organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1707-o1708

Ammonium [(1S)-(endo,anti)]-(−)-3-bromo­camphor-8-sulfonate

aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 4 June 2010; accepted 14 June 2010; online 18 June 2010)

In the title mol­ecular salt, NH4+·C10H14BrO4S, the norbornane skeleton of the anion is composed of two five-membered rings in envelope conformations and a six-membered ring with one Br atom, one carbonyl O atom and a methyl group held in a boat conformation by a bridging methyl­ene group. Short intra­molecular C—H⋯O and C—H⋯Br inter­actions occur. In the crystal, the component ions are linked by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For further synthetic details, see: Smith et al. (2008[Smith, E. D., Vinson, N. A., Zhong, D., Berrang, B. D., Catanzaro, J. L., Thomas, J. B., Navarro, H. A., Gilmour, B. P., Deschamps, J. & Carroll, F. I. (2008). Bioorg. Med. Chem. 16, 822-829.]). For other structures with the norbornane skeleton, see: Jauch et al. (1992[Jauch, J., Laderer, H. & Walz, L. (1992). Acta Cryst. C48, 1246-1248.]); Ustabaş et al. (2006[Ustabaş, R., Çoruh, U., Yavuz, M., Salamci, E. & Vázquez-López, E. M. (2006). Acta Cryst. E62, o1149-o1150.]); Ersanlı et al. (2005[Ersanlı, C. C., Çoruh, U., Hökelek, T., Vázquez-López, E. M. & Daştan, A. (2005). Acta Cryst. E61, o263-o265.]). For the use of 3-bromo­camphor-8-sulfonic acid and its ammonium salts as chiral auxillaries for the optical resolution of enanti­omeric amines through diasteriomeric salt formation, see: Bálint et al. (1999[Bálint, J., Egri, G., Fogassy, E., Böcskei, Z., Simon, K., Gajáry, A. & Friesz, A. (1999). Tetrahedron Asymmetry, 10, 1079-1087.]); Pellati et al. (2010[Pellati, F., Cannazza, G. & Benvenuti, S. (2010). J. Chromatogr. A, 1217, 3503-3510.]); Roy et al. (2009[Roy, B. N., Singh, G. P., Srivastava, D., Jadhav, H. S., Saini, M. B. & Aher, P. (2009). Org. Process Res. Dev. 13, 450-455.]); Zhao et al. (2002[Zhao, M. M., McNamara, J. M., Ho, G.-J., Emerson, K. M., Song, Z. J., Tschaen, D. M., Brands, K. M. J., Dolling, U.-H., Grabowski, E. J. J. & Reider, P. J. (2002). J. Org. Chem. 67, 6743-6747.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • NH4+·C10H14BrO4S

  • Mr = 328.22

  • Monoclinic, P 21

  • a = 7.2449 (2) Å

  • b = 7.0049 (1) Å

  • c = 13.2428 (3) Å

  • β = 104.704 (1)°

  • V = 650.06 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.33 mm−1

  • T = 296 K

  • 0.42 × 0.14 × 0.11 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: refined from ΔF (XABS2; Parkin et al., 1995[Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.]) Tmin = 0.336, Tmax = 0.711

  • 2775 measured reflections

  • 2775 independent reflections

  • 2586 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.065

  • S = 1.03

  • 2775 reflections

  • 168 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.47 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1155 Freidel pairs

  • Flack parameter: −0.021 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.92 (3) 1.92 (3) 2.835 (4) 173 (3)
N1—H2N⋯O2ii 0.90 (3) 2.05 (3) 2.899 (3) 157 (3)
N1—H3N⋯O2 0.92 (3) 1.97 (3) 2.887 (3) 176 (3)
N1—H4N⋯O3iii 0.92 (3) 1.93 (3) 2.827 (3) 167 (4)
C4—H4B⋯Br1 0.97 2.71 3.221 (3) 113
C8—H8A⋯O2 0.96 2.44 3.104 (3) 126
C10—H10⋯O1i 0.98 2.49 3.451 (4) 167
Symmetry codes: (i) x, y-1, z; (ii) [-x+2, y-{\script{1\over 2}}, -z+1]; (iii) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PARST (Nardelli, 1983[Nardelli, M. (1983). Comput. Chem. 7, 95-98.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

3-Bromocamphor-8-sulfonic acid and its ammonium salts have extensively been used as chiral auxillaries for the optical resolution of a number of enantiomeric amines through diasteriomeric salt formation (Bálint et al., 1999; Zhao et al., 2002; Roy et al., 2009; Pellati et al., 2010).

In the bicyclo[2.2.1]heptane (norbornane) skeleton of the title compound, (I), (Fig. 1), the two five-membered rings have envelope conformations, with atom C2 displaced by 0.365 (3) Å from the C2–C6 plane [the puckering parameters (Cremer & Pople, 1975) are Q2 = 0.573 (3) Å and ϕ2 = 5.3 (3)°] and by 0.397 (3) Å from the C2/C3/C6/C9/C10 plane [the puckering parameters: Q2 = 0.615 (3) Å and ϕ2 = 181.6 (3)°] and the six-membered ring (C3–C6/C9/C10) adopts a boat conformation by the puckering parameters QT = 0.970 (3) Å, θ = 92.03 (18)° and ϕ = 357.34 (19) °.

In (I), the C—C single-bond lengths range from 1.491 (5) to 1.575 (4) Å, with a mean value of 1.535 (4) Å. In the bicyclo[2.2.1]heptane fragment, the angles between planes A (C3/C2/C6), B (C3–C6) and C (C3/C6/C9/C10) are as follows: A/B= 53.65 (19)°, A/C= 58.14 (18)° and B/C= 68.22 (13)°.

In the crystal, adjacent molecules of (I) are linked by intermolecular N—H···O and C—H···O hydrogen bonds (Table 1, Fig. 2).

Related literature top

For further synthetic details, see: Smith et al. (2008). For other structures with the norbornane skeleton, see: Jauch et al. (1992); Ustabaş et al. (2006); Ersanlı et al. (2005). For the use of 3-bromocamphor-8-sulfonic acid and its ammonium salts as chiral auxillaries for the optical resolution of enantiomeric amines through diasteriomeric salt formation, see: Bálint et al. (1999); Pellati et al. (2010); Roy et al. (2009); Zhao et al. (2002). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

3-Bromocamphor-8-sulfonic acid ammonium salt was prepared by modification in the reported method (Smith et al., 2008). 3-Bromocamphor-8-sulfonic acid (1 g) was dissolved in 15 ml of ethanol and then 6 ml of NH3 solution were added. The mixture was stirred until a clear solution was observed (about 20 min). The solution was slowly concentrated on water bath to half the volume over a 2 h period. The concentrate was allowed to crystallize undisturbed for 48 h. The resulting colourless prisms of (I) were carefully separated by filteration and washed with three 0.5-ml portions of petroleum ether.

Refinement top

In the ammonium ion, H atoms bound to N atoms were located in difference Fourier maps and their positional parameters were refined freely using a DFIX instruction [N—H = 0.93 (3) Å] in SHELXL97, with Uiso(H) = 1.5Ueq(N). H atoms bound to C atoms were placed in idealized positions and refined using a riding model with C—H = 0.96, 0.97 and 0.98 Å for CH3, CH2 and CH, respectively. Uiso(H) values were set at 1.5Ueq(C) for the methyl groups, and 1.2UeqUeq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST (Nardelli, 1983) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of (I) viewed down the b-axis. The hydrogen-bonds are drawn as a dashed lines. H-atoms not involved in hydrogen bonds have been omitted for clarity.
Ammonium [(1S)-(endo,anti)]-(-)-(3-bromo-1,7- dimethyl-2-oxobicyclo[2.2.1]heptan-7-yl)methanesulfonate top
Crystal data top
NH4+·C10H14BrO4SF(000) = 336
Mr = 328.22Dx = 1.677 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3356 reflections
a = 7.2449 (2) Åθ = 2.9–28.3°
b = 7.0049 (1) ŵ = 3.33 mm1
c = 13.2428 (3) ÅT = 296 K
β = 104.704 (1)°Prism, colourless
V = 650.06 (3) Å30.42 × 0.14 × 0.11 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2775 independent reflections
Radiation source: sealed tube2586 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ϕ and ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: part of the refinement model (ΔF)
(XABS2; Parkin et al., 1995; quadratic fit to sin(θ)/λ - 18 parameters)
h = 99
Tmin = 0.336, Tmax = 0.711k = 89
2775 measured reflectionsl = 017
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.033P)2 + 0.1814P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2775 reflectionsΔρmax = 0.35 e Å3
168 parametersΔρmin = 0.47 e Å3
5 restraintsAbsolute structure: Flack (1983), 1155 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.021 (7)
Crystal data top
NH4+·C10H14BrO4SV = 650.06 (3) Å3
Mr = 328.22Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.2449 (2) ŵ = 3.33 mm1
b = 7.0049 (1) ÅT = 296 K
c = 13.2428 (3) Å0.42 × 0.14 × 0.11 mm
β = 104.704 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2775 independent reflections
Absorption correction: part of the refinement model (ΔF)
(XABS2; Parkin et al., 1995; quadratic fit to sin(θ)/λ - 18 parameters)
2586 reflections with I > 2σ(I)
Tmin = 0.336, Tmax = 0.711Rint = 0.000
2775 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065Δρmax = 0.35 e Å3
S = 1.03Δρmin = 0.47 e Å3
2775 reflectionsAbsolute structure: Flack (1983), 1155 Freidel pairs
168 parametersAbsolute structure parameter: 0.021 (7)
5 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.09450 (4)0.00017 (4)0.27520 (3)0.0440 (1)
S10.65799 (9)0.68509 (9)0.36429 (5)0.0242 (2)
O10.7216 (3)0.8793 (3)0.3541 (2)0.0434 (8)
O20.8199 (3)0.5560 (3)0.39714 (16)0.0332 (6)
O30.5283 (3)0.6697 (4)0.42972 (17)0.0448 (8)
O40.2268 (4)0.0517 (4)0.0568 (2)0.0596 (10)
C10.5311 (4)0.6201 (4)0.2339 (2)0.0277 (8)
C20.4754 (4)0.4086 (4)0.2154 (2)0.0213 (7)
C30.3597 (3)0.3263 (4)0.2899 (2)0.0223 (7)
C40.1802 (4)0.4500 (4)0.2647 (2)0.0272 (8)
C50.1351 (4)0.4758 (5)0.1462 (2)0.0352 (9)
C60.3067 (4)0.3804 (4)0.1148 (2)0.0310 (9)
C70.3318 (6)0.4411 (6)0.0112 (2)0.0519 (13)
C80.6514 (4)0.2949 (4)0.2067 (2)0.0316 (9)
C90.2719 (4)0.1690 (5)0.1248 (2)0.0342 (9)
C100.3097 (4)0.1283 (4)0.2418 (2)0.0298 (8)
N10.8032 (3)0.1906 (4)0.4952 (2)0.0311 (7)
H1A0.415500.696000.214500.0330*
H1B0.609200.654800.187100.0330*
H30.428800.325000.363800.0270*
H4A0.203900.572100.300100.0330*
H4B0.076000.386500.284800.0330*
H5A0.125900.610000.127700.0420*
H5B0.016200.413200.112100.0420*
H7A0.220800.406200.042500.0780*
H7B0.442000.379200.001500.0780*
H7C0.348800.577000.010800.0780*
H8A0.742700.292200.273400.0470*
H8B0.707500.354400.156300.0470*
H8C0.614200.166800.185000.0470*
H100.422400.046100.262900.0360*
H1N0.775 (5)0.096 (4)0.445 (2)0.0470*
H2N0.914 (4)0.170 (6)0.543 (2)0.0470*
H3N0.806 (5)0.305 (4)0.461 (3)0.0470*
H4N0.706 (4)0.195 (6)0.528 (3)0.0470*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0329 (2)0.0300 (2)0.0673 (2)0.0085 (1)0.0093 (1)0.0087 (2)
S10.0199 (3)0.0209 (3)0.0303 (3)0.0028 (2)0.0036 (2)0.0024 (3)
O10.0492 (13)0.0217 (11)0.0526 (15)0.0096 (9)0.0007 (11)0.0030 (9)
O20.0246 (9)0.0298 (11)0.0393 (12)0.0024 (7)0.0029 (8)0.0036 (8)
O30.0304 (10)0.0674 (17)0.0391 (13)0.0101 (11)0.0133 (9)0.0175 (12)
O40.0552 (15)0.060 (2)0.0580 (16)0.0138 (12)0.0042 (12)0.0336 (13)
C10.0241 (13)0.0248 (14)0.0298 (15)0.0018 (11)0.0010 (11)0.0010 (11)
C20.0168 (12)0.0239 (13)0.0226 (13)0.0016 (10)0.0041 (10)0.0026 (10)
C30.0170 (11)0.0207 (12)0.0274 (14)0.0020 (9)0.0022 (10)0.0004 (10)
C40.0184 (11)0.0235 (15)0.0403 (16)0.0017 (9)0.0084 (10)0.0020 (11)
C50.0222 (12)0.0368 (19)0.0406 (16)0.0024 (13)0.0030 (11)0.0017 (14)
C60.0239 (13)0.0409 (17)0.0248 (15)0.0040 (12)0.0002 (11)0.0024 (12)
C70.056 (2)0.070 (3)0.0247 (17)0.0134 (18)0.0011 (15)0.0033 (15)
C80.0206 (13)0.0359 (16)0.0382 (17)0.0007 (12)0.0074 (11)0.0104 (13)
C90.0198 (12)0.0392 (17)0.0405 (16)0.0051 (12)0.0018 (11)0.0130 (14)
C100.0213 (12)0.0212 (13)0.0444 (17)0.0006 (10)0.0039 (11)0.0016 (11)
N10.0266 (12)0.0334 (13)0.0329 (13)0.0019 (11)0.0066 (10)0.0030 (11)
Geometric parameters (Å, º) top
Br1—C101.945 (3)C6—C71.491 (4)
S1—O11.454 (2)C6—C91.514 (4)
S1—O21.457 (2)C9—C101.530 (4)
S1—O31.435 (2)C1—H1B0.9700
S1—C11.797 (3)C1—H1A0.9700
O4—C91.201 (4)C3—H30.9800
N1—H1N0.92 (3)C4—H4B0.9700
N1—H2N0.90 (3)C4—H4A0.9700
N1—H3N0.92 (3)C5—H5A0.9700
N1—H4N0.92 (3)C5—H5B0.9700
C1—C21.539 (4)C7—H7A0.9600
C2—C31.558 (4)C7—H7B0.9600
C2—C61.575 (4)C7—H7C0.9600
C2—C81.532 (4)C8—H8B0.9600
C3—C41.527 (4)C8—H8C0.9600
C3—C101.531 (4)C8—H8A0.9600
C4—C51.530 (4)C10—H100.9800
C5—C61.558 (4)
O1—S1—O2111.00 (13)C3—C10—C9102.4 (2)
O1—S1—O3113.46 (15)S1—C1—H1B108.00
O1—S1—C1104.17 (14)S1—C1—H1A108.00
O2—S1—O3111.96 (14)C2—C1—H1A108.00
O2—S1—C1107.84 (13)C2—C1—H1B108.00
O3—S1—C1107.92 (14)H1A—C1—H1B107.00
H3N—N1—H4N109 (3)C10—C3—H3114.00
H2N—N1—H4N109 (3)C4—C3—H3114.00
H1N—N1—H3N107 (3)C2—C3—H3115.00
H1N—N1—H4N108 (3)C5—C4—H4A111.00
H1N—N1—H2N113 (3)C3—C4—H4B111.00
H2N—N1—H3N111 (3)C3—C4—H4A111.00
S1—C1—C2116.52 (19)C5—C4—H4B111.00
C1—C2—C8108.8 (2)H4A—C4—H4B109.00
C1—C2—C6111.8 (2)H5A—C5—H5B109.00
C1—C2—C3114.6 (2)C4—C5—H5A111.00
C6—C2—C8110.7 (2)C4—C5—H5B111.00
C3—C2—C693.6 (2)C6—C5—H5A111.00
C3—C2—C8116.6 (2)C6—C5—H5B111.00
C4—C3—C10108.9 (2)H7B—C7—H7C109.00
C2—C3—C4102.5 (2)C6—C7—H7C109.00
C2—C3—C10100.4 (2)C6—C7—H7A110.00
C3—C4—C5103.9 (2)C6—C7—H7B109.00
C4—C5—C6104.2 (2)H7A—C7—H7B109.00
C7—C6—C9114.9 (3)H7A—C7—H7C109.00
C2—C6—C7119.5 (3)C2—C8—H8B109.00
C2—C6—C5102.8 (2)C2—C8—H8A109.00
C5—C6—C9103.6 (2)H8A—C8—H8C109.00
C2—C6—C999.2 (2)C2—C8—H8C109.00
C5—C6—C7114.5 (3)H8A—C8—H8B109.00
O4—C9—C6128.6 (3)H8B—C8—H8C110.00
O4—C9—C10125.2 (3)C9—C10—H10109.00
C6—C9—C10106.3 (2)Br1—C10—H10109.00
Br1—C10—C3116.24 (18)C3—C10—H10109.00
Br1—C10—C9111.62 (19)
O1—S1—C1—C2169.7 (2)C2—C3—C4—C539.1 (3)
O2—S1—C1—C251.7 (2)C10—C3—C4—C566.7 (3)
O3—S1—C1—C269.4 (3)C2—C3—C10—Br1159.47 (17)
S1—C1—C2—C354.3 (3)C2—C3—C10—C937.5 (3)
S1—C1—C2—C6159.2 (2)C4—C3—C10—Br152.3 (3)
S1—C1—C2—C878.2 (3)C4—C3—C10—C969.7 (3)
C1—C2—C3—C461.2 (3)C3—C4—C5—C65.6 (3)
C1—C2—C3—C10173.5 (2)C4—C5—C6—C229.3 (3)
C6—C2—C3—C454.8 (2)C4—C5—C6—C7160.5 (3)
C6—C2—C3—C1057.5 (2)C4—C5—C6—C973.6 (3)
C8—C2—C3—C4170.0 (2)C2—C6—C9—O4144.1 (3)
C8—C2—C3—C1057.8 (3)C2—C6—C9—C1034.8 (3)
C1—C2—C6—C567.8 (3)C5—C6—C9—O4110.3 (4)
C1—C2—C6—C760.4 (4)C5—C6—C9—C1070.9 (3)
C1—C2—C6—C9174.0 (2)C7—C6—C9—O415.4 (5)
C3—C2—C6—C550.6 (2)C7—C6—C9—C10163.5 (3)
C3—C2—C6—C7178.7 (3)O4—C9—C10—Br154.7 (4)
C3—C2—C6—C955.7 (2)O4—C9—C10—C3179.8 (3)
C8—C2—C6—C5170.7 (2)C6—C9—C10—Br1126.4 (2)
C8—C2—C6—C761.1 (4)C6—C9—C10—C31.3 (3)
C8—C2—C6—C964.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.92 (3)1.92 (3)2.835 (4)173 (3)
N1—H2N···O2ii0.90 (3)2.05 (3)2.899 (3)157 (3)
N1—H3N···O20.92 (3)1.97 (3)2.887 (3)176 (3)
N1—H4N···O3iii0.92 (3)1.93 (3)2.827 (3)167 (4)
C4—H4B···Br10.972.713.221 (3)113
C8—H8A···O20.962.443.104 (3)126
C10—H10···O1i0.982.493.451 (4)167
Symmetry codes: (i) x, y1, z; (ii) x+2, y1/2, z+1; (iii) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaNH4+·C10H14BrO4S
Mr328.22
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)7.2449 (2), 7.0049 (1), 13.2428 (3)
β (°) 104.704 (1)
V3)650.06 (3)
Z2
Radiation typeMo Kα
µ (mm1)3.33
Crystal size (mm)0.42 × 0.14 × 0.11
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(XABS2; Parkin et al., 1995; quadratic fit to sin(θ)/λ - 18 parameters)
Tmin, Tmax0.336, 0.711
No. of measured, independent and
observed [I > 2σ(I)] reflections
2775, 2775, 2586
Rint0.000
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.065, 1.03
No. of reflections2775
No. of parameters168
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.47
Absolute structureFlack (1983), 1155 Freidel pairs
Absolute structure parameter0.021 (7)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999), PARST (Nardelli, 1983) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.92 (3)1.92 (3)2.835 (4)173 (3)
N1—H2N···O2ii0.90 (3)2.05 (3)2.899 (3)157 (3)
N1—H3N···O20.92 (3)1.97 (3)2.887 (3)176 (3)
N1—H4N···O3iii0.92 (3)1.93 (3)2.827 (3)167 (4)
C4—H4B···Br10.972.713.221 (3)113
C8—H8A···O20.962.443.104 (3)126
C10—H10···O1i0.982.493.451 (4)167
Symmetry codes: (i) x, y1, z; (ii) x+2, y1/2, z+1; (iii) x+1, y1/2, z+1.
 

Footnotes

Additional corresponding author, e-mail: atrabbasi@yahoo.com.

Acknowledgements

The authors are grateful to the Higher Education Commission for financial support to purchase the diffractometer.

References

First citationBálint, J., Egri, G., Fogassy, E., Böcskei, Z., Simon, K., Gajáry, A. & Friesz, A. (1999). Tetrahedron Asymmetry, 10, 1079–1087.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationErsanlı, C. C., Çoruh, U., Hökelek, T., Vázquez-López, E. M. & Daştan, A. (2005). Acta Cryst. E61, o263–o265.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJauch, J., Laderer, H. & Walz, L. (1992). Acta Cryst. C48, 1246–1248.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNardelli, M. (1983). Comput. Chem. 7, 95–98.  CrossRef CAS Web of Science Google Scholar
First citationParkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPellati, F., Cannazza, G. & Benvenuti, S. (2010). J. Chromatogr. A, 1217, 3503–3510.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRoy, B. N., Singh, G. P., Srivastava, D., Jadhav, H. S., Saini, M. B. & Aher, P. (2009). Org. Process Res. Dev. 13, 450–455.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, E. D., Vinson, N. A., Zhong, D., Berrang, B. D., Catanzaro, J. L., Thomas, J. B., Navarro, H. A., Gilmour, B. P., Deschamps, J. & Carroll, F. I. (2008). Bioorg. Med. Chem. 16, 822–829.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUstabaş, R., Çoruh, U., Yavuz, M., Salamci, E. & Vázquez-López, E. M. (2006). Acta Cryst. E62, o1149–o1150.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, M. M., McNamara, J. M., Ho, G.-J., Emerson, K. M., Song, Z. J., Tschaen, D. M., Brands, K. M. J., Dolling, U.-H., Grabowski, E. J. J. & Reider, P. J. (2002). J. Org. Chem. 67, 6743–6747.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1707-o1708
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds