organic compounds
Ammonium [(1S)-(endo,anti)]-(−)-3-bromocamphor-8-sulfonate
aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: akkurt@erciyes.edu.tr
In the title molecular salt, NH4+·C10H14BrO4S−, the norbornane skeleton of the anion is composed of two five-membered rings in envelope conformations and a six-membered ring with one Br atom, one carbonyl O atom and a methyl group held in a boat conformation by a bridging methylene group. Short intramolecular C—H⋯O and C—H⋯Br interactions occur. In the crystal, the component ions are linked by intermolecular N—H⋯O and C—H⋯O hydrogen bonds.
Related literature
For further synthetic details, see: Smith et al. (2008). For other structures with the norbornane skeleton, see: Jauch et al. (1992); Ustabaş et al. (2006); Ersanlı et al. (2005). For the use of 3-bromocamphor-8-sulfonic acid and its ammonium salts as chiral auxillaries for the of enantiomeric through diasteriomeric salt formation, see: Bálint et al. (1999); Pellati et al. (2010); Roy et al. (2009); Zhao et al. (2002). For puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST (Nardelli, 1983) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536810022804/hb5484sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810022804/hb5484Isup2.hkl
3-Bromocamphor-8-sulfonic acid ammonium salt was prepared by modification in the reported method (Smith et al., 2008). 3-Bromocamphor-8-sulfonic acid (1 g) was dissolved in 15 ml of ethanol and then 6 ml of NH3 solution were added. The mixture was stirred until a clear solution was observed (about 20 min). The solution was slowly concentrated on water bath to half the volume over a 2 h period. The concentrate was allowed to crystallize undisturbed for 48 h. The resulting colourless prisms of (I) were carefully separated by filteration and washed with three 0.5-ml portions of petroleum ether.
In the ammonium ion, H atoms bound to N atoms were located in difference Fourier maps and their positional parameters were refined freely using a DFIX instruction [N—H = 0.93 (3) Å] in SHELXL97, with Uiso(H) = 1.5Ueq(N). H atoms bound to C atoms were placed in idealized positions and refined using a riding model with C—H = 0.96, 0.97 and 0.98 Å for CH3, CH2 and CH, respectively. Uiso(H) values were set at 1.5Ueq(C) for the methyl groups, and 1.2UeqUeq(C) for other H atoms.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST (Nardelli, 1983) and PLATON (Spek, 2009).Fig. 1. View of (I) with displacement ellipsoids drawn at the 30% probability level. | |
Fig. 2. The crystal packing of (I) viewed down the b-axis. The hydrogen-bonds are drawn as a dashed lines. H-atoms not involved in hydrogen bonds have been omitted for clarity. |
NH4+·C10H14BrO4S− | F(000) = 336 |
Mr = 328.22 | Dx = 1.677 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 3356 reflections |
a = 7.2449 (2) Å | θ = 2.9–28.3° |
b = 7.0049 (1) Å | µ = 3.33 mm−1 |
c = 13.2428 (3) Å | T = 296 K |
β = 104.704 (1)° | Prism, colourless |
V = 650.06 (3) Å3 | 0.42 × 0.14 × 0.11 mm |
Z = 2 |
Bruker Kappa APEXII CCD diffractometer | 2775 independent reflections |
Radiation source: sealed tube | 2586 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.000 |
ϕ and ω scans | θmax = 27.5°, θmin = 3.3° |
Absorption correction: part of the (XABS2; Parkin et al., 1995; quadratic fit to sin(θ)/λ - 18 parameters) | model (ΔF) h = −9→9 |
Tmin = 0.336, Tmax = 0.711 | k = −8→9 |
2775 measured reflections | l = 0→17 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.065 | w = 1/[σ2(Fo2) + (0.033P)2 + 0.1814P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2775 reflections | Δρmax = 0.35 e Å−3 |
168 parameters | Δρmin = −0.47 e Å−3 |
5 restraints | Absolute structure: Flack (1983), 1155 Freidel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.021 (7) |
NH4+·C10H14BrO4S− | V = 650.06 (3) Å3 |
Mr = 328.22 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 7.2449 (2) Å | µ = 3.33 mm−1 |
b = 7.0049 (1) Å | T = 296 K |
c = 13.2428 (3) Å | 0.42 × 0.14 × 0.11 mm |
β = 104.704 (1)° |
Bruker Kappa APEXII CCD diffractometer | 2775 independent reflections |
Absorption correction: part of the refinement model (ΔF) (XABS2; Parkin et al., 1995; quadratic fit to sin(θ)/λ - 18 parameters) | 2586 reflections with I > 2σ(I) |
Tmin = 0.336, Tmax = 0.711 | Rint = 0.000 |
2775 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.065 | Δρmax = 0.35 e Å−3 |
S = 1.03 | Δρmin = −0.47 e Å−3 |
2775 reflections | Absolute structure: Flack (1983), 1155 Freidel pairs |
168 parameters | Absolute structure parameter: −0.021 (7) |
5 restraints |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.09450 (4) | 0.00017 (4) | 0.27520 (3) | 0.0440 (1) | |
S1 | 0.65799 (9) | 0.68509 (9) | 0.36429 (5) | 0.0242 (2) | |
O1 | 0.7216 (3) | 0.8793 (3) | 0.3541 (2) | 0.0434 (8) | |
O2 | 0.8199 (3) | 0.5560 (3) | 0.39714 (16) | 0.0332 (6) | |
O3 | 0.5283 (3) | 0.6697 (4) | 0.42972 (17) | 0.0448 (8) | |
O4 | 0.2268 (4) | 0.0517 (4) | 0.0568 (2) | 0.0596 (10) | |
C1 | 0.5311 (4) | 0.6201 (4) | 0.2339 (2) | 0.0277 (8) | |
C2 | 0.4754 (4) | 0.4086 (4) | 0.2154 (2) | 0.0213 (7) | |
C3 | 0.3597 (3) | 0.3263 (4) | 0.2899 (2) | 0.0223 (7) | |
C4 | 0.1802 (4) | 0.4500 (4) | 0.2647 (2) | 0.0272 (8) | |
C5 | 0.1351 (4) | 0.4758 (5) | 0.1462 (2) | 0.0352 (9) | |
C6 | 0.3067 (4) | 0.3804 (4) | 0.1148 (2) | 0.0310 (9) | |
C7 | 0.3318 (6) | 0.4411 (6) | 0.0112 (2) | 0.0519 (13) | |
C8 | 0.6514 (4) | 0.2949 (4) | 0.2067 (2) | 0.0316 (9) | |
C9 | 0.2719 (4) | 0.1690 (5) | 0.1248 (2) | 0.0342 (9) | |
C10 | 0.3097 (4) | 0.1283 (4) | 0.2418 (2) | 0.0298 (8) | |
N1 | 0.8032 (3) | 0.1906 (4) | 0.4952 (2) | 0.0311 (7) | |
H1A | 0.41550 | 0.69600 | 0.21450 | 0.0330* | |
H1B | 0.60920 | 0.65480 | 0.18710 | 0.0330* | |
H3 | 0.42880 | 0.32500 | 0.36380 | 0.0270* | |
H4A | 0.20390 | 0.57210 | 0.30010 | 0.0330* | |
H4B | 0.07600 | 0.38650 | 0.28480 | 0.0330* | |
H5A | 0.12590 | 0.61000 | 0.12770 | 0.0420* | |
H5B | 0.01620 | 0.41320 | 0.11210 | 0.0420* | |
H7A | 0.22080 | 0.40620 | −0.04250 | 0.0780* | |
H7B | 0.44200 | 0.37920 | −0.00150 | 0.0780* | |
H7C | 0.34880 | 0.57700 | 0.01080 | 0.0780* | |
H8A | 0.74270 | 0.29220 | 0.27340 | 0.0470* | |
H8B | 0.70750 | 0.35440 | 0.15630 | 0.0470* | |
H8C | 0.61420 | 0.16680 | 0.18500 | 0.0470* | |
H10 | 0.42240 | 0.04610 | 0.26290 | 0.0360* | |
H1N | 0.775 (5) | 0.096 (4) | 0.445 (2) | 0.0470* | |
H2N | 0.914 (4) | 0.170 (6) | 0.543 (2) | 0.0470* | |
H3N | 0.806 (5) | 0.305 (4) | 0.461 (3) | 0.0470* | |
H4N | 0.706 (4) | 0.195 (6) | 0.528 (3) | 0.0470* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0329 (2) | 0.0300 (2) | 0.0673 (2) | −0.0085 (1) | 0.0093 (1) | 0.0087 (2) |
S1 | 0.0199 (3) | 0.0209 (3) | 0.0303 (3) | −0.0028 (2) | 0.0036 (2) | −0.0024 (3) |
O1 | 0.0492 (13) | 0.0217 (11) | 0.0526 (15) | −0.0096 (9) | 0.0007 (11) | −0.0030 (9) |
O2 | 0.0246 (9) | 0.0298 (11) | 0.0393 (12) | 0.0024 (7) | −0.0029 (8) | −0.0036 (8) |
O3 | 0.0304 (10) | 0.0674 (17) | 0.0391 (13) | −0.0101 (11) | 0.0133 (9) | −0.0175 (12) |
O4 | 0.0552 (15) | 0.060 (2) | 0.0580 (16) | −0.0138 (12) | 0.0042 (12) | −0.0336 (13) |
C1 | 0.0241 (13) | 0.0248 (14) | 0.0298 (15) | −0.0018 (11) | −0.0010 (11) | 0.0010 (11) |
C2 | 0.0168 (12) | 0.0239 (13) | 0.0226 (13) | −0.0016 (10) | 0.0041 (10) | −0.0026 (10) |
C3 | 0.0170 (11) | 0.0207 (12) | 0.0274 (14) | −0.0020 (9) | 0.0022 (10) | −0.0004 (10) |
C4 | 0.0184 (11) | 0.0235 (15) | 0.0403 (16) | 0.0017 (9) | 0.0084 (10) | −0.0020 (11) |
C5 | 0.0222 (12) | 0.0368 (19) | 0.0406 (16) | 0.0024 (13) | −0.0030 (11) | 0.0017 (14) |
C6 | 0.0239 (13) | 0.0409 (17) | 0.0248 (15) | −0.0040 (12) | −0.0002 (11) | −0.0024 (12) |
C7 | 0.056 (2) | 0.070 (3) | 0.0247 (17) | −0.0134 (18) | 0.0011 (15) | 0.0033 (15) |
C8 | 0.0206 (13) | 0.0359 (16) | 0.0382 (17) | −0.0007 (12) | 0.0074 (11) | −0.0104 (13) |
C9 | 0.0198 (12) | 0.0392 (17) | 0.0405 (16) | −0.0051 (12) | 0.0018 (11) | −0.0130 (14) |
C10 | 0.0213 (12) | 0.0212 (13) | 0.0444 (17) | −0.0006 (10) | 0.0039 (11) | −0.0016 (11) |
N1 | 0.0266 (12) | 0.0334 (13) | 0.0329 (13) | 0.0019 (11) | 0.0066 (10) | 0.0030 (11) |
Br1—C10 | 1.945 (3) | C6—C7 | 1.491 (4) |
S1—O1 | 1.454 (2) | C6—C9 | 1.514 (4) |
S1—O2 | 1.457 (2) | C9—C10 | 1.530 (4) |
S1—O3 | 1.435 (2) | C1—H1B | 0.9700 |
S1—C1 | 1.797 (3) | C1—H1A | 0.9700 |
O4—C9 | 1.201 (4) | C3—H3 | 0.9800 |
N1—H1N | 0.92 (3) | C4—H4B | 0.9700 |
N1—H2N | 0.90 (3) | C4—H4A | 0.9700 |
N1—H3N | 0.92 (3) | C5—H5A | 0.9700 |
N1—H4N | 0.92 (3) | C5—H5B | 0.9700 |
C1—C2 | 1.539 (4) | C7—H7A | 0.9600 |
C2—C3 | 1.558 (4) | C7—H7B | 0.9600 |
C2—C6 | 1.575 (4) | C7—H7C | 0.9600 |
C2—C8 | 1.532 (4) | C8—H8B | 0.9600 |
C3—C4 | 1.527 (4) | C8—H8C | 0.9600 |
C3—C10 | 1.531 (4) | C8—H8A | 0.9600 |
C4—C5 | 1.530 (4) | C10—H10 | 0.9800 |
C5—C6 | 1.558 (4) | ||
O1—S1—O2 | 111.00 (13) | C3—C10—C9 | 102.4 (2) |
O1—S1—O3 | 113.46 (15) | S1—C1—H1B | 108.00 |
O1—S1—C1 | 104.17 (14) | S1—C1—H1A | 108.00 |
O2—S1—O3 | 111.96 (14) | C2—C1—H1A | 108.00 |
O2—S1—C1 | 107.84 (13) | C2—C1—H1B | 108.00 |
O3—S1—C1 | 107.92 (14) | H1A—C1—H1B | 107.00 |
H3N—N1—H4N | 109 (3) | C10—C3—H3 | 114.00 |
H2N—N1—H4N | 109 (3) | C4—C3—H3 | 114.00 |
H1N—N1—H3N | 107 (3) | C2—C3—H3 | 115.00 |
H1N—N1—H4N | 108 (3) | C5—C4—H4A | 111.00 |
H1N—N1—H2N | 113 (3) | C3—C4—H4B | 111.00 |
H2N—N1—H3N | 111 (3) | C3—C4—H4A | 111.00 |
S1—C1—C2 | 116.52 (19) | C5—C4—H4B | 111.00 |
C1—C2—C8 | 108.8 (2) | H4A—C4—H4B | 109.00 |
C1—C2—C6 | 111.8 (2) | H5A—C5—H5B | 109.00 |
C1—C2—C3 | 114.6 (2) | C4—C5—H5A | 111.00 |
C6—C2—C8 | 110.7 (2) | C4—C5—H5B | 111.00 |
C3—C2—C6 | 93.6 (2) | C6—C5—H5A | 111.00 |
C3—C2—C8 | 116.6 (2) | C6—C5—H5B | 111.00 |
C4—C3—C10 | 108.9 (2) | H7B—C7—H7C | 109.00 |
C2—C3—C4 | 102.5 (2) | C6—C7—H7C | 109.00 |
C2—C3—C10 | 100.4 (2) | C6—C7—H7A | 110.00 |
C3—C4—C5 | 103.9 (2) | C6—C7—H7B | 109.00 |
C4—C5—C6 | 104.2 (2) | H7A—C7—H7B | 109.00 |
C7—C6—C9 | 114.9 (3) | H7A—C7—H7C | 109.00 |
C2—C6—C7 | 119.5 (3) | C2—C8—H8B | 109.00 |
C2—C6—C5 | 102.8 (2) | C2—C8—H8A | 109.00 |
C5—C6—C9 | 103.6 (2) | H8A—C8—H8C | 109.00 |
C2—C6—C9 | 99.2 (2) | C2—C8—H8C | 109.00 |
C5—C6—C7 | 114.5 (3) | H8A—C8—H8B | 109.00 |
O4—C9—C6 | 128.6 (3) | H8B—C8—H8C | 110.00 |
O4—C9—C10 | 125.2 (3) | C9—C10—H10 | 109.00 |
C6—C9—C10 | 106.3 (2) | Br1—C10—H10 | 109.00 |
Br1—C10—C3 | 116.24 (18) | C3—C10—H10 | 109.00 |
Br1—C10—C9 | 111.62 (19) | ||
O1—S1—C1—C2 | 169.7 (2) | C2—C3—C4—C5 | 39.1 (3) |
O2—S1—C1—C2 | 51.7 (2) | C10—C3—C4—C5 | −66.7 (3) |
O3—S1—C1—C2 | −69.4 (3) | C2—C3—C10—Br1 | −159.47 (17) |
S1—C1—C2—C3 | 54.3 (3) | C2—C3—C10—C9 | −37.5 (3) |
S1—C1—C2—C6 | 159.2 (2) | C4—C3—C10—Br1 | −52.3 (3) |
S1—C1—C2—C8 | −78.2 (3) | C4—C3—C10—C9 | 69.7 (3) |
C1—C2—C3—C4 | 61.2 (3) | C3—C4—C5—C6 | −5.6 (3) |
C1—C2—C3—C10 | 173.5 (2) | C4—C5—C6—C2 | −29.3 (3) |
C6—C2—C3—C4 | −54.8 (2) | C4—C5—C6—C7 | −160.5 (3) |
C6—C2—C3—C10 | 57.5 (2) | C4—C5—C6—C9 | 73.6 (3) |
C8—C2—C3—C4 | −170.0 (2) | C2—C6—C9—O4 | −144.1 (3) |
C8—C2—C3—C10 | −57.8 (3) | C2—C6—C9—C10 | 34.8 (3) |
C1—C2—C6—C5 | −67.8 (3) | C5—C6—C9—O4 | 110.3 (4) |
C1—C2—C6—C7 | 60.4 (4) | C5—C6—C9—C10 | −70.9 (3) |
C1—C2—C6—C9 | −174.0 (2) | C7—C6—C9—O4 | −15.4 (5) |
C3—C2—C6—C5 | 50.6 (2) | C7—C6—C9—C10 | 163.5 (3) |
C3—C2—C6—C7 | 178.7 (3) | O4—C9—C10—Br1 | −54.7 (4) |
C3—C2—C6—C9 | −55.7 (2) | O4—C9—C10—C3 | −179.8 (3) |
C8—C2—C6—C5 | 170.7 (2) | C6—C9—C10—Br1 | 126.4 (2) |
C8—C2—C6—C7 | −61.1 (4) | C6—C9—C10—C3 | 1.3 (3) |
C8—C2—C6—C9 | 64.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.92 (3) | 1.92 (3) | 2.835 (4) | 173 (3) |
N1—H2N···O2ii | 0.90 (3) | 2.05 (3) | 2.899 (3) | 157 (3) |
N1—H3N···O2 | 0.92 (3) | 1.97 (3) | 2.887 (3) | 176 (3) |
N1—H4N···O3iii | 0.92 (3) | 1.93 (3) | 2.827 (3) | 167 (4) |
C4—H4B···Br1 | 0.97 | 2.71 | 3.221 (3) | 113 |
C8—H8A···O2 | 0.96 | 2.44 | 3.104 (3) | 126 |
C10—H10···O1i | 0.98 | 2.49 | 3.451 (4) | 167 |
Symmetry codes: (i) x, y−1, z; (ii) −x+2, y−1/2, −z+1; (iii) −x+1, y−1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | NH4+·C10H14BrO4S− |
Mr | 328.22 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 296 |
a, b, c (Å) | 7.2449 (2), 7.0049 (1), 13.2428 (3) |
β (°) | 104.704 (1) |
V (Å3) | 650.06 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.33 |
Crystal size (mm) | 0.42 × 0.14 × 0.11 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD diffractometer |
Absorption correction | Part of the refinement model (ΔF) (XABS2; Parkin et al., 1995; quadratic fit to sin(θ)/λ - 18 parameters) |
Tmin, Tmax | 0.336, 0.711 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2775, 2775, 2586 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.065, 1.03 |
No. of reflections | 2775 |
No. of parameters | 168 |
No. of restraints | 5 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.35, −0.47 |
Absolute structure | Flack (1983), 1155 Freidel pairs |
Absolute structure parameter | −0.021 (7) |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999), PARST (Nardelli, 1983) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.92 (3) | 1.92 (3) | 2.835 (4) | 173 (3) |
N1—H2N···O2ii | 0.90 (3) | 2.05 (3) | 2.899 (3) | 157 (3) |
N1—H3N···O2 | 0.92 (3) | 1.97 (3) | 2.887 (3) | 176 (3) |
N1—H4N···O3iii | 0.92 (3) | 1.93 (3) | 2.827 (3) | 167 (4) |
C4—H4B···Br1 | 0.97 | 2.71 | 3.221 (3) | 113 |
C8—H8A···O2 | 0.96 | 2.44 | 3.104 (3) | 126 |
C10—H10···O1i | 0.98 | 2.49 | 3.451 (4) | 167 |
Symmetry codes: (i) x, y−1, z; (ii) −x+2, y−1/2, −z+1; (iii) −x+1, y−1/2, −z+1. |
Footnotes
‡Additional corresponding author, e-mail: atrabbasi@yahoo.com.
Acknowledgements
The authors are grateful to the Higher Education Commission for financial support to purchase the diffractometer.
References
Bálint, J., Egri, G., Fogassy, E., Böcskei, Z., Simon, K., Gajáry, A. & Friesz, A. (1999). Tetrahedron Asymmetry, 10, 1079–1087. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Ersanlı, C. C., Çoruh, U., Hökelek, T., Vázquez-López, E. M. & Daştan, A. (2005). Acta Cryst. E61, o263–o265. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Jauch, J., Laderer, H. & Walz, L. (1992). Acta Cryst. C48, 1246–1248. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Nardelli, M. (1983). Comput. Chem. 7, 95–98. CrossRef CAS Web of Science Google Scholar
Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56. CrossRef CAS Web of Science IUCr Journals Google Scholar
Pellati, F., Cannazza, G. & Benvenuti, S. (2010). J. Chromatogr. A, 1217, 3503–3510. Web of Science CrossRef CAS PubMed Google Scholar
Roy, B. N., Singh, G. P., Srivastava, D., Jadhav, H. S., Saini, M. B. & Aher, P. (2009). Org. Process Res. Dev. 13, 450–455. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, E. D., Vinson, N. A., Zhong, D., Berrang, B. D., Catanzaro, J. L., Thomas, J. B., Navarro, H. A., Gilmour, B. P., Deschamps, J. & Carroll, F. I. (2008). Bioorg. Med. Chem. 16, 822–829. Web of Science CSD CrossRef PubMed CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ustabaş, R., Çoruh, U., Yavuz, M., Salamci, E. & Vázquez-López, E. M. (2006). Acta Cryst. E62, o1149–o1150. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhao, M. M., McNamara, J. M., Ho, G.-J., Emerson, K. M., Song, Z. J., Tschaen, D. M., Brands, K. M. J., Dolling, U.-H., Grabowski, E. J. J. & Reider, P. J. (2002). J. Org. Chem. 67, 6743–6747. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
3-Bromocamphor-8-sulfonic acid and its ammonium salts have extensively been used as chiral auxillaries for the optical resolution of a number of enantiomeric amines through diasteriomeric salt formation (Bálint et al., 1999; Zhao et al., 2002; Roy et al., 2009; Pellati et al., 2010).
In the bicyclo[2.2.1]heptane (norbornane) skeleton of the title compound, (I), (Fig. 1), the two five-membered rings have envelope conformations, with atom C2 displaced by 0.365 (3) Å from the C2–C6 plane [the puckering parameters (Cremer & Pople, 1975) are Q2 = 0.573 (3) Å and ϕ2 = 5.3 (3)°] and by 0.397 (3) Å from the C2/C3/C6/C9/C10 plane [the puckering parameters: Q2 = 0.615 (3) Å and ϕ2 = 181.6 (3)°] and the six-membered ring (C3–C6/C9/C10) adopts a boat conformation by the puckering parameters QT = 0.970 (3) Å, θ = 92.03 (18)° and ϕ = 357.34 (19) °.
In (I), the C—C single-bond lengths range from 1.491 (5) to 1.575 (4) Å, with a mean value of 1.535 (4) Å. In the bicyclo[2.2.1]heptane fragment, the angles between planes A (C3/C2/C6), B (C3–C6) and C (C3/C6/C9/C10) are as follows: A/B= 53.65 (19)°, A/C= 58.14 (18)° and B/C= 68.22 (13)°.
In the crystal, adjacent molecules of (I) are linked by intermolecular N—H···O and C—H···O hydrogen bonds (Table 1, Fig. 2).