Experimental
Crystal data
C11H15N3OS Mr = 237.32 Orthorhombic, P b c a a = 13.066 (3) Å b = 10.128 (2) Å c = 19.224 (4) Å V = 2543.9 (9) Å3 Z = 8 Mo Kα radiation μ = 0.24 mm−1 T = 293 K 0.22 × 0.20 × 0.18 mm
|
Data collection
Bruker SMART CCD diffractometer 22633 measured reflections 2912 independent reflections 2302 reflections with I > 2σ(I) Rint = 0.044
|
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | N1—H1A⋯S1i | 0.86 | 2.60 | 3.4080 (17) | 156 | N3—H3A⋯N2 | 0.86 | 2.26 | 2.634 (2) | 106 | N3—H3A⋯S1ii | 0.86 | 2.78 | 3.4670 (17) | 137 | Symmetry codes: (i) -x, -y+2, -z+1; (ii) . | |
Data collection: SMART (Bruker, 1997
); cell refinement: SAINT (Bruker, 1997
); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008
); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008
); molecular graphics: SHELXTL (Sheldrick, 2008
); software used to prepare material for publication: SHELXTL.
Supporting information
A mixture of 4-methoxybenzaldehyde (0.1 mol) and 4-ethylthiosemicarbazide (0.1 mol) was stirred in refluxing ethanol (20 ml) for 2 h to afford the title compound (0.086 mol, yield 86%). Colourless blocks of (I) were obtained by recrystallization from ethanol at room temperature.
H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H = 0.97 Å, and with Uiso(H) = 1.2–1.5Ueq(C).
Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
4-Ethyl-1-(4-methoxybenzylidene)thiosemicarbazide
top Crystal data top C11H15N3OS | F(000) = 1008 |
Mr = 237.32 | Dx = 1.239 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 2302 reflections |
a = 13.066 (3) Å | θ = 2.8–25.3° |
b = 10.128 (2) Å | µ = 0.24 mm−1 |
c = 19.224 (4) Å | T = 293 K |
V = 2543.9 (9) Å3 | Block, colorless |
Z = 8 | 0.22 × 0.20 × 0.18 mm |
Data collection top Bruker SMART CCD diffractometer | 2302 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.044 |
Graphite monochromator | θmax = 27.5°, θmin = 3.1° |
phi and ω scans | h = −16→16 |
22633 measured reflections | k = −13→13 |
2912 independent reflections | l = −24→24 |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.160 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0997P)2 + 0.2868P] where P = (Fo2 + 2Fc2)/3 |
2912 reflections | (Δ/σ)max = 0.001 |
145 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
Crystal data top C11H15N3OS | V = 2543.9 (9) Å3 |
Mr = 237.32 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 13.066 (3) Å | µ = 0.24 mm−1 |
b = 10.128 (2) Å | T = 293 K |
c = 19.224 (4) Å | 0.22 × 0.20 × 0.18 mm |
Data collection top Bruker SMART CCD diffractometer | 2302 reflections with I > 2σ(I) |
22633 measured reflections | Rint = 0.044 |
2912 independent reflections | |
Refinement top R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.160 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.26 e Å−3 |
2912 reflections | Δρmin = −0.34 e Å−3 |
145 parameters | |
Special details top Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
S1 | 0.12047 (4) | 1.04218 (4) | 0.57631 (3) | 0.0768 (2) | |
N1 | 0.09565 (11) | 0.83299 (14) | 0.49802 (8) | 0.0648 (4) | |
H1A | 0.0548 | 0.8818 | 0.4742 | 0.078* | |
N2 | 0.11117 (10) | 0.70368 (14) | 0.47913 (8) | 0.0598 (3) | |
C9 | 0.12596 (13) | 0.30355 (18) | 0.41061 (9) | 0.0637 (4) | |
H9A | 0.1545 | 0.2367 | 0.4375 | 0.076* | |
C3 | 0.14420 (12) | 0.88334 (15) | 0.55374 (9) | 0.0596 (4) | |
N3 | 0.21067 (12) | 0.80566 (14) | 0.58550 (9) | 0.0719 (4) | |
H3A | 0.2271 | 0.7331 | 0.5651 | 0.086* | |
O1 | 0.09603 (11) | 0.15651 (14) | 0.31258 (7) | 0.0803 (4) | |
C5 | 0.07418 (12) | 0.53144 (16) | 0.39807 (8) | 0.0576 (4) | |
C10 | 0.11699 (13) | 0.42999 (18) | 0.43678 (9) | 0.0621 (4) | |
H10A | 0.1403 | 0.4476 | 0.4815 | 0.075* | |
C4 | 0.06596 (13) | 0.66625 (17) | 0.42425 (9) | 0.0626 (4) | |
H4A | 0.0262 | 0.7267 | 0.3999 | 0.075* | |
C8 | 0.09189 (12) | 0.27751 (17) | 0.34373 (9) | 0.0621 (4) | |
C6 | 0.04087 (15) | 0.5032 (2) | 0.33114 (10) | 0.0719 (5) | |
H6A | 0.0115 | 0.5696 | 0.3044 | 0.086* | |
C11 | 0.14227 (19) | 0.05082 (19) | 0.34942 (13) | 0.0866 (6) | |
H11A | 0.1397 | −0.0278 | 0.3216 | 0.130* | |
H11B | 0.1061 | 0.0363 | 0.3922 | 0.130* | |
H11C | 0.2123 | 0.0725 | 0.3594 | 0.130* | |
C2 | 0.25846 (16) | 0.8338 (2) | 0.65277 (13) | 0.0910 (7) | |
H2B | 0.2628 | 0.9285 | 0.6594 | 0.109* | |
H2C | 0.3275 | 0.7984 | 0.6532 | 0.109* | |
C7 | 0.05071 (16) | 0.3784 (2) | 0.30398 (10) | 0.0769 (5) | |
H7A | 0.0296 | 0.3616 | 0.2586 | 0.092* | |
C1 | 0.1984 (3) | 0.7743 (4) | 0.71090 (15) | 0.1455 (13) | |
H1B | 0.2311 | 0.7943 | 0.7544 | 0.218* | |
H1C | 0.1952 | 0.6803 | 0.7049 | 0.218* | |
H1D | 0.1304 | 0.8100 | 0.7108 | 0.218* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
S1 | 0.0653 (3) | 0.0441 (3) | 0.1211 (5) | 0.00297 (16) | −0.0100 (2) | −0.0109 (2) |
N1 | 0.0687 (8) | 0.0469 (7) | 0.0786 (9) | 0.0078 (6) | −0.0085 (7) | 0.0005 (6) |
N2 | 0.0596 (7) | 0.0479 (7) | 0.0720 (8) | 0.0022 (5) | −0.0015 (6) | −0.0004 (6) |
C9 | 0.0672 (9) | 0.0567 (10) | 0.0673 (9) | 0.0013 (7) | −0.0052 (7) | 0.0071 (7) |
C3 | 0.0526 (7) | 0.0447 (8) | 0.0814 (10) | −0.0024 (6) | 0.0014 (7) | −0.0002 (7) |
N3 | 0.0716 (9) | 0.0512 (8) | 0.0929 (10) | 0.0102 (6) | −0.0169 (8) | −0.0137 (7) |
O1 | 0.0857 (8) | 0.0647 (8) | 0.0905 (9) | 0.0036 (6) | −0.0126 (7) | −0.0171 (7) |
C5 | 0.0515 (8) | 0.0583 (9) | 0.0632 (8) | 0.0022 (6) | −0.0032 (6) | −0.0007 (6) |
C10 | 0.0695 (10) | 0.0594 (10) | 0.0575 (8) | −0.0005 (7) | −0.0070 (7) | 0.0017 (7) |
C4 | 0.0604 (9) | 0.0585 (9) | 0.0688 (9) | 0.0067 (7) | −0.0063 (7) | 0.0016 (7) |
C8 | 0.0547 (8) | 0.0613 (10) | 0.0702 (9) | −0.0008 (7) | −0.0022 (7) | −0.0071 (7) |
C6 | 0.0762 (11) | 0.0698 (10) | 0.0697 (10) | 0.0143 (9) | −0.0188 (8) | 0.0012 (8) |
C11 | 0.0946 (14) | 0.0568 (11) | 0.1083 (16) | 0.0024 (9) | 0.0065 (13) | −0.0021 (10) |
C2 | 0.0766 (12) | 0.0677 (12) | 0.1285 (18) | 0.0107 (9) | −0.0402 (13) | −0.0265 (11) |
C7 | 0.0856 (12) | 0.0772 (12) | 0.0679 (10) | 0.0109 (9) | −0.0231 (9) | −0.0102 (9) |
C1 | 0.120 (2) | 0.232 (4) | 0.0849 (16) | −0.025 (2) | −0.0161 (16) | −0.032 (2) |
Geometric parameters (Å, º) top S1—C3 | 1.6948 (17) | C10—H10A | 0.9300 |
N1—C3 | 1.345 (2) | C4—H4A | 0.9300 |
N1—N2 | 1.3742 (19) | C8—C7 | 1.385 (3) |
N1—H1A | 0.8600 | C6—C7 | 1.373 (3) |
N2—C4 | 1.267 (2) | C6—H6A | 0.9300 |
C9—C10 | 1.381 (2) | C11—H11A | 0.9600 |
C9—C8 | 1.386 (3) | C11—H11B | 0.9600 |
C9—H9A | 0.9300 | C11—H11C | 0.9600 |
C3—N3 | 1.321 (2) | C2—C1 | 1.492 (4) |
N3—C2 | 1.464 (2) | C2—H2B | 0.9700 |
N3—H3A | 0.8600 | C2—H2C | 0.9700 |
O1—C8 | 1.365 (2) | C7—H7A | 0.9300 |
O1—C11 | 1.419 (3) | C1—H1B | 0.9600 |
C5—C10 | 1.387 (2) | C1—H1C | 0.9600 |
C5—C6 | 1.388 (2) | C1—H1D | 0.9600 |
C5—C4 | 1.459 (2) | | |
| | | |
C3—N1—N2 | 120.14 (13) | C7—C8—C9 | 119.75 (16) |
C3—N1—H1A | 119.9 | C7—C6—C5 | 120.86 (16) |
N2—N1—H1A | 119.9 | C7—C6—H6A | 119.6 |
C4—N2—N1 | 115.87 (14) | C5—C6—H6A | 119.6 |
C10—C9—C8 | 119.16 (16) | O1—C11—H11A | 109.5 |
C10—C9—H9A | 120.4 | O1—C11—H11B | 109.5 |
C8—C9—H9A | 120.4 | H11A—C11—H11B | 109.5 |
N3—C3—N1 | 116.89 (14) | O1—C11—H11C | 109.5 |
N3—C3—S1 | 124.54 (13) | H11A—C11—H11C | 109.5 |
N1—C3—S1 | 118.51 (12) | H11B—C11—H11C | 109.5 |
C3—N3—C2 | 124.95 (15) | N3—C2—C1 | 111.03 (19) |
C3—N3—H3A | 117.5 | N3—C2—H2B | 109.4 |
C2—N3—H3A | 117.5 | C1—C2—H2B | 109.4 |
C8—O1—C11 | 118.37 (16) | N3—C2—H2C | 109.4 |
C10—C5—C6 | 118.11 (16) | C1—C2—H2C | 109.4 |
C10—C5—C4 | 122.54 (15) | H2B—C2—H2C | 108.0 |
C6—C5—C4 | 119.32 (15) | C6—C7—C8 | 120.37 (16) |
C9—C10—C5 | 121.73 (16) | C6—C7—H7A | 119.8 |
C9—C10—H10A | 119.1 | C8—C7—H7A | 119.8 |
C5—C10—H10A | 119.1 | C2—C1—H1B | 109.5 |
N2—C4—C5 | 122.20 (15) | C2—C1—H1C | 109.5 |
N2—C4—H4A | 118.9 | H1B—C1—H1C | 109.5 |
C5—C4—H4A | 118.9 | C2—C1—H1D | 109.5 |
O1—C8—C7 | 115.83 (15) | H1B—C1—H1D | 109.5 |
O1—C8—C9 | 124.41 (16) | H1C—C1—H1D | 109.5 |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···S1i | 0.86 | 2.60 | 3.4080 (17) | 156 |
N3—H3A···N2 | 0.86 | 2.26 | 2.634 (2) | 106 |
N3—H3A···S1ii | 0.86 | 2.78 | 3.4670 (17) | 137 |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+1/2, y−1/2, z. |
Experimental details
Crystal data |
Chemical formula | C11H15N3OS |
Mr | 237.32 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 293 |
a, b, c (Å) | 13.066 (3), 10.128 (2), 19.224 (4) |
V (Å3) | 2543.9 (9) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.24 |
Crystal size (mm) | 0.22 × 0.20 × 0.18 |
|
Data collection |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22633, 2912, 2302 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.649 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.160, 1.05 |
No. of reflections | 2912 |
No. of parameters | 145 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.34 |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···S1i | 0.86 | 2.60 | 3.4080 (17) | 156 |
N3—H3A···N2 | 0.86 | 2.26 | 2.634 (2) | 106 |
N3—H3A···S1ii | 0.86 | 2.78 | 3.4670 (17) | 137 |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+1/2, y−1/2, z. |
References
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Casas, J. S., Garcia-T, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261. Web of Science CrossRef CAS Google Scholar
Li, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1399. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lobana, T. S., Khanna, S., Hundal, G., Kaur, P., Thakur, B., Attri, S. & Butcher, R. J. (2009). Polyhedron, 28, 1583–1593. Web of Science CSD CrossRef CAS Google Scholar
Quiroga, A. G. & Ranninger, C. N. (2004). Coord. Chem. Rev. 248, 119–133. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
 | CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open

access
Thiosemicarbazones have attracted much attention because they can be utilized as effective ligands to form the compounds with antitumoral drugs. (Quiroga & Ranninger, 2004).They are important versatile coordination agents which have been reported to be coordination compounds (Casas et al., 2000) (Lobana et al., 2009). As part of our search for new thiosemicarbazones compounds we synthesized the title compound (I), and describe its structure here. The dihedral angle between the benzene ring and the thiourea unit is [4.28 (7)°]. Intermolecular N—H···S hydrogen bonds generate chains.
Bond lengths and angles agree with those observed in a related compound (Li & Jian, 2010).