organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1656-o1657

4-[(E)-(2,4,5-Trimeth­­oxy­benzyl­­idene)amino]-1,5-di­methyl-2-phenyl-1H-pyrazol-3(2H)-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Faculty of Science, King Abdu Aziz University, Jeddah, Saudi Arabia
*Correspondence e-mail: hkfun@usm.my

(Received 1 June 2010; accepted 7 June 2010; online 16 June 2010)

The title compound, C21H23N3O4, adopts an E configuration about the central C=N double bond and the pyrazolone ring is almost planar, with a maximum deviation of 0.042 (1) Å. The central pyrazolone ring makes dihedral angles of 51.96 (5) and 3.82 (5)° with the attached phenyl and the trimeth­oxy-substituted benzene rings, respectively. The dihedral angle between the phenyl ring and the trimeth­oxy-substituted benzene ring is 50.19 (5)° and an intra­molecular C—H⋯O hydrogen bond generates an S(6) ring motif. The crystal structure is stabilized by inter­molecular C—H⋯O and C—H⋯N hydrogen bonds.

Related literature

For background to the applications of Schiff bases, see: Vukovic et al. (2010[Vukovic, N., Sukdolak, S., Solujic, S. & Niciforovic, N. (2010). Food Chem. 120, 1011-1018.]); Ramesh & Maheswaran (2003[Ramesh, R. & Maheswaran, S. (2003). J. Inorg. Biochem., 96, 457-462.]); Dongfang et al. (2008[Dongfang, X. U., Shuzhi, M. A., Guangying, D. U., Qizhuang, H. E. & Dazhi, S. (2008). J. Rare Earths, 26, 643-647.]); Sastry & Rao (1988[Sastry, C. S. P. & Rao, A. R. M. (1988). J. Pharmacol. Methods, 26, 643-647.]); Kamel et al. (2010[Kamel, M. M., Ali, H. I., Anwar, M. M., Mohamed, N. A. & Soliman, A. M. (2010). Eur. J. Med. Chem. 45, 572-580.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C21H23N3O4

  • Mr = 381.42

  • Monoclinic, P 21 /c

  • a = 21.0128 (10) Å

  • b = 7.4242 (4) Å

  • c = 12.5194 (6) Å

  • β = 98.675 (1)°

  • V = 1930.72 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.67 × 0.27 × 0.15 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.941, Tmax = 0.987

  • 23600 measured reflections

  • 5614 independent reflections

  • 4779 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.123

  • S = 1.04

  • 5614 reflections

  • 345 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O1 0.954 (13) 2.331 (13) 3.0112 (11) 127.8 (10)
C4—H4A⋯O1i 0.969 (13) 2.541 (13) 3.2628 (12) 131.4 (10)
C20—H20A⋯N3ii 0.996 (14) 2.577 (14) 3.5383 (13) 162.1 (12)
C20—H20C⋯O2iii 0.977 (14) 2.509 (14) 3.4470 (13) 160.8 (12)
C20—H20C⋯O3iii 0.977 (14) 2.495 (15) 3.2779 (13) 137.0 (11)
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Compounds with the structure of ACNB are known as Schiff base, which can be synthesized from the condensation of amino and active carbonyl groups. Schiff base compounds have shown different therapeutic properties such as antibacterial (Vukovic et al., 2010), antifungal (Ramesh & Maheswaran, 2003), antitumor (Dongfang et al., 2008), anti-inflammatory (Sastry & Rao, 1988) and anticancer activities (Kamel et al., 2010). Due to their importance, the crystal structure determination of the title compound was carried out and the results are presented here.

In the title compound (Fig. 1), the pyrazolone ring (N1/N2/C7–C9) is almost planar, with maximum deviation of 0.042 (1) Å for atom N2. The central pyrazolone (N1/N2/C7–C9) ring makes dihedral angles of 51.96 (5)° and 3.82 (5)° with the attached phenyl ring (C1–C6) and the trimethoxy substituted phenyl ring (C11–C16), respectively. The dihedral angle between the phenyl ring(C1–C6) and the trimethoxy substituted phenyl ring (C11–C16) is 50.19 (5)°. The three methoxy groups are coplanar with the benzene ring [torsion angles C19-O2-C13-C12 = 5.04 (16)°, C20-O3-C14-C15 = -0.36 (14)° and C21-O4-C16-C15 = -1.66 (13)°].

In the crystal packing (Fig. 2), the intramolecular C10—H10A···O1 hydrogen bonding generates an S(6) ring motif (Bernstein et al., 1995). The crystal sturcture is futher stabilized by weak intermolecular C4—H4A···O1, C20—H20C···O2, C20—H20C···O3 and C20—H20A···N3 (Table 1) hydrogen bonds.

Related literature top

For background to the applications of Schiff bases, see: Vukovic et al. (2010); Ramesh & Maheswaran (2003); Dongfang et al. (2008); Sastry & Rao (1988); Kamel et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 4-aminophenazone (0.50 g, 0.0033 mol) and 2,4,5-tri-methoxy- benzaldehyde (0.65 g, 0.0033 mol) in methanol (15 ml) was refluxed for 5 h with stirring to give a light yellow precipitate. It was then filtered and washed with methanol to give the pure Schiff base and yellow blocks of (I) were recrystallized from methanol. Yield: 48.18%; Mp. 381°C; IR (KBr) νmax cm-1: 2937 (C–H), 1644 (CC), 1609(CO), 1591 (CN), 1122 (N–N). 1H-NMR (CDCl3) d: 10.02 ((s, 1H, CH olefinic), 7.67 (s, H3, CHaromatic), 6.49 (s, H6, CHaromatic), 7.47–7.26 (m, 5H, CHaromatic), 3.93 (s, OCH3), 3.93 (s, OCH3), 3.84 (s, OCH3), 3.11(s, N-CH3), 2.48 (s,-CH3).

Refinement top

All the H atoms were located from a difference Fourier map and refined freely [C—H = 0.945 (14)–1.008 (14) Å].

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of (I) showing hydrogen-bonded (dashed lines) networks. H atoms not involved in the hydrogen bond interactions are omitted for clarity.
4-[(E)-(2,4,5-Trimethoxybenzylidene)amino]-1,5-dimethyl-2-phenyl- 1H-pyrazol-3(2H)-one top
Crystal data top
C21H23N3O4F(000) = 808
Mr = 381.42Dx = 1.312 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8559 reflections
a = 21.0128 (10) Åθ = 2.9–34.8°
b = 7.4242 (4) ŵ = 0.09 mm1
c = 12.5194 (6) ÅT = 100 K
β = 98.675 (1)°Blcok, yellow
V = 1930.72 (17) Å30.67 × 0.27 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD
diffractometer
5614 independent reflections
Radiation source: fine-focus sealed tube4779 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 30.0°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2929
Tmin = 0.941, Tmax = 0.987k = 1010
23600 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0771P)2 + 0.3259P]
where P = (Fo2 + 2Fc2)/3
5614 reflections(Δ/σ)max < 0.001
345 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C21H23N3O4V = 1930.72 (17) Å3
Mr = 381.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 21.0128 (10) ŵ = 0.09 mm1
b = 7.4242 (4) ÅT = 100 K
c = 12.5194 (6) Å0.67 × 0.27 × 0.15 mm
β = 98.675 (1)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
5614 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4779 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.987Rint = 0.031
23600 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.48 e Å3
5614 reflectionsΔρmin = 0.23 e Å3
345 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36912 (3)0.05337 (10)0.48796 (5)0.01654 (15)
O20.02634 (3)0.14809 (11)0.14482 (6)0.02325 (17)
O30.06645 (3)0.44390 (11)0.06868 (6)0.02140 (17)
O40.27842 (3)0.35928 (10)0.27787 (6)0.01722 (15)
N10.35715 (4)0.34299 (11)0.55298 (6)0.01452 (16)
N20.30506 (4)0.45837 (11)0.56225 (6)0.01459 (16)
N30.22306 (4)0.11616 (11)0.39236 (6)0.01426 (16)
C10.47358 (5)0.34082 (14)0.59345 (8)0.01773 (19)
C20.52970 (5)0.35703 (15)0.66770 (9)0.0216 (2)
C30.52678 (5)0.39395 (14)0.77564 (8)0.0205 (2)
C40.46740 (5)0.41126 (14)0.81062 (8)0.01797 (19)
C50.41087 (5)0.39230 (14)0.73777 (7)0.01641 (18)
C60.41448 (4)0.35847 (13)0.62948 (7)0.01427 (18)
C70.25240 (4)0.38702 (13)0.49748 (7)0.01383 (18)
C80.26770 (4)0.22283 (13)0.45728 (7)0.01270 (17)
C90.33566 (4)0.18791 (13)0.49592 (7)0.01293 (17)
C100.24207 (4)0.03035 (13)0.35116 (7)0.01384 (17)
C110.19674 (4)0.14168 (13)0.27961 (7)0.01385 (18)
C120.13242 (4)0.08699 (14)0.24831 (7)0.01533 (18)
C130.08971 (4)0.18970 (14)0.17891 (8)0.01645 (18)
C140.11121 (4)0.35193 (14)0.13731 (7)0.01642 (19)
C150.17427 (4)0.40938 (14)0.16780 (7)0.01589 (18)
C160.21674 (4)0.30561 (13)0.24024 (7)0.01424 (17)
C170.32012 (5)0.65126 (14)0.55935 (8)0.0194 (2)
C180.18985 (5)0.48412 (14)0.47905 (8)0.01728 (19)
C190.00170 (5)0.00727 (18)0.19178 (11)0.0293 (3)
C200.08640 (5)0.61077 (16)0.02644 (9)0.0223 (2)
C210.29988 (5)0.52608 (14)0.23842 (8)0.01750 (19)
H1A0.4749 (7)0.319 (2)0.5178 (11)0.025 (3)*
H2A0.5716 (7)0.342 (2)0.6413 (11)0.027 (4)*
H3A0.5674 (7)0.413 (2)0.8265 (12)0.028 (4)*
H4A0.4646 (6)0.4380 (19)0.8855 (11)0.020 (3)*
H5A0.3683 (7)0.407 (2)0.7601 (11)0.024 (3)*
H10A0.2859 (6)0.0685 (18)0.3651 (10)0.016 (3)*
H12A0.1206 (7)0.025 (2)0.2767 (11)0.022 (3)*
H15A0.1878 (7)0.520 (2)0.1400 (11)0.020 (3)*
H17A0.2798 (7)0.723 (2)0.5642 (11)0.024 (3)*
H17B0.3365 (7)0.684 (2)0.4918 (12)0.027 (4)*
H17C0.3507 (7)0.673 (2)0.6234 (12)0.030 (4)*
H18A0.1555 (7)0.411 (2)0.4352 (12)0.030 (4)*
H18B0.1925 (8)0.601 (2)0.4416 (12)0.033 (4)*
H18C0.1744 (7)0.511 (2)0.5471 (12)0.032 (4)*
H19A0.0437 (8)0.018 (2)0.1586 (13)0.037 (4)*
H19B0.0243 (8)0.119 (2)0.1720 (13)0.038 (4)*
H19C0.0082 (8)0.003 (3)0.2715 (14)0.042 (4)*
H20A0.1208 (7)0.586 (2)0.0182 (11)0.024 (3)*
H20B0.1018 (7)0.696 (2)0.0873 (12)0.032 (4)*
H20C0.0475 (7)0.656 (2)0.0181 (11)0.026 (4)*
H21A0.3011 (7)0.515 (2)0.1612 (12)0.023 (3)*
H21B0.3418 (7)0.545 (2)0.2761 (11)0.025 (4)*
H21C0.2732 (7)0.626 (2)0.2555 (11)0.024 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0170 (3)0.0133 (3)0.0192 (3)0.0013 (3)0.0023 (2)0.0031 (3)
O20.0125 (3)0.0240 (4)0.0322 (4)0.0015 (3)0.0001 (3)0.0114 (3)
O30.0138 (3)0.0224 (4)0.0272 (4)0.0030 (3)0.0007 (3)0.0132 (3)
O40.0142 (3)0.0164 (3)0.0202 (3)0.0017 (3)0.0002 (2)0.0061 (3)
N10.0139 (3)0.0120 (4)0.0170 (3)0.0004 (3)0.0000 (3)0.0033 (3)
N20.0149 (3)0.0111 (4)0.0172 (3)0.0007 (3)0.0004 (3)0.0030 (3)
N30.0153 (3)0.0137 (4)0.0137 (3)0.0033 (3)0.0020 (3)0.0020 (3)
C10.0173 (4)0.0173 (5)0.0189 (4)0.0029 (4)0.0038 (3)0.0031 (4)
C20.0151 (4)0.0213 (5)0.0281 (5)0.0019 (4)0.0027 (4)0.0041 (4)
C30.0190 (4)0.0159 (4)0.0243 (5)0.0007 (4)0.0041 (3)0.0008 (4)
C40.0218 (4)0.0150 (4)0.0158 (4)0.0018 (4)0.0013 (3)0.0005 (3)
C50.0173 (4)0.0151 (4)0.0166 (4)0.0019 (3)0.0020 (3)0.0005 (3)
C60.0148 (4)0.0110 (4)0.0163 (4)0.0020 (3)0.0001 (3)0.0004 (3)
C70.0153 (4)0.0132 (4)0.0130 (4)0.0014 (3)0.0023 (3)0.0005 (3)
C80.0140 (4)0.0119 (4)0.0122 (3)0.0020 (3)0.0020 (3)0.0007 (3)
C90.0149 (4)0.0119 (4)0.0122 (3)0.0023 (3)0.0026 (3)0.0010 (3)
C100.0145 (4)0.0131 (4)0.0138 (4)0.0025 (3)0.0018 (3)0.0012 (3)
C110.0146 (4)0.0132 (4)0.0140 (4)0.0023 (3)0.0027 (3)0.0024 (3)
C120.0149 (4)0.0143 (4)0.0171 (4)0.0020 (3)0.0037 (3)0.0038 (3)
C130.0122 (4)0.0176 (4)0.0197 (4)0.0017 (3)0.0031 (3)0.0039 (4)
C140.0144 (4)0.0175 (4)0.0176 (4)0.0043 (3)0.0030 (3)0.0056 (3)
C150.0155 (4)0.0154 (4)0.0171 (4)0.0023 (3)0.0035 (3)0.0051 (3)
C160.0131 (4)0.0150 (4)0.0147 (4)0.0013 (3)0.0024 (3)0.0019 (3)
C170.0216 (4)0.0111 (4)0.0244 (5)0.0012 (4)0.0003 (4)0.0034 (4)
C180.0166 (4)0.0155 (4)0.0196 (4)0.0020 (3)0.0025 (3)0.0013 (3)
C190.0165 (4)0.0268 (6)0.0443 (7)0.0026 (4)0.0037 (4)0.0137 (5)
C200.0179 (4)0.0221 (5)0.0268 (5)0.0031 (4)0.0028 (4)0.0124 (4)
C210.0194 (4)0.0139 (4)0.0194 (4)0.0017 (4)0.0036 (3)0.0029 (3)
Geometric parameters (Å, º) top
O1—C91.2341 (12)C8—C91.4603 (12)
O2—C131.3709 (11)C10—C111.4613 (12)
O2—C191.4268 (14)C10—H10A0.954 (13)
O3—C141.3583 (11)C11—C161.4011 (13)
O3—C201.4342 (13)C11—C121.4090 (13)
O4—C161.3698 (11)C12—C131.3808 (13)
O4—C211.4311 (12)C12—H12A0.949 (15)
N1—C91.3937 (12)C13—C141.4130 (14)
N1—N21.4084 (11)C14—C151.3897 (13)
N1—C61.4261 (11)C15—C161.4029 (12)
N2—C71.3754 (11)C15—H15A0.953 (15)
N2—C171.4683 (13)C17—H17A1.008 (14)
N3—C101.2927 (12)C17—H17B0.990 (14)
N3—C81.3918 (11)C17—H17C0.963 (15)
C1—C61.3898 (13)C18—H18A1.000 (16)
C1—C21.3923 (13)C18—H18B0.990 (17)
C1—H1A0.965 (14)C18—H18C0.977 (15)
C2—C31.3893 (15)C19—H19A0.986 (17)
C2—H2A0.992 (15)C19—H19B1.006 (17)
C3—C41.3892 (15)C19—H19C0.990 (18)
C3—H3A0.995 (15)C20—H20A0.996 (14)
C4—C51.3913 (13)C20—H20B1.007 (16)
C4—H4A0.969 (13)C20—H20C0.976 (15)
C5—C61.3921 (13)C21—H21A0.974 (14)
C5—H5A0.984 (14)C21—H21B0.945 (14)
C7—C81.3753 (13)C21—H21C0.972 (15)
C7—C181.4863 (13)
C13—O2—C19116.72 (8)C13—C12—H12A122.3 (8)
C14—O3—C20117.04 (8)C11—C12—H12A116.3 (8)
C16—O4—C21117.65 (7)O2—C13—C12125.46 (9)
C9—N1—N2110.43 (7)O2—C13—C14115.26 (8)
C9—N1—C6125.90 (8)C12—C13—C14119.28 (8)
N2—N1—C6118.94 (7)O3—C14—C15124.05 (9)
C7—N2—N1106.45 (7)O3—C14—C13115.62 (8)
C7—N2—C17121.21 (8)C15—C14—C13120.33 (8)
N1—N2—C17114.72 (8)C14—C15—C16119.75 (9)
C10—N3—C8119.36 (8)C14—C15—H15A119.3 (8)
C6—C1—C2118.90 (9)C16—C15—H15A120.9 (8)
C6—C1—H1A119.6 (8)O4—C16—C11116.75 (8)
C2—C1—H1A121.5 (8)O4—C16—C15122.63 (9)
C3—C2—C1120.62 (9)C11—C16—C15120.61 (8)
C3—C2—H2A121.2 (8)N2—C17—H17A109.0 (8)
C1—C2—H2A118.2 (8)N2—C17—H17B111.4 (9)
C4—C3—C2119.89 (9)H17A—C17—H17B108.9 (12)
C4—C3—H3A120.6 (9)N2—C17—H17C105.3 (9)
C2—C3—H3A119.4 (9)H17A—C17—H17C108.8 (12)
C3—C4—C5120.18 (9)H17B—C17—H17C113.3 (12)
C3—C4—H4A120.8 (8)C7—C18—H18A111.7 (9)
C5—C4—H4A119.0 (8)C7—C18—H18B112.7 (9)
C4—C5—C6119.34 (9)H18A—C18—H18B107.7 (13)
C4—C5—H5A121.7 (8)C7—C18—H18C111.5 (9)
C6—C5—H5A118.9 (8)H18A—C18—H18C106.4 (12)
C1—C6—C5121.05 (8)H18B—C18—H18C106.5 (13)
C1—C6—N1118.69 (8)O2—C19—H19A106.4 (10)
C5—C6—N1120.26 (8)O2—C19—H19B110.6 (9)
C8—C7—N2110.21 (8)H19A—C19—H19B106.9 (14)
C8—C7—C18128.54 (8)O2—C19—H19C110.6 (11)
N2—C7—C18121.25 (8)H19A—C19—H19C114.1 (14)
C7—C8—N3122.95 (8)H19B—C19—H19C108.1 (14)
C7—C8—C9107.87 (8)O3—C20—H20A109.0 (9)
N3—C8—C9129.17 (8)O3—C20—H20B110.2 (9)
O1—C9—N1124.44 (8)H20A—C20—H20B111.3 (12)
O1—C9—C8131.11 (8)O3—C20—H20C104.0 (9)
N1—C9—C8104.37 (8)H20A—C20—H20C111.0 (11)
N3—C10—C11120.57 (8)H20B—C20—H20C111.1 (12)
N3—C10—H10A121.7 (8)O4—C21—H21A109.1 (9)
C11—C10—H10A117.8 (8)O4—C21—H21B105.8 (9)
C16—C11—C12118.58 (8)H21A—C21—H21B110.2 (12)
C16—C11—C10120.31 (8)O4—C21—H21C111.1 (8)
C12—C11—C10121.11 (8)H21A—C21—H21C112.6 (12)
C13—C12—C11121.40 (9)H21B—C21—H21C107.8 (12)
C9—N1—N2—C78.54 (10)C7—C8—C9—O1173.56 (9)
C6—N1—N2—C7165.59 (8)N3—C8—C9—O15.87 (16)
C9—N1—N2—C17145.49 (8)C7—C8—C9—N13.25 (10)
C6—N1—N2—C1757.45 (11)N3—C8—C9—N1177.33 (9)
C6—C1—C2—C31.32 (16)C8—N3—C10—C11177.82 (8)
C1—C2—C3—C41.34 (17)N3—C10—C11—C16176.26 (8)
C2—C3—C4—C50.21 (16)N3—C10—C11—C124.03 (14)
C3—C4—C5—C60.91 (16)C16—C11—C12—C131.10 (14)
C2—C1—C6—C50.17 (15)C10—C11—C12—C13178.61 (9)
C2—C1—C6—N1179.57 (9)C19—O2—C13—C125.04 (16)
C4—C5—C6—C10.93 (15)C19—O2—C13—C14175.23 (10)
C4—C5—C6—N1178.45 (9)C11—C12—C13—O2179.44 (9)
C9—N1—C6—C165.96 (13)C11—C12—C13—C140.83 (15)
N2—N1—C6—C1140.85 (9)C20—O3—C14—C150.36 (14)
C9—N1—C6—C5114.64 (11)C20—O3—C14—C13178.96 (9)
N2—N1—C6—C538.55 (13)O2—C13—C14—O30.49 (13)
N1—N2—C7—C86.30 (10)C12—C13—C14—O3179.26 (9)
C17—N2—C7—C8139.83 (9)O2—C13—C14—C15178.86 (9)
N1—N2—C7—C18173.92 (8)C12—C13—C14—C151.40 (15)
C17—N2—C7—C1840.39 (13)O3—C14—C15—C16179.28 (9)
N2—C7—C8—N3177.54 (8)C13—C14—C15—C160.00 (15)
C18—C7—C8—N32.22 (15)C21—O4—C16—C11179.81 (8)
N2—C7—C8—C91.93 (10)C21—O4—C16—C151.66 (13)
C18—C7—C8—C9178.31 (9)C12—C11—C16—O4176.04 (8)
C10—N3—C8—C7174.99 (8)C10—C11—C16—O44.24 (13)
C10—N3—C8—C95.66 (14)C12—C11—C16—C152.52 (14)
N2—N1—C9—O1169.88 (8)C10—C11—C16—C15177.20 (8)
C6—N1—C9—O114.78 (14)C14—C15—C16—O4176.49 (9)
N2—N1—C9—C87.20 (9)C14—C15—C16—C111.98 (14)
C6—N1—C9—C8162.30 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O10.954 (13)2.331 (13)3.0112 (11)127.8 (10)
C4—H4A···O1i0.969 (13)2.541 (13)3.2628 (12)131.4 (10)
C20—H20A···N3ii0.996 (14)2.577 (14)3.5383 (13)162.1 (12)
C20—H20C···O2iii0.977 (14)2.509 (14)3.4470 (13)160.8 (12)
C20—H20C···O3iii0.977 (14)2.495 (15)3.2779 (13)137.0 (11)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H23N3O4
Mr381.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)21.0128 (10), 7.4242 (4), 12.5194 (6)
β (°) 98.675 (1)
V3)1930.72 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.67 × 0.27 × 0.15
Data collection
DiffractometerBruker APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.941, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
23600, 5614, 4779
Rint0.031
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.123, 1.04
No. of reflections5614
No. of parameters345
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O10.954 (13)2.331 (13)3.0112 (11)127.8 (10)
C4—H4A···O1i0.969 (13)2.541 (13)3.2628 (12)131.4 (10)
C20—H20A···N3ii0.996 (14)2.577 (14)3.5383 (13)162.1 (12)
C20—H20C···O2iii0.977 (14)2.509 (14)3.4470 (13)160.8 (12)
C20—H20C···O3iii0.977 (14)2.495 (15)3.2779 (13)137.0 (11)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§On secondment to: The Center of Excellence for Advanced Materials Research, King Abdu Aziz University, Jeddah 21589, Saudi Arabia.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship. AMA and SAK thank the Chemistry Department, King Abdul Aziz University, Jeddah, Saudi Arabia, for providing research facilities.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDongfang, X. U., Shuzhi, M. A., Guangying, D. U., Qizhuang, H. E. & Dazhi, S. (2008). J. Rare Earths, 26, 643–647.  Google Scholar
First citationKamel, M. M., Ali, H. I., Anwar, M. M., Mohamed, N. A. & Soliman, A. M. (2010). Eur. J. Med. Chem. 45, 572–580.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRamesh, R. & Maheswaran, S. (2003). J. Inorg. Biochem., 96, 457–462.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSastry, C. S. P. & Rao, A. R. M. (1988). J. Pharmacol. Methods, 26, 643–647.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVukovic, N., Sukdolak, S., Solujic, S. & Niciforovic, N. (2010). Food Chem. 120, 1011–1018.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1656-o1657
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds