organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Chloro­methyl-4-nitro­benzene

aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 9 June 2010; accepted 9 June 2010; online 16 June 2010)

In the title compound, C7H6ClNO2, the nitro group is almost coplanar with the aromatic ring [dihedral angle = 2.9 (2)°], but the Cl atom deviates from the ring plane by 1.129 (1) Å. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions to generate chains.

Related literature

For background on the toxicity of nitro-aromatic compounds, see: Moreno et al. (1986[Moreno, S. N. J., Schreiber, J. & Mason, R. P. (1986). J. Biol. Chem. 261, 7811-7815.]). For the synthesis of the title compound, see: Livermore & Sealock (1947[Livermore, A. H. & Sealock, R. R. (1947). J. Biol. Chem. 167, 699-704.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6ClNO2

  • Mr = 171.58

  • Orthorhombic, P 21 21 21

  • a = 4.7434 (1) Å

  • b = 6.4189 (2) Å

  • c = 24.9413 (11) Å

  • V = 759.40 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 296 K

  • 0.35 × 0.11 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 4389 measured reflections

  • 1816 independent reflections

  • 1586 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.103

  • S = 1.04

  • 1816 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 662 Freidel pairs

  • Flack parameter: 0.02 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O1i 0.97 2.48 3.396 (3) 158
Symmetry code: (i) x-1, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PARST (Nardelli, 1983[Nardelli, M. (1983). Comput. Chem. 7, 95-98.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The irreversible binding of the reductive intermediates of nitroaromatic compounds to protein and DNA is thought to be responsible for the carcinogenicity and mutagenicity of this class of compounds. Several studies revealed that some nitro radical metabolites with special features are expected to decompose to form neutral carbon-centered free radicals with not net reduction of the nitro group occurring. The radicals anions of p-and o-nitrobenzyl chloride are known to expel chloride to form the corresponding carbon-centered nitrobenzyl radicals with rate constants of 1 × 104 and 4 × 103 s-1. Such species are highly reactive and could account for the unusual cytotoxicity of these nitrocompounds (Moreno et al., 1986). This structural report on 1-(chloromethyl)-4-nitrobenzene (p-nitrobenzyl chloride) might be helpful to carry out such studies on these nitroaromatic compounds in future.

The title molecule (I), (Fig. 1), is non-planar and the dihedral angle between the plane of the NO2 group and benzene (C1–C6) ring is 2.9 (2)°, while the C5—C4—C7—Cl1 torsion angle is 83.8 (2)°. In (I), the bond lengths (Allen et al., 1987) and angles have values within the normal ranges.

In the crystal structure, there is no classic hydrogen bonds. A weak intermolecular C—H···O interaction contrubutes to the stability of the structure (Table 1, Fig. 2).

Related literature top

For background on the toxicity of nitro-aromatic compounds, see: Moreno et al. (1986). For the synthesis of the title compound, see: Livermore & Sealock (1947). For bond-length data, see: Allen et al. (1987).

Experimental top

The title p-nitrobenzyl chloride was prepared by adding 5.3 ml of benzyl chloride slowly and with stirring to 27.5 ml of a mixture of equal parts of concentrated nitric and sulfuric acids cooled to 283 K. The temperature rose to 303 K during the 10 min required for the addition. The mixture was stirred for 30 min and then poured into 50 g of crushed ice. The crude material was recrystallized from ethanol. Product obtained was dissolved in ethanol and crystallized by slow evaporation of the solvent to yield colourless needles of (I) in an over-all yield of 46% (Livermore & Sealock, 1947).

Refinement top

H atoms were positioned geometrically (C—H = 0.93 and 0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST (Nardelli, 1983) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title molecule, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing and the hydrogen bonding of (I) viewed down the a-axis. H-atoms not involved in hydrogen bonds have been omitted for clarity.
1-Chloromethyl-4-nitrobenzene top
Crystal data top
C7H6ClNO2F(000) = 352
Mr = 171.58Dx = 1.501 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1957 reflections
a = 4.7434 (1) Åθ = 3.3–26.7°
b = 6.4189 (2) ŵ = 0.45 mm1
c = 24.9413 (11) ÅT = 296 K
V = 759.40 (4) Å3Needle, colourless
Z = 40.35 × 0.11 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1586 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.018
Graphite monochromatorθmax = 28.3°, θmin = 3.3°
ϕ and ω scansh = 56
4389 measured reflectionsk = 85
1816 independent reflectionsl = 3317
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.049P)2 + 0.1709P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1816 reflectionsΔρmax = 0.33 e Å3
100 parametersΔρmin = 0.34 e Å3
0 restraintsAbsolute structure: Flack (1983), 662 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (11)
Crystal data top
C7H6ClNO2V = 759.40 (4) Å3
Mr = 171.58Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.7434 (1) ŵ = 0.45 mm1
b = 6.4189 (2) ÅT = 296 K
c = 24.9413 (11) Å0.35 × 0.11 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1586 reflections with I > 2σ(I)
4389 measured reflectionsRint = 0.018
1816 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.103Δρmax = 0.33 e Å3
S = 1.04Δρmin = 0.34 e Å3
1816 reflectionsAbsolute structure: Flack (1983), 662 Freidel pairs
100 parametersAbsolute structure parameter: 0.02 (11)
0 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.75015 (18)0.45250 (12)0.22343 (3)0.0812 (3)
O11.4188 (4)0.3381 (3)0.07002 (7)0.0621 (6)
O21.4761 (4)0.0854 (3)0.01453 (7)0.0601 (6)
N11.3647 (3)0.1634 (3)0.05351 (7)0.0434 (5)
C11.1532 (4)0.0398 (3)0.08269 (7)0.0364 (5)
C21.0829 (4)0.1540 (3)0.06377 (7)0.0421 (6)
C30.8901 (4)0.2704 (3)0.09215 (8)0.0437 (6)
C40.7690 (4)0.1928 (3)0.13883 (7)0.0393 (5)
C50.8402 (5)0.0046 (3)0.15629 (8)0.0472 (6)
C61.0341 (5)0.1235 (3)0.12836 (8)0.0459 (6)
C70.5663 (5)0.3213 (4)0.17034 (8)0.0533 (7)
H21.163700.205600.032500.0510*
H30.840400.402300.080000.0520*
H50.756900.058000.187100.0570*
H61.082800.256300.140000.0550*
H7A0.420400.232800.185300.0640*
H7B0.477100.422900.147100.0640*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0957 (5)0.0831 (5)0.0647 (4)0.0041 (4)0.0047 (4)0.0299 (3)
O10.0677 (11)0.0514 (9)0.0671 (10)0.0222 (8)0.0024 (8)0.0041 (8)
O20.0584 (10)0.0629 (11)0.0591 (9)0.0072 (8)0.0175 (8)0.0010 (8)
N10.0412 (8)0.0450 (9)0.0440 (8)0.0046 (8)0.0047 (7)0.0051 (7)
C10.0336 (8)0.0382 (9)0.0374 (8)0.0008 (7)0.0048 (7)0.0001 (7)
C20.0446 (10)0.0451 (11)0.0366 (9)0.0024 (9)0.0012 (7)0.0076 (8)
C30.0496 (11)0.0409 (10)0.0406 (9)0.0079 (9)0.0016 (8)0.0079 (8)
C40.0362 (9)0.0460 (10)0.0357 (8)0.0024 (9)0.0033 (7)0.0008 (7)
C50.0526 (11)0.0495 (12)0.0394 (9)0.0012 (9)0.0046 (8)0.0080 (8)
C60.0500 (11)0.0405 (10)0.0471 (10)0.0015 (9)0.0001 (9)0.0084 (8)
C70.0510 (12)0.0613 (13)0.0475 (11)0.0111 (12)0.0033 (9)0.0004 (10)
Geometric parameters (Å, º) top
Cl1—C71.795 (2)C4—C71.491 (3)
O1—N11.222 (3)C5—C61.383 (3)
O2—N11.215 (2)C2—H20.9300
N1—C11.472 (3)C3—H30.9300
C1—C21.372 (3)C5—H50.9300
C1—C61.380 (3)C6—H60.9300
C2—C31.377 (3)C7—H7A0.9700
C3—C41.391 (3)C7—H7B0.9700
C4—C51.382 (3)
O1—N1—O2123.83 (19)C1—C2—H2121.00
O1—N1—C1118.12 (17)C3—C2—H2121.00
O2—N1—C1118.05 (18)C2—C3—H3120.00
N1—C1—C2118.98 (16)C4—C3—H3120.00
N1—C1—C6118.51 (17)C4—C5—H5120.00
C2—C1—C6122.51 (18)C6—C5—H5120.00
C1—C2—C3118.48 (17)C1—C6—H6121.00
C2—C3—C4120.69 (18)C5—C6—H6121.00
C3—C4—C5119.43 (18)Cl1—C7—H7A110.00
C3—C4—C7120.64 (18)Cl1—C7—H7B110.00
C5—C4—C7119.93 (18)C4—C7—H7A110.00
C4—C5—C6120.65 (18)C4—C7—H7B110.00
C1—C6—C5118.22 (18)H7A—C7—H7B108.00
Cl1—C7—C4109.58 (16)
O1—N1—C1—C2177.90 (18)C1—C2—C3—C40.2 (3)
O1—N1—C1—C62.4 (3)C2—C3—C4—C51.0 (3)
O2—N1—C1—C22.4 (3)C2—C3—C4—C7178.30 (19)
O2—N1—C1—C6177.28 (19)C3—C4—C5—C61.2 (3)
N1—C1—C2—C3178.37 (17)C7—C4—C5—C6178.1 (2)
C6—C1—C2—C31.3 (3)C3—C4—C7—Cl195.5 (2)
N1—C1—C6—C5178.55 (18)C5—C4—C7—Cl183.8 (2)
C2—C1—C6—C51.1 (3)C4—C5—C6—C10.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O1i0.972.483.396 (3)158
Symmetry code: (i) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC7H6ClNO2
Mr171.58
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)4.7434 (1), 6.4189 (2), 24.9413 (11)
V3)759.40 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.35 × 0.11 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4389, 1816, 1586
Rint0.018
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.103, 1.04
No. of reflections1816
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.34
Absolute structureFlack (1983), 662 Freidel pairs
Absolute structure parameter0.02 (11)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999), PARST (Nardelli, 1983) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O1i0.972.483.396 (3)158
Symmetry code: (i) x1, y+1, z.
 

Footnotes

Additional corresponding author, e-mail: azizhej@hotmail.com.

Acknowledgements

The authors are grateful to the Higher Education Commission for providing financial support. Professor Islam Ullah Khan is also gratefully acknowledged for providing single-crystal X-ray diffraction facilities at the Materials Chemistry Laboratory, GC University Lahore.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLivermore, A. H. & Sealock, R. R. (1947). J. Biol. Chem. 167, 699–704.  CAS PubMed Web of Science Google Scholar
First citationMoreno, S. N. J., Schreiber, J. & Mason, R. P. (1986). J. Biol. Chem. 261, 7811–7815.  CAS PubMed Web of Science Google Scholar
First citationNardelli, M. (1983). Comput. Chem. 7, 95–98.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds