Experimental
Crystal data
C13H17NO Mr = 203.28 Monoclinic, P 21 a = 5.2372 (3) Å b = 6.5841 (4) Å c = 16.6029 (12) Å β = 91.176 (2)° V = 572.38 (6) Å3 Z = 2 Mo Kα radiation μ = 0.07 mm−1 T = 293 K 0.28 × 0.17 × 0.12 mm
|
Data collection
Bruker APEXII CCD diffractometer 5479 measured reflections 1423 independent reflections 1105 reflections with I > 2σ(I) Rint = 0.033
|
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | N1—H1n⋯O1i | 0.80 (3) | 2.32 (3) | 3.065 (3) | 157 (3) | C13—H13a⋯Cg1ii | 0.97 | 2.82 | 3.722 (4) | 154 | C5—H5⋯Cg1iii | 0.93 | 2.96 | 3.729 (4) | 141 | Symmetry codes: (i) x-1, y, z; (ii) x, y-1, z; (iii) . | |
Data collection: APEX2 (Bruker, 2007
); cell refinement: SAINT (Bruker, 2007
); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008
); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008
); molecular graphics: ORTEP-3 (Farrugia, 1997
) and DIAMOND (Brandenburg, 2006
); software used to prepare material for publication: publCIF (Westrip, 2010
).
Supporting information
A solution of cyclohexyl amine (0.458 µl, 4 mmol) in dichloromethane (15 ml) was treated dropwise with benzoyl chloride (0.463 µl, 4 mmol) in the presence of triethanol amine (5 ml) as a catalyst. The resulting mixture was stirred for 1 h. The precipitates that formed were filtered, dried and crystallized from methanol to yield colourless blocks of (I).
The C-bound H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atom was refined freely. In the absence of significant anomalous scattering effects, 1130 Friedel pairs were averaged in the final refinement.
Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
N-Cyclohexylbenzamide
top Crystal data top C13H17NO | Z = 2 |
Mr = 203.28 | F(000) = 220 |
Monoclinic, P21 | Dx = 1.179 Mg m−3 |
Hall symbol: P 2yb | Mo Kα radiation, λ = 0.71073 Å |
a = 5.2372 (3) Å | µ = 0.07 mm−1 |
b = 6.5841 (4) Å | T = 293 K |
c = 16.6029 (12) Å | Block, colourless |
β = 91.176 (2)° | 0.28 × 0.17 × 0.12 mm |
V = 572.38 (6) Å3 | |
Data collection top Bruker APEXII CCD diffractometer | 1105 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.033 |
Graphite monochromator | θmax = 27.5°, θmin = 1.2° |
ϕ and ω scans | h = −6→6 |
5479 measured reflections | k = −8→8 |
1423 independent reflections | l = −21→21 |
Refinement top Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.163 | w = 1/[σ2(Fo2) + (0.1083P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
1423 reflections | Δρmax = 0.22 e Å−3 |
140 parameters | Δρmin = −0.21 e Å−3 |
1 restraint | Absolute structure: unk |
Primary atom site location: structure-invariant direct methods | |
Crystal data top C13H17NO | V = 572.38 (6) Å3 |
Mr = 203.28 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 5.2372 (3) Å | µ = 0.07 mm−1 |
b = 6.5841 (4) Å | T = 293 K |
c = 16.6029 (12) Å | 0.28 × 0.17 × 0.12 mm |
β = 91.176 (2)° | |
Data collection top Bruker APEXII CCD diffractometer | 1105 reflections with I > 2σ(I) |
5479 measured reflections | Rint = 0.033 |
1423 independent reflections | |
Refinement top R[F2 > 2σ(F2)] = 0.045 | 1 restraint |
wR(F2) = 0.163 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.22 e Å−3 |
1423 reflections | Δρmin = −0.21 e Å−3 |
140 parameters | Absolute structure: unk |
Special details top Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
O1 | 0.7158 (3) | 0.9885 (4) | 0.23591 (14) | 0.0636 (8) | |
N1 | 0.2952 (5) | 0.9238 (4) | 0.24441 (15) | 0.0424 (6) | |
H1n | 0.157 (6) | 0.969 (6) | 0.2345 (18) | 0.045 (9)* | |
C1 | 0.4923 (5) | 1.0267 (4) | 0.21584 (18) | 0.0415 (7) | |
C2 | 0.4362 (5) | 1.1979 (5) | 0.15919 (15) | 0.0381 (6) | |
C3 | 0.2245 (5) | 1.2004 (6) | 0.10682 (16) | 0.0460 (7) | |
H3 | 0.1077 | 1.0941 | 0.1071 | 0.055* | |
C4 | 0.1894 (6) | 1.3614 (7) | 0.05468 (18) | 0.0575 (9) | |
H4 | 0.0488 | 1.3620 | 0.0195 | 0.069* | |
C5 | 0.3571 (6) | 1.5201 (6) | 0.05375 (19) | 0.0602 (10) | |
H5 | 0.3321 | 1.6270 | 0.0179 | 0.072* | |
C6 | 0.5654 (6) | 1.5203 (6) | 0.1069 (2) | 0.0586 (9) | |
H6 | 0.6785 | 1.6292 | 0.1076 | 0.070* | |
C7 | 0.6038 (6) | 1.3593 (6) | 0.15818 (19) | 0.0495 (8) | |
H7 | 0.7455 | 1.3591 | 0.1929 | 0.059* | |
C8 | 0.3233 (5) | 0.7589 (4) | 0.30240 (17) | 0.0405 (7) | |
H8 | 0.4904 | 0.6958 | 0.2945 | 0.049* | |
C9 | 0.3184 (8) | 0.8399 (6) | 0.3885 (2) | 0.0611 (9) | |
H9A | 0.4570 | 0.9358 | 0.3968 | 0.073* | |
H9B | 0.1588 | 0.9108 | 0.3969 | 0.073* | |
C10 | 0.3452 (8) | 0.6680 (7) | 0.4484 (2) | 0.0683 (11) | |
H10A | 0.5140 | 0.6088 | 0.4443 | 0.082* | |
H10B | 0.3296 | 0.7218 | 0.5024 | 0.082* | |
C11 | 0.1481 (6) | 0.5051 (6) | 0.4349 (2) | 0.0636 (10) | |
H11A | −0.0198 | 0.5593 | 0.4461 | 0.076* | |
H11B | 0.1814 | 0.3937 | 0.4719 | 0.076* | |
C12 | 0.1507 (7) | 0.4266 (6) | 0.3493 (2) | 0.0620 (9) | |
H12A | 0.0120 | 0.3306 | 0.3413 | 0.074* | |
H12B | 0.3100 | 0.3556 | 0.3405 | 0.074* | |
C13 | 0.1224 (6) | 0.5985 (5) | 0.2888 (2) | 0.0482 (8) | |
H13A | 0.1362 | 0.5444 | 0.2347 | 0.058* | |
H13B | −0.0455 | 0.6591 | 0.2934 | 0.058* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
O1 | 0.0330 (10) | 0.0681 (17) | 0.0893 (17) | 0.0023 (11) | −0.0042 (10) | 0.0243 (15) |
N1 | 0.0333 (12) | 0.0437 (14) | 0.0500 (14) | 0.0042 (11) | −0.0005 (9) | 0.0077 (11) |
C1 | 0.0359 (13) | 0.0405 (16) | 0.0479 (15) | 0.0036 (13) | 0.0009 (11) | −0.0004 (13) |
C2 | 0.0356 (12) | 0.0421 (15) | 0.0368 (14) | 0.0029 (12) | 0.0050 (10) | −0.0031 (13) |
C3 | 0.0398 (14) | 0.0546 (18) | 0.0436 (15) | 0.0001 (14) | −0.0021 (11) | 0.0020 (16) |
C4 | 0.0471 (16) | 0.080 (2) | 0.0453 (16) | 0.0045 (18) | −0.0018 (13) | 0.0133 (19) |
C5 | 0.0554 (17) | 0.067 (2) | 0.059 (2) | 0.0138 (18) | 0.0137 (15) | 0.024 (2) |
C6 | 0.0552 (17) | 0.0512 (19) | 0.070 (2) | −0.0060 (17) | 0.0147 (15) | 0.0140 (18) |
C7 | 0.0426 (14) | 0.0538 (19) | 0.0523 (17) | −0.0035 (14) | 0.0059 (12) | 0.0047 (16) |
C8 | 0.0354 (12) | 0.0391 (15) | 0.0470 (16) | 0.0060 (12) | 0.0010 (11) | 0.0046 (13) |
C9 | 0.084 (2) | 0.051 (2) | 0.0476 (17) | −0.0102 (19) | −0.0115 (16) | −0.0008 (16) |
C10 | 0.082 (2) | 0.071 (3) | 0.0513 (19) | −0.001 (2) | −0.0104 (17) | 0.010 (2) |
C11 | 0.0624 (19) | 0.062 (2) | 0.067 (2) | 0.010 (2) | 0.0116 (16) | 0.022 (2) |
C12 | 0.0633 (19) | 0.0396 (18) | 0.083 (3) | −0.0053 (16) | 0.0001 (17) | 0.0068 (18) |
C13 | 0.0457 (15) | 0.0427 (17) | 0.0560 (19) | −0.0010 (14) | −0.0021 (13) | −0.0011 (15) |
Geometric parameters (Å, º) top O1—C1 | 1.236 (3) | C8—C9 | 1.526 (4) |
N1—C1 | 1.331 (4) | C8—H8 | 0.9800 |
N1—C8 | 1.456 (4) | C9—C10 | 1.511 (5) |
N1—H1n | 0.80 (3) | C9—H9A | 0.9700 |
C1—C2 | 1.493 (4) | C9—H9B | 0.9700 |
C2—C7 | 1.379 (4) | C10—C11 | 1.502 (5) |
C2—C3 | 1.395 (4) | C10—H10A | 0.9700 |
C3—C4 | 1.379 (5) | C10—H10B | 0.9700 |
C3—H3 | 0.9300 | C11—C12 | 1.512 (5) |
C4—C5 | 1.365 (5) | C11—H11A | 0.9700 |
C4—H4 | 0.9300 | C11—H11B | 0.9700 |
C5—C6 | 1.389 (5) | C12—C13 | 1.519 (5) |
C5—H5 | 0.9300 | C12—H12A | 0.9700 |
C6—C7 | 1.372 (5) | C12—H12B | 0.9700 |
C6—H6 | 0.9300 | C13—H13A | 0.9700 |
C7—H7 | 0.9300 | C13—H13B | 0.9700 |
C8—C13 | 1.505 (4) | | |
| | | |
C1—N1—C8 | 123.1 (2) | C10—C9—C8 | 110.6 (3) |
C1—N1—H1N | 116 (3) | C10—C9—H9A | 109.5 |
C8—N1—H1N | 120 (2) | C8—C9—H9A | 109.5 |
O1—C1—N1 | 122.5 (3) | C10—C9—H9B | 109.5 |
O1—C1—C2 | 119.8 (2) | C8—C9—H9B | 109.5 |
N1—C1—C2 | 117.7 (2) | H9A—C9—H9B | 108.1 |
C7—C2—C3 | 118.8 (3) | C11—C10—C9 | 112.5 (3) |
C7—C2—C1 | 118.2 (2) | C11—C10—H10A | 109.1 |
C3—C2—C1 | 123.0 (3) | C9—C10—H10A | 109.1 |
C4—C3—C2 | 119.7 (3) | C11—C10—H10B | 109.1 |
C4—C3—H3 | 120.2 | C9—C10—H10B | 109.1 |
C2—C3—H3 | 120.2 | H10A—C10—H10B | 107.8 |
C5—C4—C3 | 121.2 (3) | C10—C11—C12 | 111.4 (3) |
C5—C4—H4 | 119.4 | C10—C11—H11A | 109.4 |
C3—C4—H4 | 119.4 | C12—C11—H11A | 109.4 |
C4—C5—C6 | 119.4 (3) | C10—C11—H11B | 109.4 |
C4—C5—H5 | 120.3 | C12—C11—H11B | 109.4 |
C6—C5—H5 | 120.3 | H11A—C11—H11B | 108.0 |
C7—C6—C5 | 119.8 (3) | C11—C12—C13 | 111.4 (3) |
C7—C6—H6 | 120.1 | C11—C12—H12A | 109.4 |
C5—C6—H6 | 120.1 | C13—C12—H12A | 109.4 |
C6—C7—C2 | 121.2 (3) | C11—C12—H12B | 109.4 |
C6—C7—H7 | 119.4 | C13—C12—H12B | 109.4 |
C2—C7—H7 | 119.4 | H12A—C12—H12B | 108.0 |
N1—C8—C13 | 111.3 (2) | C8—C13—C12 | 111.4 (2) |
N1—C8—C9 | 110.8 (3) | C8—C13—H13A | 109.3 |
C13—C8—C9 | 111.1 (3) | C12—C13—H13A | 109.3 |
N1—C8—H8 | 107.8 | C8—C13—H13B | 109.3 |
C13—C8—H8 | 107.8 | C12—C13—H13B | 109.3 |
C9—C8—H8 | 107.8 | H13A—C13—H13B | 108.0 |
| | | |
C8—N1—C1—O1 | 0.7 (5) | C3—C2—C7—C6 | −0.1 (4) |
C8—N1—C1—C2 | −177.6 (2) | C1—C2—C7—C6 | 179.2 (3) |
O1—C1—C2—C7 | −28.3 (4) | C1—N1—C8—C13 | −146.5 (3) |
N1—C1—C2—C7 | 150.1 (3) | C1—N1—C8—C9 | 89.3 (3) |
O1—C1—C2—C3 | 150.9 (3) | N1—C8—C9—C10 | 179.5 (3) |
N1—C1—C2—C3 | −30.8 (4) | C13—C8—C9—C10 | 55.2 (3) |
C7—C2—C3—C4 | 1.0 (4) | C8—C9—C10—C11 | −54.8 (4) |
C1—C2—C3—C4 | −178.2 (3) | C9—C10—C11—C12 | 54.6 (4) |
C2—C3—C4—C5 | −0.6 (5) | C10—C11—C12—C13 | −54.1 (4) |
C3—C4—C5—C6 | −0.7 (5) | N1—C8—C13—C12 | −179.8 (3) |
C4—C5—C6—C7 | 1.6 (5) | C9—C8—C13—C12 | −55.8 (3) |
C5—C6—C7—C2 | −1.2 (5) | C11—C12—C13—C8 | 55.2 (4) |
Hydrogen-bond geometry (Å, º) topCg1 is the centroid of the C2–C7 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1n···O1i | 0.80 (3) | 2.32 (3) | 3.065 (3) | 157 (3) |
C13—H13a···Cg1ii | 0.97 | 2.82 | 3.722 (4) | 154 |
C5—H5···Cg1iii | 0.93 | 2.96 | 3.729 (4) | 141 |
Symmetry codes: (i) x−1, y, z; (ii) x, y−1, z; (iii) −x+1, y+1/2, −z. |
Experimental details
Crystal data |
Chemical formula | C13H17NO |
Mr | 203.28 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 293 |
a, b, c (Å) | 5.2372 (3), 6.5841 (4), 16.6029 (12) |
β (°) | 91.176 (2) |
V (Å3) | 572.38 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.28 × 0.17 × 0.12 |
|
Data collection |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5479, 1423, 1105 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.650 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.163, 1.07 |
No. of reflections | 1423 |
No. of parameters | 140 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.22, −0.21 |
Absolute structure | Unk |
Hydrogen-bond geometry (Å, º) topCg1 is the centroid of the C2–C7 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1n···O1i | 0.80 (3) | 2.32 (3) | 3.065 (3) | 157 (3) |
C13—H13a···Cg1ii | 0.97 | 2.82 | 3.722 (4) | 154 |
C5—H5···Cg1iii | 0.93 | 2.96 | 3.729 (4) | 141 |
Symmetry codes: (i) x−1, y, z; (ii) x, y−1, z; (iii) −x+1, y+1/2, −z. |
Acknowledgements
We are thankful to Mr Munawar Hussain, Engineering Cell Government College University, Lahore, for providing supportive services to the Materials Chemistry Laboratory.
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2007). APEX2 & SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Clark, C. R. (1988). Epilepsia, 29, 198–203. CrossRef CAS PubMed Web of Science Google Scholar
Diouf, O., Bourhim, M., Lambert, D. M., Poupaert, J. H., Stables, J. P. & Vamecq, J. (1997). Biomed. Pharmacother. 51, 131–136. CrossRef CAS PubMed Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Leander, J. D., Robertson, D. W., Clark, C. R., Lawson, R. R. & Rathbun, R. C. (1988). Epilepsia, 29, 83–90. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
 | CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open

access
Benzamides are frequently used in the synthesis of new and potent anti-convulsant agents (Clark et al., 1988; Leander et al., 1988; Diouf et al., 1997). The structure of the title compound, (I), a benzamide derivative, is reported herein (Fig. 1).
The benzene ring, adjacent to the carbonyl group, twisted with respect to the plane formed through the central amide group; the N1–C1–C2–C3 torsion angle = -30.8 (4) °. In the same way, the putative mirror plane through the cyclohexyl ring (having a chair conformation) is twisted away from the central plane; the O1–N1–C8–C11 torsion angle is 151.3 (4) °. The anti-disposition of the NH and carbonyl groups allows for the formation of N–H···O hydrogen bonds which leads to the formation supramolecular chains aligned along the a axis, Fig. 2 and Table 1. These are connected into layers in the ab plane via C–H···π interactions, Fig. 2 and Table 1.