organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(3-Nitro­benzyl­­idene)-4-(8-quinol­yl­oxy)butano­hydrazide

aDepartment of Pharmacy, Shaoyang Medical College, Shaoyang, Hunan 422000, People's Republic of China
*Correspondence e-mail: syyzzl@yahoo.cn

(Received 6 June 2010; accepted 10 June 2010; online 16 June 2010)

In the title Schiff base compound, C20H18N4O4, the conformation along the bond sequence linking the benzene and quinoline rings is trans–(+)gauche–trans–trans–(+)gauche–trans–trans. The dihedral angle between the aromatic ring systems is 80.3 (6)°. In the crystal, a pair of inter­molecular N—H⋯N hydrogen bonds link the mol­ecules into centrosymmetric R22(20) dimers, which are aggregated via ππ inter­actions into sheets [quinoline–benzene ring centroid–centroid separation = 3.572 (2)–3.773 (3) Å].

Related literature

For a closely related isomeric structure and background references, see: XiaHou et al. (2010[XiaHou, G.-L., Ding, Y.-C. & Fan, X.-N. (2010). Acta Cryst. E66, o1522.]). For further synthetic details, see: Zheng et al. (2006[Zheng, P.-W., Qiu, Q.-M., Lin, Y.-Y. & Liu, K.-F. (2006). Acta Cryst. E62, o1913-o1914.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. J. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N4O4

  • Mr = 378.38

  • Triclinic, [P \overline 1]

  • a = 8.3664 (12) Å

  • b = 10.4882 (15) Å

  • c = 11.5855 (16) Å

  • α = 100.595 (3)°

  • β = 91.968 (3)°

  • γ = 101.898 (4)°

  • V = 975.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.19 × 0.17 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.983, Tmax = 0.986

  • 5434 measured reflections

  • 3409 independent reflections

  • 1926 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.268

  • S = 1.08

  • 3409 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.86 2.19 3.022 (4) 162
Symmetry code: (i) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In this article, we present the synthesis and crystal structure of a new Schiff base, (I), which contains oxygen and nitrogen donors and flexible aliphatic spacers. A closely related structure with the nitro group at the 4-position was reported recently (XiaHou et al., 2010). X-ray diffraction analysis reveals that (I) contains a trans-(+)gauche-trans-trans-(+)gauche-trans-trans conformation along the quinoline ring–benzene ring bond sequence [torsion angles (°): C8–O1–C10–C11, 178.5 (3); O1–C10–C11–C12, 70.1 (4); C10–C11–C12–C13, -173.2 (3); C11–C12–C13–N2, -174.8 (3); C12–C13–N2–N3, 0.8 (5); C13–N2–N3–C14, -176.8 (3); N2–N3–C14–C15, -180.0 (3)] (Fig.1). The bond lengths and angles in (I) are in good agreement with the expected values (Allen et al., 1987). The C14—N3 and C13—O2 bond length of 1.276 (5) and 1.214 (4) Å, respectively, indicate the presence of a typical CN and CO. The CN–N angle of 116.6 (3) ° is significantly smaller than the ideal value of 120 ° expected for sp2-hybridized N atoms. This is probably a consequence of repulsion between the nitrogen lone pairs and the adjacent N atom (Zheng et al., 2006). In the crystal structure, a pair of intermolecular N—H···N hydrogen bonds link the molecules into centrosymmetric cyclic R22(20) (Bernstein et al., 1995) dimers(Fig.2) which are aggregated via ππ interactions into parallel sheets [quinoline–benzene ring centroid separation = 3.572 (2)–3.773 (3) Å], giving a supramolecular two dimensional network(Fig. 3).

Related literature top

For a closely related isomeric structure and background references, see: XiaHou et al. (2010). For further synthetic details, see: Zheng et al. (2006). For reference bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized according to the method of Zheng et al. (2006): 4-(quinolin-8-yloxy)butanehydrazide (0.01 mol), 3-nitrobenzaldehyde (0.01 mol), ethanol (40 ml) and some drops of acetic acid were added to a 100 ml flask and refluxed for 6 h. After cooling to room temperature, the solid product was separated by filtration. Yellow blocks of (I) were obtained by slow evaporation of a tetrahydrofuran solution of the title compound over a period of six days.

Refinement top

All H atoms were placed in idealized positions (C—H = 0.93–0.97 Å, N—H = 0.86 Å and refined as riding atoms with Uiso(H) = 1.2Ueq(C or N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. The cyclic hydrogen-bonded dimer in (I) with hydrogen bonds shown as dashed lines. H atoms, except for those involved in hydrogen bonds, are not included.
[Figure 3] Fig. 3. Part of the crystal structure of (I) showing hydrogen bonds as dashed lines. H atoms, except for those involved in hydrogen bonds, are not included.
(E)-N'-(3-Nitrobenzylidene)-4-(8-quinolyloxy)butanohydrazide top
Crystal data top
C20H18N4O4Z = 2
Mr = 378.38F(000) = 396
Triclinic, P1Dx = 1.289 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3664 (12) ÅCell parameters from 1258 reflections
b = 10.4882 (15) Åθ = 2.4–24.1°
c = 11.5855 (16) ŵ = 0.09 mm1
α = 100.595 (3)°T = 296 K
β = 91.968 (3)°Block, yellow
γ = 101.898 (4)°0.19 × 0.17 × 0.15 mm
V = 975.0 (2) Å3
Data collection top
Bruker SMART CCD
diffractometer
3409 independent reflections
Radiation source: fine-focus sealed tube1926 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.983, Tmax = 0.986k = 1211
5434 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.268H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1425P)2 + 0.1889P]
where P = (Fo2 + 2Fc2)/3
3409 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C20H18N4O4γ = 101.898 (4)°
Mr = 378.38V = 975.0 (2) Å3
Triclinic, P1Z = 2
a = 8.3664 (12) ÅMo Kα radiation
b = 10.4882 (15) ŵ = 0.09 mm1
c = 11.5855 (16) ÅT = 296 K
α = 100.595 (3)°0.19 × 0.17 × 0.15 mm
β = 91.968 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3409 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1926 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.986Rint = 0.023
5434 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.268H-atom parameters constrained
S = 1.08Δρmax = 0.45 e Å3
3409 reflectionsΔρmin = 0.26 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2886 (3)0.1013 (3)0.68540 (19)0.0613 (8)
O20.2305 (4)0.0360 (3)1.0959 (2)0.0740 (9)
O30.8883 (6)0.6809 (5)0.8111 (4)0.1341 (17)
O40.6888 (6)0.5092 (4)0.7739 (3)0.1053 (12)
N10.5334 (4)0.2125 (3)0.6100 (2)0.0625 (9)
N20.4230 (4)0.1503 (3)1.1241 (3)0.0642 (9)
H2A0.43670.14911.19780.077*
N30.5149 (4)0.2515 (3)1.0792 (3)0.0566 (8)
C10.6550 (6)0.2666 (5)0.5723 (4)0.0872 (15)
H10.72150.28940.62770.105*
C20.6912 (7)0.2923 (6)0.4538 (4)0.0991 (17)
H20.77910.33060.43160.119*
C30.5935 (6)0.2595 (5)0.3724 (4)0.0786 (13)
H30.61410.27650.29330.094*
C40.4625 (5)0.2005 (4)0.4064 (3)0.0592 (10)
C50.3618 (6)0.1590 (4)0.3276 (3)0.0685 (12)
H50.37900.17230.24780.082*
C60.2416 (6)0.1004 (4)0.3671 (3)0.0711 (12)
H60.17780.07090.31470.085*
C70.2099 (5)0.0826 (4)0.4869 (3)0.0670 (11)
H70.12210.04560.51190.080*
C80.3055 (5)0.1187 (4)0.5660 (3)0.0558 (10)
C90.4356 (5)0.1781 (4)0.5281 (3)0.0524 (9)
C100.1507 (5)0.0514 (5)0.7282 (3)0.0621 (10)
H10A0.04960.10980.69100.074*
H10B0.15520.03630.71120.074*
C110.1582 (5)0.0454 (4)0.8588 (3)0.0617 (11)
H11A0.05530.02950.88780.074*
H11B0.17030.13090.87400.074*
C120.2951 (5)0.0599 (4)0.9259 (3)0.0560 (10)
H12A0.27620.14650.91910.067*
H12B0.39710.05060.89130.067*
C130.3110 (5)0.0523 (4)1.0542 (3)0.0507 (9)
C140.6227 (5)0.3359 (4)1.1503 (3)0.0624 (10)
H140.63510.32631.22820.075*
C150.7263 (5)0.4469 (4)1.1114 (3)0.0629 (11)
C160.7079 (5)0.4681 (4)0.9964 (3)0.0597 (10)
H160.62690.41170.94280.072*
C170.8108 (5)0.5730 (4)0.9636 (4)0.0637 (11)
C180.9289 (6)0.6604 (4)1.0400 (5)0.0755 (13)
H180.99500.73211.01600.091*
C190.9478 (6)0.6398 (5)1.1533 (5)0.0840 (14)
H191.02920.69641.20640.101*
C200.8451 (6)0.5343 (5)1.1875 (4)0.0761 (13)
H200.85710.52241.26460.091*
N40.7921 (6)0.5887 (4)0.8403 (4)0.0813 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0655 (17)0.0903 (19)0.0358 (12)0.0323 (15)0.0088 (11)0.0135 (12)
O20.077 (2)0.095 (2)0.0570 (16)0.0159 (17)0.0094 (14)0.0357 (16)
O30.118 (3)0.132 (3)0.157 (4)0.016 (3)0.020 (3)0.094 (3)
O40.135 (3)0.091 (2)0.082 (2)0.001 (2)0.010 (2)0.030 (2)
N10.069 (2)0.087 (2)0.0414 (16)0.0367 (19)0.0070 (15)0.0150 (16)
N20.076 (2)0.081 (2)0.0409 (16)0.020 (2)0.0077 (16)0.0199 (16)
N30.062 (2)0.068 (2)0.0473 (17)0.0246 (17)0.0096 (15)0.0160 (16)
C10.105 (4)0.119 (4)0.056 (2)0.064 (3)0.011 (2)0.020 (2)
C20.114 (4)0.135 (5)0.065 (3)0.070 (4)0.018 (3)0.010 (3)
C30.082 (3)0.106 (3)0.047 (2)0.031 (3)0.011 (2)0.001 (2)
C40.064 (3)0.071 (3)0.0405 (19)0.011 (2)0.0023 (17)0.0085 (17)
C50.087 (3)0.078 (3)0.0318 (18)0.002 (2)0.0028 (19)0.0081 (18)
C60.081 (3)0.086 (3)0.044 (2)0.013 (3)0.013 (2)0.013 (2)
C70.065 (3)0.092 (3)0.047 (2)0.029 (2)0.0074 (18)0.009 (2)
C80.067 (3)0.067 (2)0.0328 (17)0.017 (2)0.0001 (16)0.0066 (16)
C90.057 (2)0.065 (2)0.0346 (17)0.0117 (19)0.0013 (15)0.0093 (16)
C100.046 (2)0.085 (3)0.055 (2)0.013 (2)0.0090 (17)0.013 (2)
C110.049 (2)0.090 (3)0.050 (2)0.020 (2)0.0113 (17)0.014 (2)
C120.067 (3)0.072 (2)0.0379 (18)0.032 (2)0.0137 (17)0.0140 (17)
C130.046 (2)0.067 (2)0.047 (2)0.0224 (19)0.0096 (17)0.0211 (19)
C140.064 (3)0.079 (3)0.049 (2)0.024 (2)0.0043 (19)0.012 (2)
C150.060 (3)0.073 (3)0.059 (2)0.030 (2)0.0037 (19)0.002 (2)
C160.064 (3)0.056 (2)0.061 (2)0.024 (2)0.0003 (19)0.0053 (18)
C170.064 (3)0.057 (2)0.078 (3)0.030 (2)0.006 (2)0.014 (2)
C180.066 (3)0.054 (3)0.104 (4)0.018 (2)0.011 (3)0.000 (2)
C190.066 (3)0.082 (3)0.088 (4)0.016 (3)0.005 (2)0.021 (3)
C200.072 (3)0.083 (3)0.065 (3)0.019 (3)0.005 (2)0.007 (2)
N40.087 (3)0.070 (3)0.097 (3)0.022 (2)0.005 (2)0.035 (2)
Geometric parameters (Å, º) top
O1—C81.378 (4)C7—H70.9300
O1—C101.429 (4)C8—C91.406 (5)
O2—C131.214 (4)C10—C111.501 (5)
O3—N41.231 (5)C10—H10A0.9700
O4—N41.207 (5)C10—H10B0.9700
N1—C11.313 (5)C11—C121.495 (5)
N1—C91.377 (4)C11—H11A0.9700
N2—C131.355 (5)C11—H11B0.9700
N2—N31.372 (4)C12—C131.505 (5)
N2—H2A0.8600C12—H12A0.9700
N3—C141.276 (5)C12—H12B0.9700
C1—C21.406 (6)C14—C151.454 (6)
C1—H10.9300C14—H140.9300
C2—C31.363 (6)C15—C201.368 (6)
C2—H20.9300C15—C161.399 (5)
C3—C41.399 (6)C16—C171.372 (5)
C3—H30.9300C16—H160.9300
C4—C51.407 (5)C17—C181.367 (6)
C4—C91.419 (5)C17—N41.474 (6)
C5—C61.334 (6)C18—C191.379 (7)
C5—H50.9300C18—H180.9300
C6—C71.408 (5)C19—C201.382 (6)
C6—H60.9300C19—H190.9300
C7—C81.350 (5)C20—H200.9300
C8—O1—C10117.5 (3)C12—C11—C10114.0 (3)
C1—N1—C9117.9 (3)C12—C11—H11A108.8
C13—N2—N3120.9 (3)C10—C11—H11A108.8
C13—N2—H2A119.5C12—C11—H11B108.8
N3—N2—H2A119.5C10—C11—H11B108.8
C14—N3—N2116.6 (3)H11A—C11—H11B107.7
N1—C1—C2124.3 (4)C11—C12—C13112.4 (3)
N1—C1—H1117.9C11—C12—H12A109.1
C2—C1—H1117.9C13—C12—H12A109.1
C3—C2—C1118.0 (4)C11—C12—H12B109.1
C3—C2—H2121.0C13—C12—H12B109.1
C1—C2—H2121.0H12A—C12—H12B107.9
C2—C3—C4120.8 (4)O2—C13—N2119.8 (3)
C2—C3—H3119.6O2—C13—C12123.5 (4)
C4—C3—H3119.6N2—C13—C12116.6 (3)
C3—C4—C5123.5 (3)N3—C14—C15120.9 (4)
C3—C4—C9117.2 (3)N3—C14—H14119.6
C5—C4—C9119.2 (4)C15—C14—H14119.6
C6—C5—C4120.1 (3)C20—C15—C16118.1 (4)
C6—C5—H5119.9C20—C15—C14120.4 (4)
C4—C5—H5119.9C16—C15—C14121.5 (4)
C5—C6—C7121.0 (4)C17—C16—C15119.2 (4)
C5—C6—H6119.5C17—C16—H16120.4
C7—C6—H6119.5C15—C16—H16120.4
C8—C7—C6120.8 (4)C18—C17—C16122.5 (4)
C8—C7—H7119.6C18—C17—N4119.9 (4)
C6—C7—H7119.6C16—C17—N4117.6 (4)
C7—C8—O1125.3 (3)C17—C18—C19118.5 (5)
C7—C8—C9119.8 (3)C17—C18—H18120.7
O1—C8—C9114.9 (3)C19—C18—H18120.7
N1—C9—C8119.1 (3)C18—C19—C20119.6 (4)
N1—C9—C4121.9 (3)C18—C19—H19120.2
C8—C9—C4119.0 (3)C20—C19—H19120.2
O1—C10—C11107.0 (3)C15—C20—C19122.1 (4)
O1—C10—H10A110.3C15—C20—H20118.9
C11—C10—H10A110.3C19—C20—H20118.9
O1—C10—H10B110.3O4—N4—O3124.2 (4)
C11—C10—H10B110.3O4—N4—C17118.8 (4)
H10A—C10—H10B108.6O3—N4—C17116.9 (5)
C13—N2—N3—C14176.8 (3)C8—O1—C10—C11178.5 (3)
C9—N1—C1—C20.4 (8)O1—C10—C11—C1270.1 (4)
N1—C1—C2—C30.3 (9)C10—C11—C12—C13173.2 (3)
C1—C2—C3—C40.8 (8)N3—N2—C13—O2179.7 (3)
C2—C3—C4—C5177.1 (5)N3—N2—C13—C120.8 (5)
C2—C3—C4—C90.7 (7)C11—C12—C13—O25.7 (5)
C3—C4—C5—C6178.3 (4)C11—C12—C13—N2174.8 (3)
C9—C4—C5—C60.7 (6)N2—N3—C14—C15180.0 (3)
C4—C5—C6—C71.9 (7)N3—C14—C15—C20177.9 (3)
C5—C6—C7—C83.2 (7)N3—C14—C15—C162.4 (5)
C6—C7—C8—O1177.6 (4)C20—C15—C16—C171.4 (5)
C6—C7—C8—C91.8 (6)C14—C15—C16—C17178.9 (3)
C10—O1—C8—C75.6 (6)C15—C16—C17—C181.7 (5)
C10—O1—C8—C9175.0 (3)C15—C16—C17—N4177.5 (3)
C1—N1—C9—C8179.3 (4)C16—C17—C18—C191.8 (6)
C1—N1—C9—C40.5 (6)N4—C17—C18—C19177.3 (4)
C7—C8—C9—N1179.0 (4)C17—C18—C19—C201.7 (6)
O1—C8—C9—N10.3 (5)C16—C15—C20—C191.3 (6)
C7—C8—C9—C40.8 (6)C14—C15—C20—C19178.9 (4)
O1—C8—C9—C4179.8 (3)C18—C19—C20—C151.5 (6)
C3—C4—C9—N10.0 (6)C18—C17—N4—O4178.7 (4)
C5—C4—C9—N1177.8 (4)C16—C17—N4—O40.4 (6)
C3—C4—C9—C8179.8 (4)C18—C17—N4—O31.3 (6)
C5—C4—C9—C82.0 (6)C16—C17—N4—O3177.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.862.193.022 (4)162
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC20H18N4O4
Mr378.38
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.3664 (12), 10.4882 (15), 11.5855 (16)
α, β, γ (°)100.595 (3), 91.968 (3), 101.898 (4)
V3)975.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.19 × 0.17 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.983, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
5434, 3409, 1926
Rint0.023
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.268, 1.08
No. of reflections3409
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.26

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.862.193.022 (4)162
Symmetry code: (i) x+1, y, z+2.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Foundation of Shaoyang Medical College.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. J. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiaHou, G.-L., Ding, Y.-C. & Fan, X.-N. (2010). Acta Cryst. E66, o1522.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, P.-W., Qiu, Q.-M., Lin, Y.-Y. & Liu, K.-F. (2006). Acta Cryst. E62, o1913–o1914.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds