metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Meth­­oxy­benz­yl)(2-meth­­oxy­benzyl­­idene)aza­nium (2-meth­­oxy­phen­yl)methanaminium tetra­chloridozincate(II) monohydrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia, bUniverstié Lyon1, Centre de Diffractométrie Henri Longchambon, 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France, cYoungstown State University, Department of Chemistry, One University Plaza, Youngstown, Ohio 44555-3663, USA, and dLaboratoire de Chimie Organometallique de Surface (LCOMS), Ecole Superieure de Chimie Physique Electronique, 69622 Villeurbanne Cedex, France
*Correspondence e-mail: cherif_bennasr@yahoo.fr

(Received 6 June 2010; accepted 7 June 2010; online 16 June 2010)

The title compound, (C8H12NO)(C16H18NO2)[ZnCl4]·H2O, was obtained as a by-product of the Zn2+ and HCl catalyzed condensation of (2-meth­oxy­phen­yl)methanamine in water. Both cations feature an intra­molecular N—H⋯O hydrogen bond. In the crystal, the components are linked by an extensive three-dimensional network of N—H⋯O, O—H⋯Cl and N—H⋯Cl hydrogen bonds (three of them bifurcated). Weak C—H⋯O intera­ctions also occur.

Related literature

For related meta-chlorido complexes, see: Ben Gharbia et al. (2005[Ben Gharbia, I., Kefi, R., Rayes, A. & Ben Nasr, C. (2005). Z. Kristallogr. New Cryst. Struct. 220, 333-334.], 2008[Ben Gharbia, I., Kefi, R., El Glaoui, M., Jeanneau, E. & Ben Nasr, C. (2008). Acta Cryst. E64, m880.]). For Zn—Cl distances and Cl—Zn—Cl bond angles, see: Gayathri et al. (2008[Gayathri, D., Velmurugan, D., Hemalatha, P., Veeravazhuthi, V. & Ravikumar, K. (2008). Acta Cryst. E64, m848-m849.]); Hosseinian & Mahjoub (2009[Hosseinian, A. & Mahjoub, A. R. (2009). Acta Cryst. E65, m1456.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H12NO)(C16H18NO2)[ZnCl4]·H2O

  • Mr = 619.69

  • Triclinic, [P \overline 1]

  • a = 8.0884 (9) Å

  • b = 12.424 (2) Å

  • c = 14.678 (2) Å

  • α = 98.23 (1)°

  • β = 97.43 (1)°

  • γ = 90.29 (1)°

  • V = 1447.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.25 mm−1

  • T = 293 K

  • 0.54 × 0.47 × 0.25 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, USA.]; Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) Tmin = 0.576, Tmax = 0.749

  • 12584 measured reflections

  • 6583 independent reflections

  • 4644 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.087

  • S = 0.98

  • 6583 reflections

  • 329 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.89 (1) 2.07 (2) 2.680 (2) 125 (2)
N1—H1⋯Cl2i 0.89 (1) 2.64 (2) 3.3221 (18) 135 (2)
N2—H2A⋯O4 0.89 2.30 3.102 (3) 151
N2—H2A⋯O3 0.89 2.37 2.877 (2) 116
N2—H2B⋯O4ii 0.89 2.04 2.881 (3) 158
N2—H2B⋯Cl3iii 0.89 2.98 3.502 (2) 120
N2—H2C⋯Cl1iv 0.89 2.45 3.306 (2) 162
O4—H4B⋯Cl4iii 0.80 (2) 2.44 (2) 3.2323 (19) 168 (3)
O4—H4A⋯Cl1v 0.80 (2) 2.72 (2) 3.4165 (19) 147 (3)
C8—H8A⋯Cl3 0.97 2.67 3.474 (2) 140
C11—H11⋯Cl2 0.93 2.82 3.687 (2) 155
C24—H24A⋯Cl4vi 0.97 2.76 3.707 (3) 166
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z; (iii) x, y, z-1; (iv) -x+1, -y+1, -z+1; (v) -x, -y+1, -z+1; (vi) x+1, y, z-1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a part of our ongoing investigations in molecular salts containing meta-chlorido complexes (Ben Gharbia et al., 2005; Ben Gharbia et al., 2008), we report here the crystal structure of one such compound, (C16H18NO2)(C8H12NO)[ZnCl4].H2O. The title compound was obtained as a byproduct of the Zn2+ and HCl catalyzed condensation of (2-methoxyphenyl) methanamine in water. Subsequent crystallization from the reaction mixture yielded among the main reaction products crystals of the title compound that consist of one N-(2-methoxybenzylidene)-1-(2-methoxyphenyl)methanaminnium cation, one (2-methoxyphenyl) methanaminium cation, one ZnCl42- anion and one interstitial water molecule (Fig. 1).

The distance N1—C9 [1.273 (2) Å] is substantially shorter than the one of N1—C8 [1.477 (2) Å], indicating the presence of a double bond in the condensation product, thus indicating the nature of the organic molecules in the crystal as indictated in Scheme 1. Preliminary NMR data on the material indicate that the bulk of the reaction product is not identical with the title compound. Further investigations into the nature of the bulk material are under way.

The Cl—Zn—Cl bond angles in the title compound show relatively little distortion from a regular tetrahedron [spread values 104.45 (3)–111.78 (2)] (Gayathri et al., 2008, Hosseinian et al., 2009). Classic N—H···O, O—H···Cl and N—H···Cl hydrogen bonds are observed, which link the two types of organic ammonium cations, the anionic complexes [ZnCl4]2- and the uncoordinated water molecules into a 3-D hydrogen bonded network, as shown in Fig. 2. Three of the hydrogen bonds are bifurcated: N1—H1··· (Cl2,O2), N2—H2A···(O3,O4) and N2—H2B···(O4,Cl3).

Related literature top

For related meta-chlorido complexes, see: Ben Gharbia et al. (2005, 2008). For Zn—Cl distances and Cl—Zn—Cl bond angles, see: Gayathri et al. (2008); Hosseinian et al. (2009).

Experimental top

An aqueous solution of (2-methoxyphenyl) methanamine (2-methoxybenzylamine), zinc chloride and 1 M hydrochloric acid in a Petri disk was slowly evaporated at room temperature. A colourless block of (I), which remained stable under normal conditions of temperature and humidity, was isolated as a byproduct of the reaction.

Refinement top

C—H and ammonium H atoms were placed in calculated positions with C—H in the range 0.93–0.97 and N—H equal to 0.89 Å. The imminium and the water hydrogen atom postitions were refined with N—H and O—H distance restraints of 0.89 (2) and 0.82 (2) Å. The Uiso(H) values of all H atoms were constrained to 1.2 or 1.5 times Ueq of the respective parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing 50% probability displacement ellipsoids (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. Projection of the structure along the a axis. Hydrogen bonds are denoted by dotted lines.
(2-Methoxybenzyl)(2-methoxybenzylidene)azanium (2-methoxyphenyl)methanaminium tetrachloridozincate(II) monohydrate top
Crystal data top
(C8H12NO)(C16H18NO2)[ZnCl4]·H2OZ = 2
Mr = 619.69F(000) = 640
Triclinic, P1Dx = 1.422 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.0884 (9) ÅCell parameters from 5313 reflections
b = 12.424 (2) Åθ = 3.0–29.2°
c = 14.678 (2) ŵ = 1.25 mm1
α = 98.23 (1)°T = 293 K
β = 97.43 (1)°Block, colourless
γ = 90.29 (1)°0.54 × 0.47 × 0.25 mm
V = 1447.1 (3) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
6583 independent reflections
Radiation source: fine-focus sealed tube4644 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 29.5°, θmin = 3.0°
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009; Clark & Reid, 1995)
h = 1011
Tmin = 0.576, Tmax = 0.749k = 1516
12584 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0435P)2]
where P = (Fo2 + 2Fc2)/3
6583 reflections(Δ/σ)max = 0.001
329 parametersΔρmax = 0.72 e Å3
3 restraintsΔρmin = 0.64 e Å3
Crystal data top
(C8H12NO)(C16H18NO2)[ZnCl4]·H2Oγ = 90.29 (1)°
Mr = 619.69V = 1447.1 (3) Å3
Triclinic, P1Z = 2
a = 8.0884 (9) ÅMo Kα radiation
b = 12.424 (2) ŵ = 1.25 mm1
c = 14.678 (2) ÅT = 293 K
α = 98.23 (1)°0.54 × 0.47 × 0.25 mm
β = 97.43 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
6583 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009; Clark & Reid, 1995)
4644 reflections with I > 2σ(I)
Tmin = 0.576, Tmax = 0.749Rint = 0.028
12584 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0363 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.72 e Å3
6583 reflectionsΔρmin = 0.64 e Å3
329 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2523 (3)0.0313 (2)0.58855 (19)0.0669 (8)
H1A0.26000.00550.52720.100*
H1B0.15790.07780.58690.100*
H1C0.23920.02140.62920.100*
C20.5461 (3)0.04191 (18)0.63917 (14)0.0377 (5)
C30.5657 (3)0.06829 (19)0.61983 (16)0.0486 (6)
H30.47540.11300.59160.058*
C40.7185 (3)0.1128 (2)0.64206 (17)0.0559 (6)
H40.73130.18750.62850.067*
C50.8521 (3)0.0475 (2)0.68406 (17)0.0535 (6)
H50.95490.07790.69990.064*
C60.8333 (3)0.06297 (19)0.70261 (14)0.0421 (5)
H60.92470.10700.73030.051*
C70.6816 (2)0.11022 (17)0.68108 (13)0.0331 (4)
C80.6598 (3)0.23148 (16)0.70157 (13)0.0367 (5)
H8A0.56290.24610.73360.044*
H8B0.75680.26460.74180.044*
C90.5018 (2)0.31536 (16)0.57852 (13)0.0331 (4)
H90.41290.31620.61290.040*
C100.4693 (2)0.35513 (16)0.49025 (13)0.0326 (4)
C110.3132 (2)0.39947 (17)0.46852 (15)0.0390 (5)
H110.23800.40480.51170.047*
C120.2683 (3)0.43548 (18)0.38452 (16)0.0485 (6)
H120.16410.46490.37090.058*
C130.3800 (3)0.42721 (19)0.32143 (16)0.0536 (6)
H130.34980.45060.26430.064*
C140.5355 (3)0.3854 (2)0.34018 (15)0.0469 (6)
H140.60980.38140.29650.056*
C150.5808 (2)0.34898 (17)0.42502 (14)0.0360 (5)
C160.8537 (3)0.2994 (3)0.38782 (19)0.0764 (9)
H16A0.81190.25540.33010.115*
H16B0.95270.26780.41530.115*
H16C0.87970.37140.37660.115*
C170.2513 (3)0.1890 (3)0.1188 (2)0.0783 (9)
H17A0.21400.11490.09860.117*
H17B0.16470.23700.10030.117*
H17C0.27760.20100.18520.117*
C180.5273 (3)0.14345 (19)0.08828 (15)0.0467 (6)
C190.5371 (4)0.0578 (2)0.14046 (17)0.0616 (7)
H190.44960.04250.17220.074*
C200.6792 (4)0.0042 (2)0.14433 (19)0.0741 (8)
H200.68640.06210.17830.089*
C210.8083 (4)0.0192 (3)0.0987 (2)0.0772 (9)
H210.90380.02210.10230.093*
C220.7973 (3)0.1043 (2)0.04706 (19)0.0641 (7)
H220.88620.12000.01640.077*
C230.6558 (3)0.16659 (19)0.04026 (15)0.0435 (5)
C240.6378 (3)0.2543 (2)0.02067 (16)0.0512 (6)
H24A0.73400.25400.05390.061*
H24B0.53970.23790.06630.061*
Cl30.40847 (6)0.41374 (5)0.81903 (4)0.04914 (15)
Cl20.04753 (7)0.32552 (5)0.63718 (3)0.05224 (16)
Cl10.03902 (8)0.57253 (6)0.81699 (4)0.06066 (18)
Cl40.03288 (9)0.29378 (6)0.88415 (4)0.0746 (2)
N10.6383 (2)0.27933 (13)0.61445 (11)0.0334 (4)
H10.729 (2)0.2772 (17)0.5852 (13)0.040*
N20.6225 (2)0.36549 (15)0.03186 (13)0.0488 (5)
H2A0.52180.37170.05010.073*
H2B0.63650.41520.00470.073*
H2C0.70000.37560.08140.073*
O10.40047 (18)0.09490 (13)0.62188 (11)0.0508 (4)
O20.72997 (17)0.30455 (13)0.44960 (10)0.0458 (4)
O30.3943 (2)0.20972 (14)0.07819 (12)0.0616 (5)
O40.2655 (2)0.45092 (16)0.04551 (11)0.0573 (5)
H4B0.220 (3)0.412 (2)0.0009 (15)0.086*
H4A0.208 (3)0.473 (3)0.0836 (17)0.086*
Zn10.12911 (3)0.39816 (2)0.786811 (15)0.03902 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0402 (13)0.079 (2)0.0807 (19)0.0143 (13)0.0011 (13)0.0147 (16)
C20.0393 (12)0.0406 (14)0.0358 (11)0.0040 (10)0.0081 (9)0.0113 (10)
C30.0548 (14)0.0362 (14)0.0524 (14)0.0100 (11)0.0027 (11)0.0031 (12)
C40.0713 (18)0.0304 (14)0.0637 (16)0.0043 (12)0.0050 (13)0.0018 (12)
C50.0504 (14)0.0428 (16)0.0665 (16)0.0090 (11)0.0044 (12)0.0085 (13)
C60.0401 (12)0.0393 (14)0.0461 (13)0.0011 (10)0.0011 (10)0.0075 (11)
C70.0400 (11)0.0314 (12)0.0299 (10)0.0007 (9)0.0076 (8)0.0080 (9)
C80.0462 (12)0.0327 (12)0.0311 (10)0.0012 (9)0.0046 (9)0.0050 (9)
C90.0349 (11)0.0276 (11)0.0367 (11)0.0013 (8)0.0073 (9)0.0024 (9)
C100.0343 (10)0.0275 (11)0.0357 (11)0.0030 (8)0.0015 (8)0.0061 (9)
C110.0349 (11)0.0307 (12)0.0504 (13)0.0035 (9)0.0017 (10)0.0061 (10)
C120.0416 (12)0.0413 (14)0.0599 (15)0.0027 (10)0.0104 (11)0.0142 (12)
C130.0635 (16)0.0510 (16)0.0454 (13)0.0112 (12)0.0118 (12)0.0208 (12)
C140.0510 (14)0.0531 (15)0.0377 (12)0.0075 (11)0.0052 (10)0.0118 (11)
C150.0355 (11)0.0327 (12)0.0393 (11)0.0066 (9)0.0008 (9)0.0073 (10)
C160.0522 (16)0.116 (3)0.0707 (18)0.0130 (16)0.0307 (14)0.0248 (18)
C170.0612 (17)0.080 (2)0.104 (2)0.0048 (15)0.0403 (17)0.0217 (19)
C180.0518 (14)0.0454 (15)0.0433 (13)0.0018 (11)0.0046 (11)0.0090 (12)
C190.0748 (18)0.0559 (18)0.0588 (16)0.0021 (14)0.0137 (14)0.0202 (14)
C200.101 (2)0.058 (2)0.0637 (18)0.0116 (17)0.0055 (17)0.0245 (16)
C210.069 (2)0.075 (2)0.084 (2)0.0259 (16)0.0060 (16)0.0126 (18)
C220.0508 (15)0.066 (2)0.0751 (18)0.0077 (13)0.0082 (13)0.0080 (16)
C230.0402 (12)0.0427 (14)0.0457 (13)0.0002 (10)0.0025 (10)0.0019 (11)
C240.0579 (15)0.0516 (16)0.0472 (13)0.0012 (12)0.0177 (11)0.0080 (12)
Cl30.0335 (3)0.0638 (4)0.0473 (3)0.0050 (3)0.0046 (2)0.0010 (3)
Cl20.0449 (3)0.0768 (5)0.0322 (3)0.0055 (3)0.0033 (2)0.0003 (3)
Cl10.0586 (4)0.0643 (5)0.0540 (4)0.0230 (3)0.0034 (3)0.0003 (3)
Cl40.0860 (5)0.0963 (6)0.0413 (3)0.0483 (4)0.0023 (3)0.0165 (4)
N10.0369 (9)0.0298 (10)0.0347 (9)0.0008 (8)0.0067 (7)0.0067 (8)
N20.0512 (11)0.0436 (12)0.0522 (11)0.0044 (9)0.0039 (9)0.0118 (10)
O10.0377 (8)0.0492 (10)0.0652 (10)0.0031 (7)0.0023 (7)0.0120 (8)
O20.0374 (8)0.0595 (11)0.0444 (8)0.0057 (7)0.0109 (7)0.0159 (8)
O30.0493 (10)0.0612 (12)0.0850 (13)0.0119 (8)0.0259 (9)0.0309 (10)
O40.0568 (11)0.0688 (13)0.0442 (10)0.0155 (9)0.0040 (8)0.0048 (10)
Zn10.03518 (14)0.05046 (18)0.03133 (14)0.00161 (11)0.00427 (10)0.00579 (12)
Geometric parameters (Å, º) top
C1—O11.424 (3)C16—O21.431 (2)
C1—H1A0.9600C16—H16A0.9600
C1—H1B0.9600C16—H16B0.9600
C1—H1C0.9600C16—H16C0.9600
C2—O11.365 (2)C17—O31.407 (3)
C2—C31.372 (3)C17—H17A0.9600
C2—C71.402 (3)C17—H17B0.9600
C3—C41.377 (3)C17—H17C0.9600
C3—H30.9300C18—O31.364 (3)
C4—C51.372 (3)C18—C231.380 (3)
C4—H40.9300C18—C191.394 (3)
C5—C61.374 (3)C19—C201.386 (4)
C5—H50.9300C19—H190.9300
C6—C71.382 (3)C20—C211.362 (4)
C6—H60.9300C20—H200.9300
C7—C81.509 (3)C21—C221.384 (4)
C8—N11.477 (2)C21—H210.9300
C8—H8A0.9700C22—C231.386 (3)
C8—H8B0.9700C22—H220.9300
C9—N11.273 (2)C23—C241.501 (3)
C9—C101.445 (3)C24—N21.497 (3)
C9—H90.9300C24—H24A0.9700
C10—C151.392 (3)C24—H24B0.9700
C10—C111.397 (3)Cl3—Zn12.2495 (6)
C11—C121.377 (3)Cl2—Zn12.2639 (6)
C11—H110.9300Cl1—Zn12.2903 (8)
C12—C131.369 (3)Cl4—Zn12.2664 (7)
C12—H120.9300N1—H10.893 (14)
C13—C141.373 (3)N2—H2A0.8900
C13—H130.9300N2—H2B0.8900
C14—C151.391 (3)N2—H2C0.8900
C14—H140.9300O4—H4B0.801 (17)
C15—O21.357 (2)O4—H4A0.795 (17)
O1—C1—H1A109.5H16A—C16—H16B109.5
O1—C1—H1B109.5O2—C16—H16C109.5
H1A—C1—H1B109.5H16A—C16—H16C109.5
O1—C1—H1C109.5H16B—C16—H16C109.5
H1A—C1—H1C109.5O3—C17—H17A109.5
H1B—C1—H1C109.5O3—C17—H17B109.5
O1—C2—C3125.4 (2)H17A—C17—H17B109.5
O1—C2—C7114.2 (2)O3—C17—H17C109.5
C3—C2—C7120.4 (2)H17A—C17—H17C109.5
C2—C3—C4120.2 (2)H17B—C17—H17C109.5
C2—C3—H3119.9O3—C18—C23114.11 (19)
C4—C3—H3119.9O3—C18—C19124.9 (2)
C5—C4—C3120.3 (2)C23—C18—C19121.0 (2)
C5—C4—H4119.9C20—C19—C18119.1 (2)
C3—C4—H4119.9C20—C19—H19120.4
C4—C5—C6119.6 (2)C18—C19—H19120.4
C4—C5—H5120.2C21—C20—C19120.4 (3)
C6—C5—H5120.2C21—C20—H20119.8
C5—C6—C7121.5 (2)C19—C20—H20119.8
C5—C6—H6119.3C20—C21—C22120.1 (3)
C7—C6—H6119.3C20—C21—H21120.0
C6—C7—C2118.0 (2)C22—C21—H21120.0
C6—C7—C8121.79 (19)C21—C22—C23121.0 (3)
C2—C7—C8120.23 (18)C21—C22—H22119.5
N1—C8—C7110.25 (16)C23—C22—H22119.5
N1—C8—H8A109.6C18—C23—C22118.4 (2)
C7—C8—H8A109.6C18—C23—C24120.1 (2)
N1—C8—H8B109.6C22—C23—C24121.5 (2)
C7—C8—H8B109.6N2—C24—C23113.39 (18)
H8A—C8—H8B108.1N2—C24—H24A108.9
N1—C9—C10127.33 (18)C23—C24—H24A108.9
N1—C9—H9116.3N2—C24—H24B108.9
C10—C9—H9116.3C23—C24—H24B108.9
C15—C10—C11118.40 (18)H24A—C24—H24B107.7
C15—C10—C9124.36 (18)C9—N1—C8124.65 (17)
C11—C10—C9117.20 (18)C9—N1—H1120.6 (13)
C12—C11—C10121.4 (2)C8—N1—H1114.6 (13)
C12—C11—H11119.3C24—N2—H2A109.5
C10—C11—H11119.3C24—N2—H2B109.5
C13—C12—C11118.8 (2)H2A—N2—H2B109.5
C13—C12—H12120.6C24—N2—H2C109.5
C11—C12—H12120.6H2A—N2—H2C109.5
C12—C13—C14121.8 (2)H2B—N2—H2C109.5
C12—C13—H13119.1C2—O1—C1118.18 (19)
C14—C13—H13119.1C15—O2—C16119.14 (17)
C13—C14—C15119.4 (2)C18—O3—C17119.08 (19)
C13—C14—H14120.3H4B—O4—H4A115 (3)
C15—C14—H14120.3Cl3—Zn1—Cl2111.78 (2)
O2—C15—C14123.99 (19)Cl3—Zn1—Cl4108.77 (3)
O2—C15—C10115.83 (17)Cl2—Zn1—Cl4110.35 (3)
C14—C15—C10120.17 (19)Cl3—Zn1—Cl1104.45 (3)
O2—C16—H16A109.5Cl2—Zn1—Cl1111.19 (3)
O2—C16—H16B109.5Cl4—Zn1—Cl1110.14 (3)
O1—C2—C3—C4178.8 (2)C11—C10—C15—C140.7 (3)
C7—C2—C3—C40.5 (3)C9—C10—C15—C14177.2 (2)
C2—C3—C4—C50.3 (4)O3—C18—C19—C20179.4 (2)
C3—C4—C5—C61.0 (4)C23—C18—C19—C200.5 (4)
C4—C5—C6—C70.9 (3)C18—C19—C20—C210.8 (4)
C5—C6—C7—C20.2 (3)C19—C20—C21—C220.9 (5)
C5—C6—C7—C8179.77 (18)C20—C21—C22—C230.4 (4)
O1—C2—C7—C6178.82 (17)O3—C18—C23—C22179.3 (2)
C3—C2—C7—C60.5 (3)C19—C18—C23—C221.7 (4)
O1—C2—C7—C81.1 (3)O3—C18—C23—C243.2 (3)
C3—C2—C7—C8179.54 (18)C19—C18—C23—C24175.8 (2)
C6—C7—C8—N1108.7 (2)C21—C22—C23—C181.6 (4)
C2—C7—C8—N171.3 (2)C21—C22—C23—C24175.8 (2)
N1—C9—C10—C157.4 (3)C18—C23—C24—N264.7 (3)
N1—C9—C10—C11174.7 (2)C22—C23—C24—N2117.9 (2)
C15—C10—C11—C120.7 (3)C10—C9—N1—C8174.76 (19)
C9—C10—C11—C12177.4 (2)C7—C8—N1—C9108.3 (2)
C10—C11—C12—C130.0 (3)C3—C2—O1—C15.8 (3)
C11—C12—C13—C140.8 (4)C7—C2—O1—C1173.46 (18)
C12—C13—C14—C150.8 (4)C14—C15—O2—C163.6 (3)
C13—C14—C15—O2178.8 (2)C10—C15—O2—C16177.5 (2)
C13—C14—C15—C100.1 (3)C23—C18—O3—C17175.7 (2)
C11—C10—C15—O2179.57 (19)C19—C18—O3—C173.3 (4)
C9—C10—C15—O21.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.89 (1)2.07 (2)2.680 (2)125 (2)
N1—H1···Cl2i0.89 (1)2.64 (2)3.3221 (18)135 (2)
N2—H2A···O40.892.303.102 (3)151
N2—H2A···O30.892.372.877 (2)116
N2—H2B···O4ii0.892.042.881 (3)158
N2—H2B···Cl3iii0.892.983.502 (2)120
N2—H2C···Cl1iv0.892.453.306 (2)162
O4—H4B···Cl4iii0.80 (2)2.44 (2)3.2323 (19)168 (3)
O4—H4A···Cl1v0.80 (2)2.72 (2)3.4165 (19)147 (3)
C8—H8A···Cl30.972.673.474 (2)140
C11—H11···Cl20.932.823.687 (2)155
C24—H24A···Cl4vi0.972.763.707 (3)166
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x, y, z1; (iv) x+1, y+1, z+1; (v) x, y+1, z+1; (vi) x+1, y, z1.

Experimental details

Crystal data
Chemical formula(C8H12NO)(C16H18NO2)[ZnCl4]·H2O
Mr619.69
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.0884 (9), 12.424 (2), 14.678 (2)
α, β, γ (°)98.23 (1), 97.43 (1), 90.29 (1)
V3)1447.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.25
Crystal size (mm)0.54 × 0.47 × 0.25
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2009; Clark & Reid, 1995)
Tmin, Tmax0.576, 0.749
No. of measured, independent and
observed [I > 2σ(I)] reflections
12584, 6583, 4644
Rint0.028
(sin θ/λ)max1)0.692
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.087, 0.98
No. of reflections6583
No. of parameters329
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.72, 0.64

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR97 (Altomare et al., 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.893 (14)2.067 (18)2.680 (2)124.9 (16)
N1—H1···Cl2i0.893 (14)2.635 (18)3.3221 (18)134.5 (16)
N2—H2A···O40.892.303.102 (3)151
N2—H2A···O30.892.372.877 (2)116
N2—H2B···O4ii0.892.042.881 (3)158
N2—H2B···Cl3iii0.892.983.502 (2)120
N2—H2C···Cl1iv0.892.453.306 (2)162
O4—H4B···Cl4iii0.801 (17)2.443 (18)3.2323 (19)168 (3)
O4—H4A···Cl1v0.795 (17)2.72 (2)3.4165 (19)147 (3)
C8—H8A···Cl30.972.673.474 (2)140
C11—H11···Cl20.932.823.687 (2)155
C24—H24A···Cl4vi0.972.763.707 (3)166
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x, y, z1; (iv) x+1, y+1, z+1; (v) x, y+1, z+1; (vi) x+1, y, z1.
 

Acknowledgements

We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBen Gharbia, I., Kefi, R., El Glaoui, M., Jeanneau, E. & Ben Nasr, C. (2008). Acta Cryst. E64, m880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBen Gharbia, I., Kefi, R., Rayes, A. & Ben Nasr, C. (2005). Z. Kristallogr. New Cryst. Struct. 220, 333–334.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGayathri, D., Velmurugan, D., Hemalatha, P., Veeravazhuthi, V. & Ravikumar, K. (2008). Acta Cryst. E64, m848–m849.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHosseinian, A. & Mahjoub, A. R. (2009). Acta Cryst. E65, m1456.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds