organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(4-Hy­dr­oxy­benzyl­­idene)thio­phene-2-carbohydrazide

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 2 June 2010; accepted 5 June 2010; online 18 June 2010)

In the title compound, C12H10N2O2S, the dihedral angle between the benzene and thio­phene rings is 23.34 (16)°. In the crystal structure, mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds, forming (100) sheets.

Related literature

For background to the pharmacological properties of Schiff bases, see: Ren et al. (2002[Ren, S. J., Wang, R. B. & Komatsu, K. (2002). J. Med. Chem. 45, 410-419.]). For a related structure, see: Li et al. (2009[Li, Y.-F., Liu, H.-X. & Jian, F.-F. (2009). Acta Cryst. E65, o2959.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2O2S

  • Mr = 246.28

  • Monoclinic, P 21 /c

  • a = 9.5622 (19) Å

  • b = 12.404 (3) Å

  • c = 9.991 (2) Å

  • β = 104.40 (3)°

  • V = 1147.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 10889 measured reflections

  • 2629 independent reflections

  • 1501 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.181

  • S = 1.07

  • 2629 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.09 2.887 (3) 154
O2—H2C⋯O1ii 0.82 2.10 2.913 (3) 174
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+3, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases derivatives have attracted much attention due to their pharmacological activity (Ren et al., 2002). As part of an investigation of the properties of Schiff bases functioning as ligands, we synthesized the title compound (I), and describe its structure here. The title compound contains two independent molecules in the unit. The dihedral angle between the aromatic rings is [23.33 (16)°]. In the crystal lattice, the N—H···O and O—H···O intramolecular hydrogen bonds which form the molecule structures.

Bond lengths and angles are comparable to those in a related compound (Li et al., 2009).

Related literature top

For background to the pharmacological properties of Schiff bases, see: Ren et al. (2002). For a related structure, see: Li et al. (2009).

Experimental top

A mixture of 4-methylbenzaldehyde (0.1 mol), and thiophene-2-carbohydrazide (0.1 mol) was stirred in refluxing ethanol (20 ml) for 4 h to afford the title compound (0.092 mol, yield 92%). Colourless blocks of (I) were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances=0.97 Å, and with Uiso=1.2–1.5Ueq.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids.
N'-(4-Hydroxybenzylidene)thiophene-2-carbohydrazide top
Crystal data top
C12H10N2O2SF(000) = 512
Mr = 246.28Dx = 1.425 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1501 reflections
a = 9.5622 (19) Åθ = 3.1–27.5°
b = 12.404 (3) ŵ = 0.27 mm1
c = 9.991 (2) ÅT = 293 K
β = 104.40 (3)°Block, colorless
V = 1147.8 (4) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1501 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
phi and ω scansh = 1212
10889 measured reflectionsk = 1616
2629 independent reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2629 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C12H10N2O2SV = 1147.8 (4) Å3
Mr = 246.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5622 (19) ŵ = 0.27 mm1
b = 12.404 (3) ÅT = 293 K
c = 9.991 (2) Å0.22 × 0.20 × 0.18 mm
β = 104.40 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1501 reflections with I > 2σ(I)
10889 measured reflectionsRint = 0.057
2629 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 1.07Δρmax = 0.27 e Å3
2629 reflectionsΔρmin = 0.38 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.89443 (10)0.07271 (7)0.19012 (8)0.0713 (3)
N21.2232 (2)0.37439 (19)0.1118 (2)0.0452 (6)
O11.1172 (2)0.24125 (17)0.27388 (17)0.0548 (6)
N11.1217 (2)0.29541 (19)0.0602 (2)0.0482 (6)
H1A1.09110.28630.02750.058*
C121.4377 (3)0.5507 (2)0.1730 (3)0.0464 (6)
H12A1.45180.49760.24070.056*
C40.9590 (3)0.1566 (2)0.0840 (2)0.0435 (6)
C51.0717 (3)0.2334 (2)0.1475 (2)0.0406 (6)
C71.3299 (3)0.5378 (2)0.0519 (2)0.0430 (6)
C61.2339 (3)0.4464 (2)0.0230 (3)0.0483 (7)
H6A1.17590.43920.06630.058*
C111.5235 (3)0.6408 (2)0.1941 (3)0.0506 (7)
H11A1.59360.64910.27670.061*
O21.5867 (3)0.81085 (19)0.1088 (2)0.0816 (8)
H2C1.67180.79570.14180.122*
C101.5063 (3)0.7198 (2)0.0930 (3)0.0518 (7)
C81.3140 (3)0.6189 (2)0.0471 (3)0.0510 (7)
H8A1.24270.61200.12910.061*
C91.3999 (3)0.7083 (2)0.0273 (3)0.0569 (8)
H9A1.38660.76130.09510.068*
C30.8883 (4)0.1398 (3)0.0502 (3)0.0647 (9)
H3A0.90770.17790.12370.078*
C20.7834 (4)0.0591 (3)0.0662 (3)0.0756 (11)
H2B0.72530.03770.15120.091*
C10.7759 (4)0.0163 (3)0.0548 (3)0.0765 (11)
H1B0.71240.03860.06320.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0791 (6)0.0780 (6)0.0592 (5)0.0243 (5)0.0220 (4)0.0166 (4)
N20.0506 (13)0.0473 (14)0.0398 (10)0.0127 (10)0.0151 (10)0.0051 (9)
O10.0635 (13)0.0682 (14)0.0331 (9)0.0089 (10)0.0129 (8)0.0017 (8)
N10.0592 (15)0.0545 (14)0.0323 (10)0.0207 (11)0.0138 (9)0.0059 (9)
C120.0476 (16)0.0448 (15)0.0466 (13)0.0047 (12)0.0113 (12)0.0066 (11)
C40.0461 (15)0.0454 (15)0.0416 (13)0.0069 (12)0.0155 (11)0.0010 (10)
C50.0446 (15)0.0421 (14)0.0374 (12)0.0003 (11)0.0145 (10)0.0003 (10)
C70.0485 (15)0.0430 (15)0.0398 (12)0.0050 (12)0.0151 (11)0.0050 (10)
C60.0552 (17)0.0510 (16)0.0393 (13)0.0130 (13)0.0129 (12)0.0049 (11)
C110.0465 (16)0.0493 (17)0.0514 (14)0.0048 (13)0.0035 (12)0.0062 (12)
O20.0694 (16)0.0573 (15)0.0975 (17)0.0248 (12)0.0184 (13)0.0290 (12)
C100.0473 (16)0.0409 (16)0.0640 (17)0.0058 (13)0.0078 (13)0.0081 (12)
C80.0577 (18)0.0497 (17)0.0423 (13)0.0090 (14)0.0064 (12)0.0018 (11)
C90.063 (2)0.0483 (18)0.0543 (15)0.0072 (14)0.0048 (14)0.0120 (12)
C30.075 (2)0.074 (2)0.0457 (15)0.0327 (18)0.0160 (15)0.0009 (14)
C20.079 (2)0.085 (3)0.0599 (18)0.041 (2)0.0132 (17)0.0104 (16)
C10.073 (2)0.071 (2)0.088 (2)0.0361 (19)0.0245 (19)0.0017 (18)
Geometric parameters (Å, º) top
S1—C11.685 (4)C6—H6A0.9300
S1—C41.707 (2)C11—C101.387 (4)
N2—C61.281 (3)C11—H11A0.9300
N2—N11.385 (3)O2—C101.354 (3)
O1—C51.233 (3)O2—H2C0.8200
N1—C51.337 (3)C10—C91.375 (4)
N1—H1A0.8600C8—C91.364 (4)
C12—C111.371 (4)C8—H8A0.9300
C12—C71.390 (4)C9—H9A0.9300
C12—H12A0.9300C3—C21.398 (4)
C4—C31.360 (4)C3—H3A0.9300
C4—C51.461 (4)C2—C11.339 (4)
C7—C81.392 (4)C2—H2B0.9300
C7—C61.443 (4)C1—H1B0.9300
C1—S1—C491.70 (14)C12—C11—H11A119.8
C6—N2—N1113.9 (2)C10—C11—H11A119.8
C5—N1—N2119.68 (19)C10—O2—H2C109.5
C5—N1—H1A120.2O2—C10—C9117.6 (3)
N2—N1—H1A120.2O2—C10—C11122.9 (3)
C11—C12—C7120.9 (2)C9—C10—C11119.5 (3)
C11—C12—H12A119.6C9—C8—C7121.9 (3)
C7—C12—H12A119.6C9—C8—H8A119.1
C3—C4—C5131.4 (2)C7—C8—H8A119.1
C3—C4—S1110.6 (2)C8—C9—C10119.9 (3)
C5—C4—S1118.01 (18)C8—C9—H9A120.0
O1—C5—N1122.0 (2)C10—C9—H9A120.0
O1—C5—C4122.1 (2)C4—C3—C2112.9 (3)
N1—C5—C4115.9 (2)C4—C3—H3A123.5
C12—C7—C8117.5 (3)C2—C3—H3A123.5
C12—C7—C6124.2 (2)C1—C2—C3112.3 (3)
C8—C7—C6118.3 (2)C1—C2—H2B123.9
N2—C6—C7124.5 (2)C3—C2—H2B123.9
N2—C6—H6A117.8C2—C1—S1112.6 (3)
C7—C6—H6A117.8C2—C1—H1B123.7
C12—C11—C10120.3 (3)S1—C1—H1B123.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.092.887 (3)154
O2—H2C···O1ii0.822.102.913 (3)174
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+3, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H10N2O2S
Mr246.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.5622 (19), 12.404 (3), 9.991 (2)
β (°) 104.40 (3)
V3)1147.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10889, 2629, 1501
Rint0.057
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.181, 1.07
No. of reflections2629
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.38

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.092.887 (3)154
O2—H2C···O1ii0.822.102.913 (3)174
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+3, y+1/2, z+1/2.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Y.-F., Liu, H.-X. & Jian, F.-F. (2009). Acta Cryst. E65, o2959.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRen, S. J., Wang, R. B. & Komatsu, K. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds