metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{N,N′-Bis[1-(2-pyrid­yl)ethyl­­idene]propane-1,2-di­amine-κ4N,N′,N′′,N′′′}bis­­(thio­cyanato-κN)manganese(II)

aDepartment of Chemistry, Dezhou University, Dezhou Shandong 253023, People's Republic of China
*Correspondence e-mail: wfm99999@126.com

(Received 6 June 2010; accepted 6 June 2010; online 16 June 2010)

In the title compound, [Mn(NCS)2(C17H20N4)], the MnII atom is six-coordinated by the N,N′,N′′,N′′′-tetra­dentate Schiff base ligand and by two trans-N atoms from two thio­cyanate anions, forming a distorted octa­hedral geometry. The dihedral angle between the aromatic rings of the Schiff base is 9.5 (3)°.

Related literature

For another complex containing 1,2-bis­(2′-pyridyl­methyl­ene­amino)­propane, see: Ouyang et al. (2002[Ouyang, X.-M., Fei, B.-L., Okamura, T., Sun, W.-Y., Tang, W.-X. & Ueyama, N. (2002). Chem. Lett. pp. 362-363.]). For related manganese(II) complexes with Schiff bases, see: Louloudi et al. (1999[Louloudi, M., Nastopoulos, V., Gourbatsis, S., Perlepes, S. P. & Hadjiliadis, N. (1999). Inorg. Chem. Commun. 2, 479-483.]); Sra et al. (2000[Sra, A. K., Sutter, J.-P., Guionneau, P., Chasseau, D., Yakhmi, J. V. & Kahn, O. (2000). Inorg. Chim. Acta, 300, 778-782.]); Karmakar et al. (2005[Karmakar, T. K., Ghosh, B. K., Usman, A., Fun, H.-K., Riviere, E., Mallah, T., Aromi, G. & Chandra, S. K. (2005). Inorg. Chem. 44, 2391-2399.]); Deoghoria et al. (2005[Deoghoria, S., Bera, S. K., Moulton, B., Zaworotko, M. J., Tuchagues, J.-P., Mostafa, G., Lu, T.-H. & Chandra, S. K. (2005). Polyhedron, 24, 343-350.]). For the synthesis of the Schiff base, see: Gourbatsis et al. (1990[Gourbatsis, S., Perlepes, S. P., Hadjiliadis, N. & Kalkanis, G. (1990). Transition Met. Chem. 15, 300-308.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(NCS)2(C17H20N4)]

  • Mr = 451.47

  • Triclinic, [P \overline 1]

  • a = 8.647 (3) Å

  • b = 9.135 (2) Å

  • c = 14.608 (3) Å

  • α = 84.701 (3)°

  • β = 79.407 (3)°

  • γ = 70.509 (3)°

  • V = 1068.6 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 298 K

  • 0.33 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.771, Tmax = 0.789

  • 11100 measured reflections

  • 4608 independent reflections

  • 2211 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.224

  • S = 0.99

  • 4608 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—N5 2.127 (6)
Mn1—N6 2.149 (6)
Mn1—N2 2.258 (5)
Mn1—N3 2.260 (4)
Mn1—N4 2.334 (4)
Mn1—N1 2.346 (4)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal complexes with Schiff bases have been known since 1840 but only one complex derived from 1,2-bis(2'-pyridylmethyleneamino)propane has been reported (Ouyang et al., 2002). In this paper, the title new manganese(II) complex is reported.

In the title complex, Fig. 1, the MnII atom is six-coordinated by four N atoms of the Schiff base ligand 1,2-bis(2'-pyridylmethyleneamino)propane, and by two N atoms from two thiocyanate ligands, forming a distorted octahedral geometry. The coordinate bond lengths (Table 1) are comparable with those observed in other similar manganese(II) complexes with Schiff bases (Louloudi et al., 1999; Sra et al., 2000; Karmakar et al., 2005; Deoghoria et al., 2005).

Related literature top

For another complex containing 1,2-bis(2'-pyridylmethyleneamino)propane, see: Ouyang et al. (2002). For related manganese(II) complexes with Schiff bases, see: Louloudi et al. (1999); Sra et al. (2000); Karmakar et al. (2005); Deoghoria et al. (2005). For the synthesis of the Schiff base, see: Gourbatsis et al. (1990).

Experimental top

The Schiff base ligand 1,2-bis(2'-pyridylmethyleneamino)propane was synthesized according to the literature method (Gourbatsis et al., 1990). To a stirred methanol solution of the Schiff base ligand (1.0 mmol, 0.280 g) was added a methanol solution of manganese acetate (1.0 mmol, 0.245 g) and ammonium thiocyanate (1.0 mmol, 0.076 g). The mixture was boiled under reflux for 2 h, then cooled to room temperature. Brown blocks of (I) were formed after slow evaporation of the solution in air for a few days.

Refinement top

Hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances of 0.93–0.97 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids drawn at the 30% probability level.
{N,N'-Bis[1-(2-pyridyl)ethylidene]propane-1,2-diamine- κ4N,N',N'',N'''}bis(thiocyanato- κN)manganese(II) top
Crystal data top
[Mn(NCS)2(C17H20N4)]Z = 2
Mr = 451.47F(000) = 466
Triclinic, P1Dx = 1.403 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.647 (3) ÅCell parameters from 1307 reflections
b = 9.135 (2) Åθ = 2.3–24.5°
c = 14.608 (3) ŵ = 0.83 mm1
α = 84.701 (3)°T = 298 K
β = 79.407 (3)°Block, brown
γ = 70.509 (3)°0.33 × 0.30 × 0.30 mm
V = 1068.6 (5) Å3
Data collection top
Bruker SMART CCD
diffractometer
4608 independent reflections
Radiation source: fine-focus sealed tube2211 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
ω scanθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.771, Tmax = 0.789k = 1111
11100 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.224H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.1044P)2]
where P = (Fo2 + 2Fc2)/3
4608 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Mn(NCS)2(C17H20N4)]γ = 70.509 (3)°
Mr = 451.47V = 1068.6 (5) Å3
Triclinic, P1Z = 2
a = 8.647 (3) ÅMo Kα radiation
b = 9.135 (2) ŵ = 0.83 mm1
c = 14.608 (3) ÅT = 298 K
α = 84.701 (3)°0.33 × 0.30 × 0.30 mm
β = 79.407 (3)°
Data collection top
Bruker SMART CCD
diffractometer
4608 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2211 reflections with I > 2σ(I)
Tmin = 0.771, Tmax = 0.789Rint = 0.078
11100 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0770 restraints
wR(F2) = 0.224H-atom parameters constrained
S = 0.99Δρmax = 0.68 e Å3
4608 reflectionsΔρmin = 0.34 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn11.02210 (10)0.54382 (9)0.27241 (5)0.0601 (3)
N11.2061 (6)0.6565 (5)0.3134 (3)0.0644 (12)
N21.0220 (6)0.7580 (5)0.1819 (3)0.0673 (12)
N30.8157 (6)0.5912 (5)0.1875 (3)0.0701 (13)
N40.9013 (5)0.3471 (5)0.3008 (3)0.0665 (12)
N50.8737 (7)0.6394 (7)0.3994 (4)0.0906 (17)
N61.2282 (6)0.3744 (6)0.1940 (4)0.0772 (15)
S10.6757 (2)0.8093 (2)0.54416 (16)0.1097 (7)
S21.4735 (2)0.1575 (2)0.08162 (12)0.0855 (5)
C11.2937 (8)0.6060 (8)0.3826 (5)0.089 (2)
H11.28830.51480.41510.107*
C21.3917 (9)0.6811 (8)0.4088 (5)0.096 (2)
H21.45080.64220.45780.116*
C31.3997 (8)0.8144 (8)0.3608 (5)0.088 (2)
H31.46540.86770.37650.106*
C41.3109 (7)0.8693 (6)0.2897 (5)0.0750 (17)
H41.31550.96010.25650.090*
C51.2135 (6)0.7880 (6)0.2674 (4)0.0574 (13)
C61.1124 (7)0.8394 (7)0.1905 (4)0.0631 (14)
C71.1270 (9)0.9785 (7)0.1307 (5)0.095 (2)
H7A1.23720.95480.09560.142*
H7B1.10541.06460.16960.142*
H7C1.04771.00500.08880.142*
C80.9234 (8)0.7889 (8)0.1062 (4)0.087 (2)
H80.89130.89960.08800.104*
C91.0322 (10)0.6917 (9)0.0230 (5)0.106 (2)
H9A1.13120.71980.00420.159*
H9B0.97120.71140.02810.159*
H9C1.06190.58330.04090.159*
C100.7743 (8)0.7434 (8)0.1372 (5)0.098 (2)
H10A0.72500.73790.08370.118*
H10B0.69350.82130.17790.118*
C110.7315 (7)0.4988 (6)0.1900 (4)0.0617 (14)
C120.5892 (7)0.5241 (7)0.1393 (5)0.0843 (19)
H12A0.58090.61230.09700.126*
H12B0.48800.54280.18330.126*
H12C0.60720.43350.10500.126*
C130.7763 (6)0.3606 (6)0.2541 (4)0.0613 (14)
C140.6956 (7)0.2485 (8)0.2671 (5)0.0826 (18)
H140.61050.25730.23400.099*
C150.7432 (8)0.1242 (8)0.3297 (5)0.094 (2)
H150.68990.04950.33890.112*
C160.8672 (9)0.1124 (8)0.3771 (5)0.094 (2)
H160.90060.03030.41950.112*
C170.9429 (8)0.2251 (7)0.3610 (4)0.0808 (18)
H171.02830.21650.39370.097*
C180.7938 (7)0.7096 (6)0.4577 (4)0.0589 (14)
C191.3320 (7)0.2828 (7)0.1471 (4)0.0631 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0670 (6)0.0649 (6)0.0607 (5)0.0367 (5)0.0173 (4)0.0090 (4)
N10.082 (3)0.060 (3)0.064 (3)0.036 (2)0.024 (2)0.011 (2)
N20.078 (3)0.075 (3)0.066 (3)0.041 (3)0.030 (2)0.012 (2)
N30.075 (3)0.072 (3)0.077 (3)0.039 (3)0.026 (3)0.017 (3)
N40.063 (3)0.077 (3)0.071 (3)0.036 (2)0.018 (2)0.009 (3)
N50.089 (4)0.110 (5)0.082 (4)0.051 (4)0.001 (3)0.006 (3)
N60.079 (4)0.077 (4)0.086 (4)0.040 (3)0.016 (3)0.003 (3)
S10.0955 (14)0.1071 (16)0.1234 (16)0.0214 (12)0.0135 (12)0.0410 (13)
S20.0850 (12)0.0822 (12)0.0928 (12)0.0285 (10)0.0153 (9)0.0139 (9)
C10.116 (5)0.088 (5)0.091 (5)0.060 (4)0.049 (4)0.026 (4)
C20.114 (5)0.099 (5)0.102 (5)0.051 (5)0.063 (4)0.019 (4)
C30.096 (5)0.078 (5)0.115 (5)0.047 (4)0.047 (4)0.001 (4)
C40.080 (4)0.052 (3)0.103 (5)0.029 (3)0.030 (4)0.003 (3)
C50.055 (3)0.060 (3)0.062 (3)0.025 (3)0.010 (3)0.006 (3)
C60.065 (3)0.067 (4)0.064 (3)0.030 (3)0.015 (3)0.008 (3)
C70.121 (6)0.080 (5)0.103 (5)0.061 (4)0.037 (4)0.039 (4)
C80.113 (5)0.080 (5)0.085 (4)0.049 (4)0.042 (4)0.027 (4)
C90.143 (7)0.102 (6)0.083 (5)0.051 (5)0.026 (5)0.003 (4)
C100.108 (5)0.110 (6)0.110 (5)0.070 (5)0.060 (4)0.042 (4)
C110.057 (3)0.059 (3)0.075 (4)0.026 (3)0.011 (3)0.005 (3)
C120.065 (4)0.088 (5)0.112 (5)0.032 (3)0.037 (4)0.006 (4)
C130.056 (3)0.064 (4)0.069 (3)0.032 (3)0.002 (3)0.004 (3)
C140.067 (4)0.086 (5)0.113 (5)0.046 (4)0.021 (4)0.000 (4)
C150.094 (5)0.090 (5)0.113 (6)0.059 (4)0.015 (4)0.022 (4)
C160.099 (5)0.089 (5)0.106 (5)0.054 (4)0.022 (4)0.034 (4)
C170.087 (4)0.086 (5)0.088 (4)0.047 (4)0.034 (4)0.022 (4)
C180.057 (4)0.052 (4)0.075 (4)0.026 (3)0.022 (3)0.013 (3)
C190.063 (4)0.061 (4)0.075 (4)0.030 (3)0.024 (3)0.013 (3)
Geometric parameters (Å, º) top
Mn1—N52.127 (6)C5—C61.495 (7)
Mn1—N62.149 (6)C6—C71.501 (8)
Mn1—N22.258 (5)C7—H7A0.9600
Mn1—N32.260 (4)C7—H7B0.9600
Mn1—N42.334 (4)C7—H7C0.9600
Mn1—N12.346 (4)C8—C101.465 (8)
N1—C11.331 (7)C8—C91.540 (9)
N1—C51.336 (6)C8—H80.9800
N2—C61.274 (6)C9—H9A0.9600
N2—C81.470 (7)C9—H9B0.9600
N3—C111.281 (6)C9—H9C0.9600
N3—C101.476 (7)C10—H10A0.9700
N4—C171.345 (7)C10—H10B0.9700
N4—C131.348 (6)C11—C131.486 (8)
N5—C181.097 (7)C11—C121.493 (7)
N6—C191.164 (7)C12—H12A0.9600
S1—C181.608 (7)C12—H12B0.9600
S2—C191.600 (7)C12—H12C0.9600
C1—C21.376 (8)C13—C141.402 (7)
C1—H10.9300C14—C151.389 (8)
C2—C31.364 (9)C14—H140.9300
C2—H20.9300C15—C161.351 (8)
C3—C41.364 (8)C15—H150.9300
C3—H30.9300C16—C171.376 (8)
C4—C51.389 (7)C16—H160.9300
C4—H40.9300C17—H170.9300
N5—Mn1—N6152.6 (2)H7A—C7—H7B109.5
N5—Mn1—N2102.5 (2)C6—C7—H7C109.5
N6—Mn1—N299.53 (18)H7A—C7—H7C109.5
N5—Mn1—N398.1 (2)H7B—C7—H7C109.5
N6—Mn1—N3103.71 (18)C10—C8—N2109.6 (5)
N2—Mn1—N373.15 (16)C10—C8—C9109.9 (6)
N5—Mn1—N486.78 (19)N2—C8—C9107.8 (5)
N6—Mn1—N485.41 (17)C10—C8—H8109.8
N2—Mn1—N4142.80 (16)N2—C8—H8109.8
N3—Mn1—N469.88 (16)C9—C8—H8109.8
N5—Mn1—N182.92 (18)C8—C9—H9A109.5
N6—Mn1—N189.82 (17)C8—C9—H9B109.5
N2—Mn1—N169.50 (15)H9A—C9—H9B109.5
N3—Mn1—N1141.88 (17)C8—C9—H9C109.5
N4—Mn1—N1147.69 (16)H9A—C9—H9C109.5
C1—N1—C5117.9 (5)H9B—C9—H9C109.5
C1—N1—Mn1125.2 (4)C8—C10—N3110.8 (5)
C5—N1—Mn1116.7 (3)C8—C10—H10A109.5
C6—N2—C8121.8 (5)N3—C10—H10A109.5
C6—N2—Mn1122.4 (4)C8—C10—H10B109.5
C8—N2—Mn1115.5 (3)N3—C10—H10B109.5
C11—N3—C10122.6 (5)H10A—C10—H10B108.1
C11—N3—Mn1122.1 (4)N3—C11—C13115.4 (5)
C10—N3—Mn1114.9 (3)N3—C11—C12125.6 (5)
C17—N4—C13117.9 (5)C13—C11—C12118.9 (5)
C17—N4—Mn1125.7 (4)C11—C12—H12A109.5
C13—N4—Mn1116.3 (3)C11—C12—H12B109.5
C18—N5—Mn1169.2 (6)H12A—C12—H12B109.5
C19—N6—Mn1174.9 (5)C11—C12—H12C109.5
N1—C1—C2123.6 (6)H12A—C12—H12C109.5
N1—C1—H1118.2H12B—C12—H12C109.5
C2—C1—H1118.2N4—C13—C14120.4 (5)
C3—C2—C1118.0 (6)N4—C13—C11116.3 (5)
C3—C2—H2121.0C14—C13—C11123.3 (5)
C1—C2—H2121.0C15—C14—C13119.7 (6)
C2—C3—C4119.7 (6)C15—C14—H14120.2
C2—C3—H3120.1C13—C14—H14120.2
C4—C3—H3120.1C16—C15—C14119.6 (6)
C3—C4—C5119.2 (6)C16—C15—H15120.2
C3—C4—H4120.4C14—C15—H15120.2
C5—C4—H4120.4C15—C16—C17118.2 (6)
N1—C5—C4121.6 (5)C15—C16—H16120.9
N1—C5—C6115.6 (4)C17—C16—H16120.9
C4—C5—C6122.8 (5)N4—C17—C16124.2 (6)
N2—C6—C5115.6 (5)N4—C17—H17117.9
N2—C6—C7126.2 (5)C16—C17—H17117.9
C5—C6—C7118.2 (5)N5—C18—S1178.7 (6)
C6—C7—H7A109.5N6—C19—S2179.4 (6)
C6—C7—H7B109.5

Experimental details

Crystal data
Chemical formula[Mn(NCS)2(C17H20N4)]
Mr451.47
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.647 (3), 9.135 (2), 14.608 (3)
α, β, γ (°)84.701 (3), 79.407 (3), 70.509 (3)
V3)1068.6 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.33 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.771, 0.789
No. of measured, independent and
observed [I > 2σ(I)] reflections
11100, 4608, 2211
Rint0.078
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.224, 0.99
No. of reflections4608
No. of parameters256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.34

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn1—N52.127 (6)Mn1—N32.260 (4)
Mn1—N62.149 (6)Mn1—N42.334 (4)
Mn1—N22.258 (5)Mn1—N12.346 (4)
 

Acknowledgements

This work was supported by Dezhou University, People's Republic of China.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeoghoria, S., Bera, S. K., Moulton, B., Zaworotko, M. J., Tuchagues, J.-P., Mostafa, G., Lu, T.-H. & Chandra, S. K. (2005). Polyhedron, 24, 343–350.  Web of Science CSD CrossRef CAS Google Scholar
First citationGourbatsis, S., Perlepes, S. P., Hadjiliadis, N. & Kalkanis, G. (1990). Transition Met. Chem. 15, 300–308.  CrossRef CAS Web of Science Google Scholar
First citationKarmakar, T. K., Ghosh, B. K., Usman, A., Fun, H.-K., Riviere, E., Mallah, T., Aromi, G. & Chandra, S. K. (2005). Inorg. Chem. 44, 2391–2399.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLouloudi, M., Nastopoulos, V., Gourbatsis, S., Perlepes, S. P. & Hadjiliadis, N. (1999). Inorg. Chem. Commun. 2, 479–483.  Web of Science CSD CrossRef CAS Google Scholar
First citationOuyang, X.-M., Fei, B.-L., Okamura, T., Sun, W.-Y., Tang, W.-X. & Ueyama, N. (2002). Chem. Lett. pp. 362–363.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSra, A. K., Sutter, J.-P., Guionneau, P., Chasseau, D., Yakhmi, J. V. & Kahn, O. (2000). Inorg. Chim. Acta, 300, 778–782.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds