organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Ethyl-1-(4-meth­­oxy­benzyl­­idene)thio­semicarbazide

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 9 June 2010; accepted 14 June 2010; online 18 June 2010)

In the title compound, C11H15N3OS, the dihedral angle between the aromatic ring and the thio­urea unit is 4.28 (7)° and an intra­molecular N—H⋯N hydrogen bond generates an S(5) ring. In the crystal, mol­ecules are linked into (001) sheets by N—H⋯S hydrogen bonds.

Related literature

For background to the reactions and properties of thio­semicarbazones, see: Casas et al. (2000[Casas, J. S., Garcia-T, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197-261.]); Lobana et al. (2009[Lobana, T. S., Khanna, S., Hundal, G., Kaur, P., Thakur, B., Attri, S. & Butcher, R. J. (2009). Polyhedron, 28, 1583-1593.]); Quiroga & Ranninger (2004[Quiroga, A. G. & Ranninger, C. N. (2004). Coord. Chem. Rev. 248, 119-133.]). For a related structure, see: Li & Jian (2010[Li, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1399.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15N3OS

  • Mr = 237.32

  • Orthorhombic, P b c a

  • a = 13.066 (3) Å

  • b = 10.128 (2) Å

  • c = 19.224 (4) Å

  • V = 2543.9 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 22633 measured reflections

  • 2912 independent reflections

  • 2302 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.160

  • S = 1.05

  • 2912 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.86 2.60 3.4080 (17) 156
N3—H3A⋯N2 0.86 2.26 2.634 (2) 106
N3—H3A⋯S1ii 0.86 2.78 3.4670 (17) 137
Symmetry codes: (i) -x, -y+2, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiosemicarbazones have attracted much attention because they can be utilized as effective ligands to form the compounds with antitumoral drugs. (Quiroga & Ranninger, 2004).They are important versatile coordination agents which have been reported to be coordination compounds (Casas et al., 2000) (Lobana et al., 2009). As part of our search for new thiosemicarbazones compounds we synthesized the title compound (I), and describe its structure here. The dihedral angle between the benzene ring and the thiourea unit is [4.28 (7)°]. Intermolecular N—H···S hydrogen bonds generate chains.

Bond lengths and angles agree with those observed in a related compound (Li & Jian, 2010).

Related literature top

For background to the reactions and properties of thiosemicarbazones, see: Casas et al. (2000); Lobana et al. (2009); Quiroga & Ranninger (2004). For a related structure, see: Li & Jian (2010).

Experimental top

A mixture of 4-methoxybenzaldehyde (0.1 mol) and 4-ethylthiosemicarbazide (0.1 mol) was stirred in refluxing ethanol (20 ml) for 2 h to afford the title compound (0.086 mol, yield 86%). Colourless blocks of (I) were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H = 0.97 Å, and with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids.
4-Ethyl-1-(4-methoxybenzylidene)thiosemicarbazide top
Crystal data top
C11H15N3OSF(000) = 1008
Mr = 237.32Dx = 1.239 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2302 reflections
a = 13.066 (3) Åθ = 2.8–25.3°
b = 10.128 (2) ŵ = 0.24 mm1
c = 19.224 (4) ÅT = 293 K
V = 2543.9 (9) Å3Block, colorless
Z = 80.22 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
2302 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
phi and ω scansh = 1616
22633 measured reflectionsk = 1313
2912 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0997P)2 + 0.2868P]
where P = (Fo2 + 2Fc2)/3
2912 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C11H15N3OSV = 2543.9 (9) Å3
Mr = 237.32Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.066 (3) ŵ = 0.24 mm1
b = 10.128 (2) ÅT = 293 K
c = 19.224 (4) Å0.22 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
2302 reflections with I > 2σ(I)
22633 measured reflectionsRint = 0.044
2912 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
2912 reflectionsΔρmin = 0.34 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.12047 (4)1.04218 (4)0.57631 (3)0.0768 (2)
N10.09565 (11)0.83299 (14)0.49802 (8)0.0648 (4)
H1A0.05480.88180.47420.078*
N20.11117 (10)0.70368 (14)0.47913 (8)0.0598 (3)
C90.12596 (13)0.30355 (18)0.41061 (9)0.0637 (4)
H9A0.15450.23670.43750.076*
C30.14420 (12)0.88334 (15)0.55374 (9)0.0596 (4)
N30.21067 (12)0.80566 (14)0.58550 (9)0.0719 (4)
H3A0.22710.73310.56510.086*
O10.09603 (11)0.15651 (14)0.31258 (7)0.0803 (4)
C50.07418 (12)0.53144 (16)0.39807 (8)0.0576 (4)
C100.11699 (13)0.42999 (18)0.43678 (9)0.0621 (4)
H10A0.14030.44760.48150.075*
C40.06596 (13)0.66625 (17)0.42425 (9)0.0626 (4)
H4A0.02620.72670.39990.075*
C80.09189 (12)0.27751 (17)0.34373 (9)0.0621 (4)
C60.04087 (15)0.5032 (2)0.33114 (10)0.0719 (5)
H6A0.01150.56960.30440.086*
C110.14227 (19)0.05082 (19)0.34942 (13)0.0866 (6)
H11A0.13970.02780.32160.130*
H11B0.10610.03630.39220.130*
H11C0.21230.07250.35940.130*
C20.25846 (16)0.8338 (2)0.65277 (13)0.0910 (7)
H2B0.26280.92850.65940.109*
H2C0.32750.79840.65320.109*
C70.05071 (16)0.3784 (2)0.30398 (10)0.0769 (5)
H7A0.02960.36160.25860.092*
C10.1984 (3)0.7743 (4)0.71090 (15)0.1455 (13)
H1B0.23110.79430.75440.218*
H1C0.19520.68030.70490.218*
H1D0.13040.81000.71080.218*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0653 (3)0.0441 (3)0.1211 (5)0.00297 (16)0.0100 (2)0.0109 (2)
N10.0687 (8)0.0469 (7)0.0786 (9)0.0078 (6)0.0085 (7)0.0005 (6)
N20.0596 (7)0.0479 (7)0.0720 (8)0.0022 (5)0.0015 (6)0.0004 (6)
C90.0672 (9)0.0567 (10)0.0673 (9)0.0013 (7)0.0052 (7)0.0071 (7)
C30.0526 (7)0.0447 (8)0.0814 (10)0.0024 (6)0.0014 (7)0.0002 (7)
N30.0716 (9)0.0512 (8)0.0929 (10)0.0102 (6)0.0169 (8)0.0137 (7)
O10.0857 (8)0.0647 (8)0.0905 (9)0.0036 (6)0.0126 (7)0.0171 (7)
C50.0515 (8)0.0583 (9)0.0632 (8)0.0022 (6)0.0032 (6)0.0007 (6)
C100.0695 (10)0.0594 (10)0.0575 (8)0.0005 (7)0.0070 (7)0.0017 (7)
C40.0604 (9)0.0585 (9)0.0688 (9)0.0067 (7)0.0063 (7)0.0016 (7)
C80.0547 (8)0.0613 (10)0.0702 (9)0.0008 (7)0.0022 (7)0.0071 (7)
C60.0762 (11)0.0698 (10)0.0697 (10)0.0143 (9)0.0188 (8)0.0012 (8)
C110.0946 (14)0.0568 (11)0.1083 (16)0.0024 (9)0.0065 (13)0.0021 (10)
C20.0766 (12)0.0677 (12)0.1285 (18)0.0107 (9)0.0402 (13)0.0265 (11)
C70.0856 (12)0.0772 (12)0.0679 (10)0.0109 (9)0.0231 (9)0.0102 (9)
C10.120 (2)0.232 (4)0.0849 (16)0.025 (2)0.0161 (16)0.032 (2)
Geometric parameters (Å, º) top
S1—C31.6948 (17)C10—H10A0.9300
N1—C31.345 (2)C4—H4A0.9300
N1—N21.3742 (19)C8—C71.385 (3)
N1—H1A0.8600C6—C71.373 (3)
N2—C41.267 (2)C6—H6A0.9300
C9—C101.381 (2)C11—H11A0.9600
C9—C81.386 (3)C11—H11B0.9600
C9—H9A0.9300C11—H11C0.9600
C3—N31.321 (2)C2—C11.492 (4)
N3—C21.464 (2)C2—H2B0.9700
N3—H3A0.8600C2—H2C0.9700
O1—C81.365 (2)C7—H7A0.9300
O1—C111.419 (3)C1—H1B0.9600
C5—C101.387 (2)C1—H1C0.9600
C5—C61.388 (2)C1—H1D0.9600
C5—C41.459 (2)
C3—N1—N2120.14 (13)C7—C8—C9119.75 (16)
C3—N1—H1A119.9C7—C6—C5120.86 (16)
N2—N1—H1A119.9C7—C6—H6A119.6
C4—N2—N1115.87 (14)C5—C6—H6A119.6
C10—C9—C8119.16 (16)O1—C11—H11A109.5
C10—C9—H9A120.4O1—C11—H11B109.5
C8—C9—H9A120.4H11A—C11—H11B109.5
N3—C3—N1116.89 (14)O1—C11—H11C109.5
N3—C3—S1124.54 (13)H11A—C11—H11C109.5
N1—C3—S1118.51 (12)H11B—C11—H11C109.5
C3—N3—C2124.95 (15)N3—C2—C1111.03 (19)
C3—N3—H3A117.5N3—C2—H2B109.4
C2—N3—H3A117.5C1—C2—H2B109.4
C8—O1—C11118.37 (16)N3—C2—H2C109.4
C10—C5—C6118.11 (16)C1—C2—H2C109.4
C10—C5—C4122.54 (15)H2B—C2—H2C108.0
C6—C5—C4119.32 (15)C6—C7—C8120.37 (16)
C9—C10—C5121.73 (16)C6—C7—H7A119.8
C9—C10—H10A119.1C8—C7—H7A119.8
C5—C10—H10A119.1C2—C1—H1B109.5
N2—C4—C5122.20 (15)C2—C1—H1C109.5
N2—C4—H4A118.9H1B—C1—H1C109.5
C5—C4—H4A118.9C2—C1—H1D109.5
O1—C8—C7115.83 (15)H1B—C1—H1D109.5
O1—C8—C9124.41 (16)H1C—C1—H1D109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.862.603.4080 (17)156
N3—H3A···N20.862.262.634 (2)106
N3—H3A···S1ii0.862.783.4670 (17)137
Symmetry codes: (i) x, y+2, z+1; (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC11H15N3OS
Mr237.32
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)13.066 (3), 10.128 (2), 19.224 (4)
V3)2543.9 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22633, 2912, 2302
Rint0.044
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.160, 1.05
No. of reflections2912
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.34

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.862.603.4080 (17)156
N3—H3A···N20.862.262.634 (2)106
N3—H3A···S1ii0.862.783.4670 (17)137
Symmetry codes: (i) x, y+2, z+1; (ii) x+1/2, y1/2, z.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasas, J. S., Garcia-T, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261.  Web of Science CrossRef CAS Google Scholar
First citationLi, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1399.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLobana, T. S., Khanna, S., Hundal, G., Kaur, P., Thakur, B., Attri, S. & Butcher, R. J. (2009). Polyhedron, 28, 1583–1593.  Web of Science CSD CrossRef CAS Google Scholar
First citationQuiroga, A. G. & Ranninger, C. N. (2004). Coord. Chem. Rev. 248, 119–133.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds