Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34-38.]). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009[Zhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325-3332.]); Zhang, Wei et al. (2009[Zhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des. 9, 4424-4428.]). For another structure containing the μ6-oxido-dodeca­kis­-μ2-oxido-hexaoxidohexamolydate(VI) anion see: Dahlstrom et al. (1982[Dahlstrom, P., Zubieta, J., Neaves, B. & Dilworth, J. R. (1982). Cryst. Struct. Commun. 11, 463-469.]). For Co—N bond lengths in a related structure, see: Li & Xu (2009[Li, P.-Z. & Xu, Q. (2009). Acta Cryst. E65, m508.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C10H8N2)3][Mo6O19]

  • Mr = 1407.12

  • Monoclinic, P 21 /n

  • a = 12.310 (2) Å

  • b = 18.979 (4) Å

  • c = 17.150 (4) Å

  • β = 100.895 (3)°

  • V = 3934.4 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.35 mm−1

  • T = 296 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.766, Tmax = 0.834

  • 25652 measured reflections

  • 6500 independent reflections

  • 4649 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.092

  • S = 1.00

  • 6500 reflections

  • 559 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N5 2.075 (5)
Co1—N6 2.078 (5)
Co1—N1 2.079 (5)
Co1—N4 2.081 (5)
Co1—N2 2.091 (5)
Co1—N3 2.100 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O11i 0.93 2.36 3.166 (9) 145
C4—H4⋯O17ii 0.93 2.52 3.165 (9) 127
C11—H11⋯O4iii 0.93 2.51 3.400 (8) 161
C12—H12⋯O2iii 0.93 2.47 3.277 (10) 145
C20—H20⋯O14iv 0.93 2.53 3.159 (9) 125
C22—H22⋯O8v 0.93 2.54 3.230 (9) 132
C26—H26⋯O18 0.93 2.58 3.459 (8) 157
Symmetry codes: (i) x, y, z-1; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x+2, -y, -z+1; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There has been extensive interest in heteropolyoxometalates, owing to their fascinating properties and great potential applications in many fields such as, catalysis, material science, medicine, and magnetochemistry (Pope et al., 1991). The organic amines, such as 3-(2-pyridyl)pyrazole and pyrazine, are used to effectively modify heteropolyoxomolybdates under hydrothermal condictions (Zhang, Dou et al., 2009; Zhang, Wei, Sun et al., 2009). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Figure 1, the title compound consists of two subunits, viz. of a complex [Co(C10H8N2)3]2+ cation, one typical Lindqvist isopolyanion [Mo6O19]2- anion (Dahlstrom et al., 1982). The Co2+ cation is surrounded in a distorted octahedral coordination by six N atoms from three chelating 2,2'-bipyridine ligands. The Co—N bond lengths are in the range of 2.075 (5)—2.100 (5) Å, respectively, compared to reported one (Li & Xu, 2009).

The [Mo6O19]2- polyoxoanion, possessing well known Lindquist structure, is formed by six MoO6 octahedra connected with each other through edge-sharing oxygen atoms and thus exhibits approximate Oh symmetry. Three kinds of oxygen atoms exist in the cluster, that is, terminal Oa, double-bridging oxygen Ob, and central oxygen Oc. Therefore, Mo—O band lengths can be grouped into three sets: Mo—Oa 1.669 (5)—1.682 (5) Å; Mo—Ob 1.888 (4)—1.951 (5) Å; and Mo—Oc 2.299 (4)—2.318 (4) Å; these bond distances have a rule of Mo—Oa<Mo—Ob<Mo—Oc. Comparing Mo=O bond distances with that of Lindqvist isopolyanion salt (Dahlstrom, 1982), Mo=O distances have no obvious change.

Related literature top

For general background to polyoxometalates, see: Pope & Müller (1991). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009); Zhang, Wei, Sun et al. (2009). For another structure containing the (µ6-oxo)-dodecakis(µ2-oxo)-hexa-oxo-hexa-molydenum(VI) cluster, see: Dahlstrom et al. (1982). For Co—N bond lengths in a related structure, see: Li & Xu (2009).

Experimental top

A mixture of 2,2'-bipyridine (0.5 mmoL, 0.07 g), molybdenum(VI) oxide (1 mmol, 0.14 g), oxalic aicd (10 mmol, 0.09), p-carboxyphenylboronic acid (0.3 mmoL, 0.05 g), and cobalt(II) sulfate heptahydrate (0.2 mmol, 0.05 g) in 14 ml distilled water was sealed in a 25 ml Teflon-lined stainless steel autoclave and was kept at 433 K for three days. Upon cooling, red blocks of (I) were obtained. Anal. Calc. for C30H24CoMo6N6O19: C, 25.58; H, 1.71; N, 5.97. Found: C, 22.38; H, 1.52; N, 5.78%.

Refinement top

All hydrogen atoms bound to carbon were refined using a riding model with distance C—H = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) shoiwng displacement ellipsoids drawn at the 30% probability level; H atoms are given as spheres of arbitrary radius.
Tris(2,2'-bipyridine)cobalt(II) µ6-oxido-dodeca-µ2-oxido-hexaoxidohexamolydate(VI) top
Crystal data top
[Co(C10H8N2)3][Mo6O19]F(000) = 2708
Mr = 1407.12Dx = 2.376 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2413 reflections
a = 12.310 (2) Åθ = 2.4–24.3°
b = 18.979 (4) ŵ = 2.35 mm1
c = 17.150 (4) ÅT = 296 K
β = 100.895 (3)°Block, red
V = 3934.4 (14) Å30.12 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
6500 independent reflections
Radiation source: fine-focus sealed tube4649 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 24.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1413
Tmin = 0.766, Tmax = 0.834k = 2222
25652 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.041P)2 + 10.1791P]
where P = (Fo2 + 2Fc2)/3
6500 reflections(Δ/σ)max = 0.003
559 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Co(C10H8N2)3][Mo6O19]V = 3934.4 (14) Å3
Mr = 1407.12Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.310 (2) ŵ = 2.35 mm1
b = 18.979 (4) ÅT = 296 K
c = 17.150 (4) Å0.12 × 0.10 × 0.08 mm
β = 100.895 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
6500 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4649 reflections with I > 2σ(I)
Tmin = 0.766, Tmax = 0.834Rint = 0.041
25652 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.041P)2 + 10.1791P]
where P = (Fo2 + 2Fc2)/3
6500 reflectionsΔρmax = 0.65 e Å3
559 parametersΔρmin = 0.54 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8841 (6)0.1849 (4)0.0079 (4)0.0458 (17)
H10.89620.13710.00080.055*
C20.9125 (6)0.2314 (4)0.0452 (4)0.0523 (19)
H20.94380.21540.08730.063*
C30.8947 (7)0.3012 (4)0.0362 (4)0.061 (2)
H30.91300.33360.07230.073*
C40.8498 (6)0.3235 (4)0.0264 (4)0.0526 (19)
H40.83780.37120.03380.063*
C50.8221 (5)0.2735 (3)0.0793 (4)0.0395 (15)
C60.7754 (5)0.2926 (3)0.1498 (4)0.0355 (14)
C70.7683 (6)0.3610 (3)0.1751 (4)0.0478 (17)
H70.78960.39820.14610.057*
C80.7294 (6)0.3736 (4)0.2435 (4)0.0554 (19)
H80.72500.41960.26150.066*
C90.6975 (5)0.3189 (4)0.2848 (4)0.0472 (17)
H90.67110.32650.33150.057*
C100.7051 (5)0.2527 (4)0.2561 (4)0.0425 (16)
H100.68300.21520.28430.051*
C110.5497 (5)0.1943 (4)0.0374 (4)0.0478 (17)
H110.54920.22820.07650.057*
C120.4747 (6)0.1997 (5)0.0318 (5)0.063 (2)
H120.42480.23690.03980.076*
C130.4737 (7)0.1496 (5)0.0891 (5)0.078 (3)
H130.42250.15210.13640.094*
C140.5478 (6)0.0964 (5)0.0764 (4)0.065 (2)
H140.54840.06220.11510.078*
C150.6226 (5)0.0931 (4)0.0056 (4)0.0427 (16)
C160.7059 (6)0.0373 (3)0.0130 (4)0.0447 (16)
C170.7080 (7)0.0232 (4)0.0324 (5)0.067 (2)
H170.65420.02950.07790.080*
C180.7867 (8)0.0727 (4)0.0117 (6)0.079 (3)
H180.78810.11300.04230.095*
C190.8636 (7)0.0623 (4)0.0551 (5)0.063 (2)
H190.91890.09550.07090.076*
C200.8592 (6)0.0022 (4)0.0993 (4)0.0542 (19)
H200.91240.00430.14500.065*
C211.0059 (5)0.1421 (3)0.2316 (4)0.0452 (17)
H211.02360.15870.18450.054*
C221.0883 (6)0.1384 (4)0.2973 (4)0.0529 (19)
H221.16040.15150.29490.063*
C230.9551 (5)0.0950 (4)0.3682 (4)0.0472 (17)
H230.93600.07910.41510.057*
C240.8764 (5)0.0987 (3)0.2994 (3)0.0329 (14)
C250.7600 (5)0.0778 (3)0.2945 (4)0.0330 (14)
C260.7195 (6)0.0507 (3)0.3593 (4)0.0454 (17)
H260.76570.04430.40830.054*
C270.6079 (6)0.0339 (4)0.3479 (4)0.0519 (18)
H270.57840.01590.38980.062*
C280.5422 (6)0.0433 (4)0.2765 (4)0.0511 (18)
H280.46750.03160.26860.061*
C290.5867 (5)0.0701 (4)0.2165 (4)0.0451 (17)
H290.54100.07710.16730.054*
C301.0613 (6)0.1148 (4)0.3668 (5)0.0531 (19)
H301.11510.11240.41280.064*
Co10.76522 (6)0.13938 (4)0.14146 (4)0.02958 (19)
Mo10.62552 (4)0.16746 (3)0.70535 (3)0.03880 (16)
Mo20.68058 (5)0.03933 (3)0.59227 (3)0.03863 (15)
Mo30.93267 (4)0.09804 (3)0.60537 (3)0.04001 (16)
Mo40.72000 (5)0.20190 (3)0.54351 (3)0.04164 (16)
Mo50.87672 (5)0.22739 (3)0.71735 (4)0.04679 (17)
Mo60.83628 (5)0.06397 (3)0.76648 (3)0.04393 (17)
N10.8397 (4)0.2045 (3)0.0694 (3)0.0371 (12)
N20.7428 (4)0.2385 (3)0.1891 (3)0.0355 (12)
N30.6238 (4)0.1425 (3)0.0512 (3)0.0421 (13)
N40.7816 (4)0.0472 (3)0.0790 (3)0.0401 (13)
N50.6935 (4)0.0870 (3)0.2251 (3)0.0395 (13)
N60.9018 (4)0.1232 (3)0.2313 (3)0.0373 (12)
O10.6778 (4)0.2537 (3)0.4646 (3)0.0632 (14)
O20.8518 (4)0.1606 (2)0.5229 (3)0.0467 (11)
O30.6467 (3)0.1147 (2)0.5161 (2)0.0424 (11)
O40.9808 (3)0.1811 (2)0.6620 (3)0.0492 (12)
O50.8119 (4)0.2659 (2)0.6171 (3)0.0518 (12)
O60.9511 (4)0.2935 (3)0.7643 (3)0.0744 (17)
O70.6093 (3)0.2189 (2)0.6099 (3)0.0447 (11)
O80.7392 (4)0.2354 (2)0.7496 (3)0.0494 (12)
O90.5168 (4)0.1929 (3)0.7438 (3)0.0539 (12)
O100.7046 (3)0.1044 (2)0.7871 (3)0.0484 (12)
O110.9111 (4)0.1509 (3)0.7929 (3)0.0518 (12)
O120.7786 (3)0.13302 (19)0.6550 (2)0.0329 (9)
O130.5755 (3)0.0853 (2)0.6474 (3)0.0419 (11)
O140.8815 (4)0.0131 (3)0.8463 (3)0.0705 (16)
O150.7458 (4)0.0007 (2)0.6930 (3)0.0485 (12)
O160.9500 (3)0.0484 (2)0.7010 (3)0.0475 (12)
O170.6077 (4)0.0283 (2)0.5469 (3)0.0600 (14)
O180.8188 (3)0.0303 (2)0.5606 (2)0.0438 (11)
O191.0407 (4)0.0735 (3)0.5655 (3)0.0565 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.057 (4)0.042 (4)0.041 (4)0.006 (3)0.017 (3)0.004 (3)
C20.064 (5)0.061 (5)0.034 (4)0.010 (4)0.015 (4)0.004 (4)
C30.086 (6)0.055 (5)0.043 (4)0.018 (4)0.015 (4)0.010 (4)
C40.079 (5)0.036 (4)0.041 (4)0.006 (4)0.006 (4)0.006 (3)
C50.036 (4)0.048 (4)0.032 (4)0.004 (3)0.001 (3)0.002 (3)
C60.036 (4)0.033 (4)0.034 (4)0.003 (3)0.002 (3)0.001 (3)
C70.061 (5)0.030 (4)0.050 (4)0.001 (3)0.006 (4)0.002 (3)
C80.064 (5)0.042 (4)0.057 (5)0.009 (4)0.003 (4)0.016 (4)
C90.049 (4)0.049 (4)0.043 (4)0.009 (3)0.008 (3)0.011 (4)
C100.043 (4)0.055 (4)0.029 (4)0.011 (3)0.005 (3)0.005 (3)
C110.048 (4)0.055 (4)0.040 (4)0.011 (4)0.009 (3)0.003 (3)
C120.043 (4)0.089 (6)0.056 (5)0.028 (4)0.007 (4)0.004 (5)
C130.045 (5)0.128 (8)0.056 (5)0.025 (5)0.001 (4)0.008 (6)
C140.053 (5)0.091 (6)0.048 (5)0.005 (5)0.002 (4)0.022 (4)
C150.036 (4)0.054 (4)0.038 (4)0.008 (3)0.006 (3)0.006 (3)
C160.055 (4)0.035 (4)0.048 (4)0.009 (3)0.017 (4)0.003 (3)
C170.083 (6)0.051 (5)0.060 (5)0.005 (4)0.000 (4)0.018 (4)
C180.115 (8)0.039 (5)0.087 (7)0.003 (5)0.029 (6)0.021 (5)
C190.076 (6)0.040 (4)0.080 (6)0.011 (4)0.030 (5)0.004 (4)
C200.055 (5)0.050 (5)0.057 (5)0.012 (4)0.011 (4)0.006 (4)
C210.046 (4)0.041 (4)0.050 (4)0.004 (3)0.013 (3)0.005 (3)
C220.038 (4)0.048 (4)0.068 (5)0.006 (3)0.000 (4)0.006 (4)
C230.047 (4)0.051 (4)0.040 (4)0.007 (3)0.000 (3)0.004 (3)
C240.045 (4)0.025 (3)0.029 (3)0.005 (3)0.008 (3)0.001 (3)
C250.039 (4)0.026 (3)0.034 (4)0.001 (3)0.008 (3)0.005 (3)
C260.056 (5)0.045 (4)0.036 (4)0.001 (3)0.011 (3)0.003 (3)
C270.058 (5)0.054 (4)0.049 (4)0.008 (4)0.022 (4)0.004 (4)
C280.043 (4)0.057 (5)0.055 (5)0.011 (3)0.013 (4)0.003 (4)
C290.039 (4)0.057 (4)0.037 (4)0.010 (3)0.003 (3)0.004 (3)
C300.042 (4)0.046 (4)0.065 (5)0.002 (3)0.006 (4)0.005 (4)
Co10.0301 (4)0.0305 (4)0.0280 (4)0.0009 (3)0.0050 (3)0.0012 (3)
Mo10.0331 (3)0.0401 (3)0.0451 (3)0.0020 (2)0.0123 (3)0.0020 (3)
Mo20.0368 (3)0.0331 (3)0.0451 (4)0.0059 (2)0.0056 (3)0.0064 (3)
Mo30.0320 (3)0.0490 (4)0.0402 (3)0.0000 (3)0.0099 (3)0.0069 (3)
Mo40.0430 (3)0.0396 (3)0.0428 (3)0.0011 (3)0.0094 (3)0.0095 (3)
Mo50.0413 (3)0.0481 (4)0.0522 (4)0.0139 (3)0.0117 (3)0.0186 (3)
Mo60.0384 (3)0.0556 (4)0.0369 (3)0.0076 (3)0.0049 (3)0.0077 (3)
N10.042 (3)0.039 (3)0.030 (3)0.003 (2)0.007 (2)0.002 (2)
N20.036 (3)0.041 (3)0.028 (3)0.001 (2)0.001 (2)0.001 (2)
N30.037 (3)0.045 (3)0.045 (3)0.001 (3)0.008 (3)0.003 (3)
N40.040 (3)0.038 (3)0.042 (3)0.001 (2)0.007 (3)0.000 (3)
N50.042 (3)0.037 (3)0.039 (3)0.004 (2)0.006 (3)0.004 (2)
N60.035 (3)0.036 (3)0.040 (3)0.005 (2)0.005 (2)0.003 (2)
O10.063 (3)0.067 (3)0.060 (3)0.004 (3)0.014 (3)0.027 (3)
O20.046 (3)0.053 (3)0.044 (3)0.002 (2)0.015 (2)0.002 (2)
O30.035 (2)0.049 (3)0.039 (3)0.003 (2)0.004 (2)0.001 (2)
O40.036 (3)0.062 (3)0.049 (3)0.012 (2)0.007 (2)0.014 (2)
O50.054 (3)0.032 (2)0.073 (3)0.008 (2)0.019 (3)0.003 (2)
O60.063 (3)0.069 (4)0.090 (4)0.023 (3)0.012 (3)0.036 (3)
O70.041 (3)0.040 (3)0.054 (3)0.005 (2)0.011 (2)0.004 (2)
O80.044 (3)0.051 (3)0.056 (3)0.001 (2)0.015 (2)0.021 (2)
O90.039 (3)0.066 (3)0.061 (3)0.006 (2)0.018 (2)0.000 (3)
O100.043 (3)0.064 (3)0.042 (3)0.007 (2)0.016 (2)0.009 (2)
O110.040 (3)0.070 (3)0.043 (3)0.004 (2)0.003 (2)0.012 (2)
O120.032 (2)0.031 (2)0.038 (2)0.0016 (18)0.0104 (18)0.0038 (19)
O130.034 (2)0.038 (2)0.054 (3)0.0053 (19)0.008 (2)0.001 (2)
O140.056 (3)0.096 (4)0.057 (3)0.017 (3)0.006 (3)0.026 (3)
O150.050 (3)0.036 (2)0.059 (3)0.001 (2)0.008 (2)0.010 (2)
O160.039 (3)0.059 (3)0.043 (3)0.007 (2)0.005 (2)0.001 (2)
O170.057 (3)0.043 (3)0.079 (4)0.010 (2)0.008 (3)0.018 (3)
O180.044 (3)0.044 (3)0.043 (3)0.004 (2)0.008 (2)0.010 (2)
O190.041 (3)0.080 (4)0.050 (3)0.006 (2)0.014 (2)0.009 (3)
Geometric parameters (Å, º) top
C1—N11.330 (8)C25—C261.398 (8)
C1—C21.361 (9)C26—C271.387 (9)
C1—H10.9300C26—H260.9300
C2—C31.358 (10)C27—C281.346 (9)
C2—H20.9300C27—H270.9300
C3—C41.364 (10)C28—C291.354 (9)
C3—H30.9300C28—H280.9300
C4—C51.400 (9)C29—N51.334 (8)
C4—H40.9300C29—H290.9300
C5—N11.343 (8)C30—H300.9300
C5—C61.479 (8)Co1—N52.075 (5)
C6—N21.331 (7)Co1—N62.078 (5)
C6—C71.376 (8)Co1—N12.079 (5)
C7—C81.367 (9)Co1—N42.081 (5)
C7—H70.9300Co1—N22.091 (5)
C8—C91.358 (10)Co1—N32.100 (5)
C8—H80.9300Mo1—O91.671 (4)
C9—C101.359 (9)Mo1—O71.884 (4)
C9—H90.9300Mo1—O131.888 (4)
C10—N21.345 (7)Mo1—O81.948 (4)
C10—H100.9300Mo1—O101.957 (4)
C11—N31.331 (8)Mo1—O122.310 (4)
C11—C121.362 (9)Mo2—O171.671 (4)
C11—H110.9300Mo2—O181.888 (4)
C12—C131.366 (11)Mo2—O151.909 (4)
C12—H120.9300Mo2—O31.929 (4)
C13—C141.350 (11)Mo2—O131.948 (4)
C13—H130.9300Mo2—O122.299 (4)
C14—C151.379 (9)Mo3—O191.673 (4)
C14—H140.9300Mo3—O161.868 (4)
C15—N31.350 (8)Mo3—O41.888 (4)
C15—C161.467 (9)Mo3—O181.950 (4)
C16—N41.336 (8)Mo3—O21.968 (4)
C16—C171.390 (9)Mo3—O122.318 (4)
C17—C181.349 (11)Mo4—O11.673 (5)
C17—H170.9300Mo4—O21.894 (4)
C18—C191.354 (11)Mo4—O31.900 (4)
C18—H180.9300Mo4—O51.951 (5)
C19—C201.377 (10)Mo4—O71.961 (4)
C19—H190.9300Mo4—O122.316 (4)
C20—N41.336 (8)Mo5—O61.669 (5)
C20—H200.9300Mo5—O81.884 (4)
C21—N61.330 (8)Mo5—O51.900 (5)
C21—C221.368 (9)Mo5—O111.939 (5)
C21—H210.9300Mo5—O41.943 (4)
C22—C301.373 (10)Mo5—O122.307 (4)
C22—H220.9300Mo6—O141.682 (5)
C23—C301.365 (9)Mo6—O101.887 (4)
C23—C241.379 (8)Mo6—O111.902 (5)
C23—H230.9300Mo6—O151.934 (4)
C24—N61.347 (7)Mo6—O161.976 (4)
C24—C251.474 (8)Mo6—O122.316 (4)
C25—N51.323 (7)
N1—C1—C2123.1 (7)O17—Mo2—O18103.3 (2)
N1—C1—H1118.5O17—Mo2—O15102.9 (2)
C2—C1—H1118.5O18—Mo2—O1588.73 (19)
C3—C2—C1119.3 (7)O17—Mo2—O3103.1 (2)
C3—C2—H2120.3O18—Mo2—O387.96 (18)
C1—C2—H2120.3O15—Mo2—O3153.89 (18)
C2—C3—C4119.4 (7)O17—Mo2—O13102.9 (2)
C2—C3—H3120.3O18—Mo2—O13153.82 (17)
C4—C3—H3120.3O15—Mo2—O1386.36 (19)
C3—C4—C5119.0 (7)O3—Mo2—O1385.28 (18)
C3—C4—H4120.5O17—Mo2—O12179.2 (2)
C5—C4—H4120.5O18—Mo2—O1277.50 (15)
N1—C5—C4120.9 (6)O15—Mo2—O1277.28 (16)
N1—C5—C6116.1 (5)O3—Mo2—O1276.72 (16)
C4—C5—C6123.0 (6)O13—Mo2—O1276.34 (15)
N2—C6—C7121.6 (6)O19—Mo3—O16104.5 (2)
N2—C6—C5115.2 (5)O19—Mo3—O4104.3 (2)
C7—C6—C5123.2 (6)O16—Mo3—O489.9 (2)
C8—C7—C6119.3 (7)O19—Mo3—O18102.9 (2)
C8—C7—H7120.4O16—Mo3—O1888.10 (19)
C6—C7—H7120.4O4—Mo3—O18152.37 (18)
C9—C8—C7119.8 (6)O19—Mo3—O2102.0 (2)
C9—C8—H8120.1O16—Mo3—O2153.38 (18)
C7—C8—H8120.1O4—Mo3—O286.13 (19)
C8—C9—C10118.1 (6)O18—Mo3—O283.50 (18)
C8—C9—H9120.9O19—Mo3—O12177.44 (19)
C10—C9—H9120.9O16—Mo3—O1277.75 (16)
N2—C10—C9123.6 (6)O4—Mo3—O1276.77 (16)
N2—C10—H10118.2O18—Mo3—O1275.87 (15)
C9—C10—H10118.2O2—Mo3—O1275.71 (16)
N3—C11—C12122.6 (7)O1—Mo4—O2103.8 (2)
N3—C11—H11118.7O1—Mo4—O3104.5 (2)
C12—C11—H11118.7O2—Mo4—O388.71 (19)
C13—C12—C11119.1 (7)O1—Mo4—O5102.2 (2)
C13—C12—H12120.5O2—Mo4—O588.06 (19)
C11—C12—H12120.5O3—Mo4—O5153.15 (18)
C14—C13—C12119.4 (7)O1—Mo4—O7103.3 (2)
C14—C13—H13120.3O2—Mo4—O7152.92 (18)
C12—C13—H13120.3O3—Mo4—O786.39 (18)
C13—C14—C15119.6 (7)O5—Mo4—O784.46 (19)
C13—C14—H14120.2O1—Mo4—O12178.4 (2)
C15—C14—H14120.2O2—Mo4—O1277.12 (16)
N3—C15—C14121.2 (7)O3—Mo4—O1276.83 (15)
N3—C15—C16115.6 (6)O5—Mo4—O1276.46 (16)
C14—C15—C16123.2 (6)O7—Mo4—O1275.83 (15)
N4—C16—C17120.5 (7)O6—Mo5—O8103.8 (2)
N4—C16—C15115.5 (6)O6—Mo5—O5104.2 (2)
C17—C16—C15124.0 (7)O8—Mo5—O589.3 (2)
C18—C17—C16121.0 (8)O6—Mo5—O11102.1 (3)
C18—C17—H17119.5O8—Mo5—O1187.6 (2)
C16—C17—H17119.5O5—Mo5—O11153.44 (19)
C17—C18—C19118.2 (8)O6—Mo5—O4102.9 (2)
C17—C18—H18120.9O8—Mo5—O4153.17 (18)
C19—C18—H18120.9O5—Mo5—O486.3 (2)
C18—C19—C20119.6 (8)O11—Mo5—O484.69 (19)
C18—C19—H19120.2O6—Mo5—O12177.9 (2)
C20—C19—H19120.2O8—Mo5—O1277.15 (16)
N4—C20—C19122.6 (7)O5—Mo5—O1277.63 (16)
N4—C20—H20118.7O11—Mo5—O1275.97 (16)
C19—C20—H20118.7O4—Mo5—O1276.05 (15)
N6—C21—C22123.6 (6)O14—Mo6—O10104.1 (2)
N6—C21—H21118.2O14—Mo6—O11103.5 (2)
C22—C21—H21118.2O10—Mo6—O1189.9 (2)
C21—C22—C30117.9 (7)O14—Mo6—O15103.6 (2)
C21—C22—H22121.0O10—Mo6—O1588.0 (2)
C30—C22—H22121.0O11—Mo6—O15152.55 (19)
C30—C23—C24119.4 (7)O14—Mo6—O16102.5 (2)
C30—C23—H23120.3O10—Mo6—O16153.36 (18)
C24—C23—H23120.3O11—Mo6—O1684.39 (19)
N6—C24—C23121.2 (6)O15—Mo6—O1685.39 (19)
N6—C24—C25115.2 (5)O14—Mo6—O12178.3 (2)
C23—C24—C25123.6 (6)O10—Mo6—O1277.53 (16)
N5—C25—C26120.7 (6)O11—Mo6—O1276.43 (17)
N5—C25—C24116.5 (5)O15—Mo6—O1276.39 (15)
C26—C25—C24122.9 (6)O16—Mo6—O1275.83 (16)
C27—C26—C25117.7 (6)C1—N1—C5118.3 (5)
C27—C26—H26121.2C1—N1—Co1126.7 (4)
C25—C26—H26121.2C5—N1—Co1113.9 (4)
C28—C27—C26120.5 (6)C6—N2—C10117.6 (6)
C28—C27—H27119.8C6—N2—Co1114.9 (4)
C26—C27—H27119.8C10—N2—Co1127.3 (4)
C27—C28—C29118.8 (7)C11—N3—C15118.0 (6)
C27—C28—H28120.6C11—N3—Co1126.6 (5)
C29—C28—H28120.6C15—N3—Co1114.0 (4)
N5—C29—C28122.6 (6)C20—N4—C16118.1 (6)
N5—C29—H29118.7C20—N4—Co1126.1 (5)
C28—C29—H29118.7C16—N4—Co1115.7 (4)
C23—C30—C22119.7 (7)C25—N5—C29119.8 (5)
C23—C30—H30120.2C25—N5—Co1114.4 (4)
C22—C30—H30120.2C29—N5—Co1125.3 (4)
N5—Co1—N678.9 (2)C21—N6—C24118.1 (6)
N5—Co1—N1171.4 (2)C21—N6—Co1127.3 (4)
N6—Co1—N198.20 (19)C24—N6—Co1114.0 (4)
N5—Co1—N492.8 (2)Mo4—O2—Mo3116.7 (2)
N6—Co1—N496.5 (2)Mo4—O3—Mo2116.5 (2)
N1—Co1—N495.6 (2)Mo3—O4—Mo5117.2 (2)
N5—Co1—N293.2 (2)Mo5—O5—Mo4116.0 (2)
N6—Co1—N289.51 (19)Mo1—O7—Mo4116.6 (2)
N1—Co1—N278.62 (19)Mo5—O8—Mo1116.8 (2)
N4—Co1—N2172.2 (2)Mo6—O10—Mo1116.3 (2)
N5—Co1—N397.0 (2)Mo6—O11—Mo5117.1 (2)
N6—Co1—N3173.0 (2)Mo2—O12—Mo5179.7 (2)
N1—Co1—N386.7 (2)Mo2—O12—Mo190.06 (13)
N4—Co1—N378.0 (2)Mo5—O12—Mo189.99 (13)
N2—Co1—N396.3 (2)Mo2—O12—Mo489.78 (14)
O9—Mo1—O7103.4 (2)Mo5—O12—Mo489.91 (13)
O9—Mo1—O13103.9 (2)Mo1—O12—Mo490.02 (13)
O7—Mo1—O1390.01 (18)Mo2—O12—Mo690.04 (13)
O9—Mo1—O8103.0 (2)Mo5—O12—Mo690.27 (14)
O7—Mo1—O886.9 (2)Mo1—O12—Mo689.78 (13)
O13—Mo1—O8152.92 (17)Mo4—O12—Mo6179.7 (2)
O9—Mo1—O10102.8 (2)Mo2—O12—Mo390.00 (13)
O7—Mo1—O10153.66 (18)Mo5—O12—Mo389.96 (13)
O13—Mo1—O1086.59 (19)Mo1—O12—Mo3179.6 (2)
O8—Mo1—O1084.4 (2)Mo4—O12—Mo390.40 (13)
O9—Mo1—O12178.6 (2)Mo6—O12—Mo389.79 (13)
O7—Mo1—O1277.40 (16)Mo1—O13—Mo2116.4 (2)
O13—Mo1—O1277.16 (15)Mo2—O15—Mo6116.3 (2)
O8—Mo1—O1275.91 (15)Mo3—O16—Mo6116.6 (2)
O10—Mo1—O1276.38 (15)Mo2—O18—Mo3116.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O11i0.932.363.166 (9)145
C4—H4···O17ii0.932.523.165 (9)127
C11—H11···O4iii0.932.513.400 (8)161
C12—H12···O2iii0.932.473.277 (10)145
C20—H20···O14iv0.932.533.159 (9)125
C22—H22···O8v0.932.543.230 (9)132
C26—H26···O180.932.583.459 (8)157
Symmetry codes: (i) x, y, z1; (ii) x+3/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x+2, y, z+1; (v) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Co(C10H8N2)3][Mo6O19]
Mr1407.12
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)12.310 (2), 18.979 (4), 17.150 (4)
β (°) 100.895 (3)
V3)3934.4 (14)
Z4
Radiation typeMo Kα
µ (mm1)2.35
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.766, 0.834
No. of measured, independent and
observed [I > 2σ(I)] reflections
25652, 6500, 4649
Rint0.041
(sin θ/λ)max1)0.583
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.092, 1.00
No. of reflections6500
No. of parameters559
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.041P)2 + 10.1791P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.65, 0.54

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—N52.075 (5)Co1—N42.081 (5)
Co1—N62.078 (5)Co1—N22.091 (5)
Co1—N12.079 (5)Co1—N32.100 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O11i0.932.363.166 (9)145
C4—H4···O17ii0.932.523.165 (9)127
C11—H11···O4iii0.932.513.400 (8)161
C12—H12···O2iii0.932.473.277 (10)145
C20—H20···O14iv0.932.533.159 (9)125
C22—H22···O8v0.932.543.230 (9)132
C26—H26···O180.932.583.459 (8)157
Symmetry codes: (i) x, y, z1; (ii) x+3/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x+2, y, z+1; (v) x+1/2, y+1/2, z1/2.
 

Acknowledgements

Financial support from the 973 Key Program of the MOST (2006CB932905 and 2007CB81532), the National Natural Science Foundation of China (20501011), the Chinese Academy of Sciences (KJCX2-YW—M02), Shandong Provincial Education Department and Qilu Normal University is gratefully acknowledged.

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDahlstrom, P., Zubieta, J., Neaves, B. & Dilworth, J. R. (1982). Cryst. Struct. Commun. 11, 463–469.  CAS Google Scholar
First citationLi, P.-Z. & Xu, Q. (2009). Acta Cryst. E65, m508.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34–38.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325–3332.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des. 9, 4424–4428.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m756-m757
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds