organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-Benzyl­­idene­furan-2-carbohydrazide

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 4 June 2010; accepted 5 June 2010; online 18 June 2010)

In the title compound, C12H10N2O2, the dihedral angle between the benzene ring and the furan ring is 24.6 (2)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, generating C(4) chains propagating in [010].

Related literature

For background to Schiff bases as ligands, see: Polt et al. (2003[Polt, R., Kelly, B. D. & Dangel, B. D. (2003). Inorg. Chem. 42, 566-574.]). For a related structure, see: Jiang (2010[Jiang, J.-H. (2010). Acta Cryst. E66, o627.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2O2

  • Mr = 214.22

  • Orthorhombic, P b c a

  • a = 11.628 (2) Å

  • b = 7.6638 (15) Å

  • c = 23.873 (5) Å

  • V = 2127.4 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 15748 measured reflections

  • 1915 independent reflections

  • 841 reflections with I > 2σ(I)

  • Rint = 0.180

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.182

  • S = 0.87

  • 1915 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.06 2.911 (4) 168
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal complexes based on Schiff bases have attracted much attention because they can be utilized as effective ligands to form the compounds with optically active (Polt et al., 2003). As part of our search for new Schiff base compounds we synthesized the title compound (I), and describe its structure here. The dihedral angle between the benzene ring and the furan ring is 24.6 (2)°. In the crystal lattice, the N—H···O hydrogen bonds which form chains stable the molecule structures.

Bond lengths and angles are comparable to those in a related material (Jiang, 2010).

Related literature top

For background to Schiff bases as ligands, see: Polt et al. (2003). For a related structure, see: Jiang (2010).

Experimental top

A mixture of benzaldehyde (0.1 mol), and furan-2-carbohydrazide (0.1 mol) was stirred in refluxing ethanol (20 ml) for 2 h to afford the title compound (0.096 mol, yield 96%). Colourless blocks of (I) were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances=0.97 Å, and with Uiso=1.2–1.5Ueq.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids.
N'-Benzylidenefuran-2-carbohydrazide top
Crystal data top
C12H10N2O2F(000) = 896
Mr = 214.22Dx = 1.338 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2542 reflections
a = 11.628 (2) Åθ = 2.7–25.4°
b = 7.6638 (15) ŵ = 0.09 mm1
c = 23.873 (5) ÅT = 293 K
V = 2127.4 (7) Å3Block, colorless
Z = 80.22 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
841 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.180
Graphite monochromatorθmax = 25.3°, θmin = 3.3°
phi and ω scansh = 1313
15748 measured reflectionsk = 99
1915 independent reflectionsl = 2828
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.182 w = 1/[σ2(Fo2) + (0.0916P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.87(Δ/σ)max < 0.001
1915 reflectionsΔρmax = 0.48 e Å3
146 parametersΔρmin = 0.35 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.042 (4)
Crystal data top
C12H10N2O2V = 2127.4 (7) Å3
Mr = 214.22Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.628 (2) ŵ = 0.09 mm1
b = 7.6638 (15) ÅT = 293 K
c = 23.873 (5) Å0.22 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
841 reflections with I > 2σ(I)
15748 measured reflectionsRint = 0.180
1915 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 0.87Δρmax = 0.48 e Å3
1915 reflectionsΔρmin = 0.35 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C70.6392 (3)0.2814 (4)0.22579 (15)0.0427 (9)
N20.7400 (2)0.2911 (4)0.13973 (12)0.0444 (8)
O20.89248 (19)0.4222 (3)0.06644 (10)0.0525 (7)
C60.6608 (3)0.2226 (4)0.16890 (15)0.0464 (9)
H6A0.61610.13380.15370.056*
N10.7595 (2)0.2165 (4)0.08817 (12)0.0468 (8)
H1A0.72040.12730.07740.056*
C110.5250 (3)0.2748 (5)0.30936 (18)0.0614 (11)
H11A0.45990.23570.32820.074*
C50.8408 (3)0.2861 (4)0.05515 (15)0.0433 (9)
O10.8127 (2)0.0388 (3)0.00680 (11)0.0624 (8)
C120.5431 (3)0.2243 (5)0.25478 (17)0.0565 (11)
H12A0.49050.15110.23720.068*
C20.9298 (4)0.0939 (6)0.07761 (19)0.0717 (13)
H2B0.96970.08360.11120.086*
C80.7157 (3)0.3882 (5)0.25381 (16)0.0499 (10)
H8A0.78160.42620.23540.060*
C40.8663 (3)0.1949 (4)0.00321 (15)0.0457 (9)
C30.9374 (3)0.2318 (5)0.03877 (18)0.0619 (12)
H4A0.98350.33040.04190.074*
C100.6010 (4)0.3816 (5)0.33627 (18)0.0617 (11)
H10A0.58840.41480.37320.074*
C90.6968 (3)0.4393 (5)0.30781 (17)0.0607 (11)
H9A0.74880.51340.32540.073*
C10.8544 (4)0.0182 (6)0.05660 (18)0.0746 (13)
H1B0.83290.12220.07370.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C70.047 (2)0.0397 (19)0.042 (2)0.0015 (16)0.0025 (17)0.0011 (17)
N20.0508 (17)0.0434 (17)0.0389 (19)0.0018 (14)0.0016 (14)0.0050 (14)
O20.0574 (14)0.0490 (15)0.0512 (18)0.0076 (12)0.0024 (13)0.0054 (12)
C60.052 (2)0.0403 (19)0.047 (2)0.0016 (17)0.0001 (19)0.0025 (17)
N10.0558 (18)0.0463 (17)0.0384 (19)0.0070 (14)0.0023 (15)0.0081 (14)
C110.058 (2)0.073 (3)0.054 (3)0.005 (2)0.019 (2)0.001 (2)
C50.0469 (19)0.0411 (19)0.042 (2)0.0030 (17)0.0022 (18)0.0021 (18)
O10.0769 (18)0.0604 (17)0.0499 (19)0.0157 (13)0.0153 (14)0.0151 (13)
C120.051 (2)0.060 (2)0.059 (3)0.0034 (19)0.007 (2)0.006 (2)
C20.085 (3)0.080 (3)0.051 (3)0.011 (2)0.024 (2)0.006 (2)
C80.051 (2)0.051 (2)0.047 (3)0.0037 (18)0.0013 (19)0.0039 (18)
C40.051 (2)0.0434 (19)0.043 (3)0.0017 (16)0.0007 (18)0.0012 (18)
C30.070 (3)0.062 (3)0.053 (3)0.010 (2)0.012 (2)0.005 (2)
C100.080 (3)0.068 (3)0.038 (2)0.016 (2)0.007 (2)0.001 (2)
C90.073 (3)0.062 (3)0.048 (3)0.002 (2)0.003 (2)0.010 (2)
C10.101 (3)0.069 (3)0.053 (3)0.007 (3)0.019 (2)0.021 (2)
Geometric parameters (Å, º) top
C7—C81.382 (5)O1—C41.370 (4)
C7—C121.385 (5)C12—H12A0.9300
C7—C61.453 (5)C2—C11.327 (6)
N2—C61.268 (4)C2—C31.408 (5)
N2—N11.376 (4)C2—H2B0.9300
O2—C51.234 (4)C8—C91.365 (5)
C6—H6A0.9300C8—H8A0.9300
N1—C51.342 (4)C4—C31.329 (5)
N1—H1A0.8600C3—H4A0.9300
C11—C101.366 (5)C10—C91.377 (5)
C11—C121.376 (5)C10—H10A0.9300
C11—H11A0.9300C9—H9A0.9300
C5—C41.454 (5)C1—H1B0.9300
O1—C11.357 (4)
C8—C7—C12117.7 (4)C1—C2—H2B126.9
C8—C7—C6121.6 (3)C3—C2—H2B126.9
C12—C7—C6120.6 (3)C9—C8—C7121.6 (4)
C6—N2—N1116.0 (3)C9—C8—H8A119.2
N2—C6—C7120.7 (3)C7—C8—H8A119.2
N2—C6—H6A119.6C3—C4—O1109.7 (3)
C7—C6—H6A119.6C3—C4—C5131.9 (3)
C5—N1—N2118.4 (3)O1—C4—C5118.4 (3)
C5—N1—H1A120.8C4—C3—C2107.4 (3)
N2—N1—H1A120.8C4—C3—H4A126.3
C10—C11—C12121.0 (4)C2—C3—H4A126.3
C10—C11—H11A119.5C11—C10—C9119.0 (4)
C12—C11—H11A119.5C11—C10—H10A120.5
O2—C5—N1123.5 (3)C9—C10—H10A120.5
O2—C5—C4119.5 (3)C8—C9—C10120.2 (4)
N1—C5—C4117.0 (3)C8—C9—H9A119.9
C1—O1—C4105.8 (3)C10—C9—H9A119.9
C11—C12—C7120.6 (4)C2—C1—O1111.0 (4)
C11—C12—H12A119.7C2—C1—H1B124.5
C7—C12—H12A119.7O1—C1—H1B124.5
C1—C2—C3106.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.062.911 (4)168
Symmetry code: (i) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC12H10N2O2
Mr214.22
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)11.628 (2), 7.6638 (15), 23.873 (5)
V3)2127.4 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15748, 1915, 841
Rint0.180
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.182, 0.87
No. of reflections1915
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.35

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.062.911 (4)168
Symmetry code: (i) x+3/2, y1/2, z.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJiang, J.-H. (2010). Acta Cryst. E66, o627.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPolt, R., Kelly, B. D. & Dangel, B. D. (2003). Inorg. Chem. 42, 566–574.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds