organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(E)-4-Chloro­benzyl­­idene]-2,3-di­methyl­aniline

aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, bDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and cApplied Chemistry Research Center, PCSIR Laboratories complex, Lahore 54600, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 1 June 2010; accepted 1 June 2010; online 5 June 2010)

In the title compound, C15H14ClN, the conformation about the C=N bond is trans and the dihedral angle between the aromatic rings is 51.48 (4)°. In the crystal, some very weak C—H⋯π inter­actions may help to establish the packing.

Related literature

For a related structure and background to Schiff bases, see: Tariq et al. (2010[Tariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561.]). For related structures with different substituents at the N-bonded ring, see: Bürgi et al. (1968[Bürgi, H. B., Dunitz, J. D. & Züst, C. (1968). Acta Cryst. B24, 463-464.]); Kazak et al. (2004[Kazak, C., Aygün, M., Turgut, G., Odabaşoğlu, M., Büyükgüngör, O. & Kahveci, N. (2004). Acta Cryst. E60, o252-o253.]); Ojala et al. (2001[Ojala, C. R., Ojala, W. H., Gleason, W. B. & Britton, D. (2001). J. Chem. Crystallogr. 31, 377-386.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14ClN

  • Mr = 243.72

  • Monoclinic, P 21 /c

  • a = 12.8981 (4) Å

  • b = 7.7999 (2) Å

  • c = 15.0449 (5) Å

  • β = 119.315 (2)°

  • V = 1319.75 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.939, Tmax = 0.950

  • 10119 measured reflections

  • 2378 independent reflections

  • 1722 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.116

  • S = 1.05

  • 2378 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cg1i 0.93 2.99 3.649 (2) 129
C7—H7ACg2ii 0.96 2.93 3.757 (3) 145
C12—H12⋯Cg1iii 0.93 2.96 3.793 (3) 150
C7—H7ECg2ii 0.96 3.00 3.757 (3) 137
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation to synthesize various Schiff bases (Tariq et al., 2010) of 2,3-dimethylaniline, the title compound (I, Fig. 1) is being reported.

The crystal structure of p-chlorobenzylideneaniline (Bürgi, et al., 1968), p-cyano-N-(p-chlorobenzylidene)aniline (Ojala et al., 2001) and 4-((4-Chlorobenzylidene)amino)phenol (Kazak et al., 2004) have been published which contain the chloro group at para position. The title compound differs from these due to substitutions at the aniline.

In (I), the 2,3-dimethylanilinic group A (C1—C8/N1) and the p-chlorobenzaldehyde B (C9—C15/CL1) are planar with maximum r. m. s. deviations of 0.0121 and 0.0071 Å, respectively. The dihedral angle between A/B is 51.48 (4)°. The molecules are essentially monomer with no appreciable intra-molecular H-bonding. The phenyl ring of 2,3-dimethylaniline has longer bond length [1.375 (3)–1.399 (2) Å] as compared to the phenyl ring of p-chlorobenzaldehyde [1.364 (4)–1.386 (3) Å]. The observed value of CN bond is 1.264 (3) Å. All these bond lengths are compareable with 2,3-dimethyl-N-[(E)-(4-nitrophenyl)methylidene]aniline (Tariq et al., 2010). The molecules are stabilized due to C—H···π interactions (Table 1). The H-atoms of the methyl at ortho position are disordered over two set of sites with occupancy ratio 0.60 (3):0.40 (3).

Related literature top

For a related structure and background to Schiff bases, see: Tariq et al. (2010). For related structures with different substituents at the N-bonded ring, see: Bürgi et al. (1968); Kazak et al. (2004); Ojala et al. (2001).

Experimental top

Equimolar quantities of 2,3-dimethylaniline and 4-chlorobenzaldehyde were refluxed in methanol for 45 min resulting in yellow solution. The solution was kept at room temperature which affoarded colourless prisms of (I) after 48 h.

Refinement top

All H-atoms were positioned geometrically (C–H = 0.93, 0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.2 for aryl and x = 1.5 for methyl H-atoms. From the observation of difference Fourier map, it was concluded that H-atoms of one of the ortho methyl are disordered.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 30% probability level.
N-[(E)-4-Chlorobenzylidene]-2,3-dimethylaniline top
Crystal data top
C15H14ClNF(000) = 512
Mr = 243.72Dx = 1.227 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1467 reflections
a = 12.8981 (4) Åθ = 2.3–25.3°
b = 7.7999 (2) ŵ = 0.27 mm1
c = 15.0449 (5) ÅT = 296 K
β = 119.315 (2)°Prism, colourless
V = 1319.75 (7) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2378 independent reflections
Radiation source: fine-focus sealed tube1722 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 2.7°
ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 89
Tmin = 0.939, Tmax = 0.950l = 1818
10119 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.2848P]
where P = (Fo2 + 2Fc2)/3
2378 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C15H14ClNV = 1319.75 (7) Å3
Mr = 243.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.8981 (4) ŵ = 0.27 mm1
b = 7.7999 (2) ÅT = 296 K
c = 15.0449 (5) Å0.30 × 0.20 × 0.20 mm
β = 119.315 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2378 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1722 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.950Rint = 0.026
10119 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.05Δρmax = 0.15 e Å3
2378 reflectionsΔρmin = 0.19 e Å3
157 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.03504 (6)0.38426 (9)0.38533 (4)0.1078 (3)
N10.47950 (12)0.29383 (18)0.09822 (10)0.0549 (5)
C10.55065 (14)0.2685 (2)0.20499 (12)0.0492 (5)
C20.66149 (14)0.1905 (2)0.24128 (12)0.0502 (5)
C30.73394 (15)0.1691 (2)0.34649 (13)0.0550 (6)
C40.69544 (17)0.2286 (3)0.41183 (14)0.0673 (7)
C50.58704 (18)0.3083 (3)0.37546 (14)0.0762 (8)
C60.51425 (17)0.3277 (3)0.27191 (14)0.0654 (6)
C70.70003 (18)0.1280 (3)0.16739 (15)0.0750 (8)
C80.85264 (17)0.0805 (3)0.39021 (15)0.0821 (8)
C90.36888 (15)0.2672 (2)0.05682 (13)0.0568 (6)
C100.28740 (15)0.2988 (2)0.05166 (13)0.0555 (6)
C110.32577 (17)0.3762 (2)0.11338 (14)0.0642 (7)
C120.24792 (19)0.4016 (3)0.21581 (15)0.0729 (7)
C130.13238 (18)0.3509 (3)0.25623 (14)0.0691 (7)
C140.09207 (17)0.2742 (3)0.19726 (16)0.0848 (9)
C150.16989 (16)0.2490 (3)0.09440 (15)0.0753 (8)
H40.743680.214370.481750.0807*
H50.562970.349070.420590.0914*
H60.440600.380610.247050.0784*
H7A0.685810.006940.156990.1125*0.60 (3)
H7B0.783300.150450.194460.1125*0.60 (3)
H7C0.655590.186720.103560.1125*0.60 (3)
H8A0.885860.068550.462600.1231*
H8B0.905400.147230.376040.1231*
H8C0.842330.030920.359840.1231*
H90.337820.225660.096880.0681*
H110.404480.411350.085610.0771*
H120.274160.452950.257020.0875*
H140.013230.239250.225860.1018*
H150.142740.197940.053750.0904*
H7D0.632600.082660.107810.1125*0.40 (3)
H7E0.758850.039790.198980.1125*0.40 (3)
H7F0.733260.221660.148220.1125*0.40 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1029 (5)0.1121 (5)0.0596 (4)0.0316 (4)0.0019 (3)0.0013 (3)
N10.0515 (8)0.0532 (9)0.0526 (8)0.0013 (7)0.0197 (7)0.0026 (7)
C10.0506 (9)0.0446 (9)0.0496 (9)0.0022 (7)0.0223 (8)0.0008 (7)
C20.0496 (9)0.0472 (9)0.0521 (9)0.0034 (7)0.0237 (8)0.0011 (8)
C30.0507 (10)0.0530 (10)0.0547 (10)0.0025 (8)0.0208 (8)0.0002 (8)
C40.0662 (12)0.0780 (14)0.0478 (10)0.0004 (10)0.0203 (9)0.0031 (10)
C50.0761 (14)0.0942 (16)0.0587 (12)0.0091 (12)0.0333 (10)0.0150 (11)
C60.0565 (10)0.0693 (12)0.0634 (11)0.0110 (9)0.0240 (9)0.0071 (10)
C70.0641 (12)0.1002 (16)0.0640 (12)0.0125 (11)0.0339 (10)0.0014 (11)
C80.0608 (12)0.0989 (17)0.0680 (12)0.0163 (11)0.0172 (10)0.0052 (12)
C90.0553 (11)0.0592 (11)0.0562 (10)0.0001 (8)0.0276 (9)0.0001 (9)
C100.0517 (10)0.0541 (10)0.0549 (10)0.0030 (8)0.0215 (8)0.0039 (8)
C110.0590 (11)0.0613 (12)0.0598 (11)0.0094 (9)0.0193 (9)0.0031 (9)
C120.0848 (14)0.0598 (12)0.0607 (11)0.0062 (10)0.0253 (11)0.0057 (9)
C130.0657 (12)0.0668 (13)0.0553 (11)0.0151 (10)0.0145 (10)0.0052 (10)
C140.0459 (10)0.122 (2)0.0722 (14)0.0036 (12)0.0178 (10)0.0179 (14)
C150.0529 (11)0.1084 (18)0.0644 (12)0.0042 (11)0.0285 (10)0.0059 (12)
Geometric parameters (Å, º) top
Cl1—C131.740 (2)C4—H40.9300
N1—C11.421 (2)C5—H50.9300
N1—C91.264 (3)C6—H60.9300
C1—C21.396 (3)C7—H7A0.9600
C1—C61.382 (3)C7—H7B0.9600
C2—C31.399 (2)C7—H7C0.9600
C2—C71.504 (3)C7—H7D0.9600
C3—C41.381 (3)C7—H7E0.9600
C3—C81.506 (3)C7—H7F0.9600
C4—C51.375 (3)C8—H8A0.9600
C5—C61.378 (3)C8—H8B0.9600
C9—C101.466 (2)C8—H8C0.9600
C10—C111.386 (3)C9—H90.9300
C10—C151.381 (3)C11—H110.9300
C11—C121.381 (3)C12—H120.9300
C12—C131.364 (4)C14—H140.9300
C13—C141.366 (3)C15—H150.9300
C14—C151.386 (3)
C1—N1—C9118.88 (16)C5—C6—H6120.00
N1—C1—C2118.29 (16)C2—C7—H7A109.00
N1—C1—C6121.03 (17)C2—C7—H7B109.00
C2—C1—C6120.59 (16)C2—C7—H7C109.00
C1—C2—C3118.90 (17)C2—C7—H7D109.00
C1—C2—C7119.88 (15)C2—C7—H7E109.00
C3—C2—C7121.21 (18)C2—C7—H7F109.00
C2—C3—C4119.44 (18)H7A—C7—H7B109.00
C2—C3—C8121.46 (17)H7A—C7—H7C109.00
C4—C3—C8119.10 (16)H7B—C7—H7C109.00
C3—C4—C5121.24 (17)H7D—C7—H7E109.00
C4—C5—C6119.8 (2)H7D—C7—H7F109.00
C1—C6—C5120.0 (2)H7E—C7—H7F109.00
N1—C9—C10122.83 (18)C3—C8—H8A109.00
C9—C10—C11121.50 (19)C3—C8—H8B109.00
C9—C10—C15119.75 (18)C3—C8—H8C109.00
C11—C10—C15118.75 (17)H8A—C8—H8B109.00
C10—C11—C12120.5 (2)H8A—C8—H8C109.00
C11—C12—C13119.7 (2)H8B—C8—H8C109.00
Cl1—C13—C12119.21 (17)N1—C9—H9119.00
Cl1—C13—C14119.62 (18)C10—C9—H9119.00
C12—C13—C14121.17 (19)C10—C11—H11120.00
C13—C14—C15119.3 (2)C12—C11—H11120.00
C10—C15—C14120.7 (2)C11—C12—H12120.00
C3—C4—H4119.00C13—C12—H12120.00
C5—C4—H4119.00C13—C14—H14120.00
C4—C5—H5120.00C15—C14—H14120.00
C6—C5—H5120.00C10—C15—H15120.00
C1—C6—H6120.00C14—C15—H15120.00
C9—N1—C1—C2139.41 (17)C3—C4—C5—C60.9 (4)
C9—N1—C1—C644.1 (2)C4—C5—C6—C10.6 (4)
C1—N1—C9—C10176.57 (15)N1—C9—C10—C116.5 (3)
N1—C1—C2—C3178.22 (15)N1—C9—C10—C15172.75 (18)
N1—C1—C2—C73.0 (2)C9—C10—C11—C12178.72 (18)
C6—C1—C2—C31.7 (3)C15—C10—C11—C120.5 (3)
C6—C1—C2—C7179.55 (19)C9—C10—C15—C14178.54 (19)
N1—C1—C6—C5177.17 (19)C11—C10—C15—C140.7 (3)
C2—C1—C6—C50.7 (3)C10—C11—C12—C130.4 (3)
C1—C2—C3—C41.4 (3)C11—C12—C13—Cl1179.79 (17)
C1—C2—C3—C8177.88 (17)C11—C12—C13—C140.4 (4)
C7—C2—C3—C4179.87 (19)Cl1—C13—C14—C15179.61 (18)
C7—C2—C3—C80.9 (3)C12—C13—C14—C150.6 (4)
C2—C3—C4—C50.1 (3)C13—C14—C15—C100.7 (3)
C8—C3—C4—C5179.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg1i0.932.993.649 (2)129
C7—H7A···Cg2ii0.962.933.757 (3)145
C12—H12···Cg1iii0.932.963.793 (3)150
C7—H7E···Cg2ii0.963.003.757 (3)137
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H14ClN
Mr243.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.8981 (4), 7.7999 (2), 15.0449 (5)
β (°) 119.315 (2)
V3)1319.75 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.939, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
10119, 2378, 1722
Rint0.026
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.116, 1.05
No. of reflections2378
No. of parameters157
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.19

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg1i0.932.993.649 (2)129
C7—H7A···Cg2ii0.962.933.757 (3)145
C12—H12···Cg1iii0.932.963.793 (3)150
C7—H7E···Cg2ii0.963.003.757 (3)137
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBürgi, H. B., Dunitz, J. D. & Züst, C. (1968). Acta Cryst. B24, 463–464.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKazak, C., Aygün, M., Turgut, G., Odabaşoğlu, M., Büyükgüngör, O. & Kahveci, N. (2004). Acta Cryst. E60, o252–o253.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOjala, C. R., Ojala, W. H., Gleason, W. B. & Britton, D. (2001). J. Chem. Crystallogr. 31, 377–386.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds