organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Cyclo­hexyl­benzamide

aMaterials Chemistry Laboratory, Department of Chemistry, Government College, University, Lahore 54000, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 11 June 2010; accepted 12 June 2010; online 18 June 2010)

The structure of the title compound, C13H17NO, features an anti disposition of the N—H and carbonyl groups. The amide group is twisted with respect to the benzene ring [N–C(=O)–C–C torsion angle = −30.8 (4)°]. In the crystal, C(4) chains propagating in [100] are formed by inter­molecular N–H⋯O hydrogen bonds. Weak C—H⋯π inter­actions link the chains into sheets.

Related literature

For biological applications of benzamides, see: Clark et al. (1988[Clark, C. R. (1988). Epilepsia, 29, 198-203.]); Leander et al. (1988[Leander, J. D., Robertson, D. W., Clark, C. R., Lawson, R. R. & Rathbun, R. C. (1988). Epilepsia, 29, 83-90.]); Diouf et al. (1997[Diouf, O., Bourhim, M., Lambert, D. M., Poupaert, J. H., Stables, J. P. & Vamecq, J. (1997). Biomed. Pharmacother. 51, 131-136.]).

[Scheme 1]

Experimental

Crystal data
  • C13H17NO

  • Mr = 203.28

  • Monoclinic, P 21

  • a = 5.2372 (3) Å

  • b = 6.5841 (4) Å

  • c = 16.6029 (12) Å

  • β = 91.176 (2)°

  • V = 572.38 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.28 × 0.17 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 5479 measured reflections

  • 1423 independent reflections

  • 1105 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.163

  • S = 1.07

  • 1423 reflections

  • 140 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O1i 0.80 (3) 2.32 (3) 3.065 (3) 157 (3)
C13—H13a⋯Cg1ii 0.97 2.82 3.722 (4) 154
C5—H5⋯Cg1iii 0.93 2.96 3.729 (4) 141
Symmetry codes: (i) x-1, y, z; (ii) x, y-1, z; (iii) [-x+1, y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 & SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 & SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

Benzamides are frequently used in the synthesis of new and potent anti-convulsant agents (Clark et al., 1988; Leander et al., 1988; Diouf et al., 1997). The structure of the title compound, (I), a benzamide derivative, is reported herein (Fig. 1).

The benzene ring, adjacent to the carbonyl group, twisted with respect to the plane formed through the central amide group; the N1–C1–C2–C3 torsion angle = -30.8 (4) °. In the same way, the putative mirror plane through the cyclohexyl ring (having a chair conformation) is twisted away from the central plane; the O1–N1–C8–C11 torsion angle is 151.3 (4) °. The anti-disposition of the NH and carbonyl groups allows for the formation of N–H···O hydrogen bonds which leads to the formation supramolecular chains aligned along the a axis, Fig. 2 and Table 1. These are connected into layers in the ab plane via C–H···π interactions, Fig. 2 and Table 1.

Related literature top

For biological applications of benzamides, see: Clark et al. (1988); Leander et al. (1988); Diouf et al. (1997).

Experimental top

A solution of cyclohexyl amine (0.458 µl, 4 mmol) in dichloromethane (15 ml) was treated dropwise with benzoyl chloride (0.463 µl, 4 mmol) in the presence of triethanol amine (5 ml) as a catalyst. The resulting mixture was stirred for 1 h. The precipitates that formed were filtered, dried and crystallized from methanol to yield colourless blocks of (I).

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atom was refined freely. In the absence of significant anomalous scattering effects, 1130 Friedel pairs were averaged in the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view in projection down the b axis of the unit-cell contents for (I), highlighting the formation of layers in the ab plane. The N–H···O and C–H···π interactions are shown as orange and purple dashed lines, respectively. Colour code: O, red; N, blue; C, grey; and H, green.
N-Cyclohexylbenzamide top
Crystal data top
C13H17NOZ = 2
Mr = 203.28F(000) = 220
Monoclinic, P21Dx = 1.179 Mg m3
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 5.2372 (3) ŵ = 0.07 mm1
b = 6.5841 (4) ÅT = 293 K
c = 16.6029 (12) ÅBlock, colourless
β = 91.176 (2)°0.28 × 0.17 × 0.12 mm
V = 572.38 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
1105 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 27.5°, θmin = 1.2°
ϕ and ω scansh = 66
5479 measured reflectionsk = 88
1423 independent reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.1083P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1423 reflectionsΔρmax = 0.22 e Å3
140 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: unk
Primary atom site location: structure-invariant direct methods
Crystal data top
C13H17NOV = 572.38 (6) Å3
Mr = 203.28Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.2372 (3) ŵ = 0.07 mm1
b = 6.5841 (4) ÅT = 293 K
c = 16.6029 (12) Å0.28 × 0.17 × 0.12 mm
β = 91.176 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1105 reflections with I > 2σ(I)
5479 measured reflectionsRint = 0.033
1423 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0451 restraint
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.22 e Å3
1423 reflectionsΔρmin = 0.21 e Å3
140 parametersAbsolute structure: unk
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7158 (3)0.9885 (4)0.23591 (14)0.0636 (8)
N10.2952 (5)0.9238 (4)0.24441 (15)0.0424 (6)
H1n0.157 (6)0.969 (6)0.2345 (18)0.045 (9)*
C10.4923 (5)1.0267 (4)0.21584 (18)0.0415 (7)
C20.4362 (5)1.1979 (5)0.15919 (15)0.0381 (6)
C30.2245 (5)1.2004 (6)0.10682 (16)0.0460 (7)
H30.10771.09410.10710.055*
C40.1894 (6)1.3614 (7)0.05468 (18)0.0575 (9)
H40.04881.36200.01950.069*
C50.3571 (6)1.5201 (6)0.05375 (19)0.0602 (10)
H50.33211.62700.01790.072*
C60.5654 (6)1.5203 (6)0.1069 (2)0.0586 (9)
H60.67851.62920.10760.070*
C70.6038 (6)1.3593 (6)0.15818 (19)0.0495 (8)
H70.74551.35910.19290.059*
C80.3233 (5)0.7589 (4)0.30240 (17)0.0405 (7)
H80.49040.69580.29450.049*
C90.3184 (8)0.8399 (6)0.3885 (2)0.0611 (9)
H9A0.45700.93580.39680.073*
H9B0.15880.91080.39690.073*
C100.3452 (8)0.6680 (7)0.4484 (2)0.0683 (11)
H10A0.51400.60880.44430.082*
H10B0.32960.72180.50240.082*
C110.1481 (6)0.5051 (6)0.4349 (2)0.0636 (10)
H11A0.01980.55930.44610.076*
H11B0.18140.39370.47190.076*
C120.1507 (7)0.4266 (6)0.3493 (2)0.0620 (9)
H12A0.01200.33060.34130.074*
H12B0.31000.35560.34050.074*
C130.1224 (6)0.5985 (5)0.2888 (2)0.0482 (8)
H13A0.13620.54440.23470.058*
H13B0.04550.65910.29340.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0330 (10)0.0681 (17)0.0893 (17)0.0023 (11)0.0042 (10)0.0243 (15)
N10.0333 (12)0.0437 (14)0.0500 (14)0.0042 (11)0.0005 (9)0.0077 (11)
C10.0359 (13)0.0405 (16)0.0479 (15)0.0036 (13)0.0009 (11)0.0004 (13)
C20.0356 (12)0.0421 (15)0.0368 (14)0.0029 (12)0.0050 (10)0.0031 (13)
C30.0398 (14)0.0546 (18)0.0436 (15)0.0001 (14)0.0021 (11)0.0020 (16)
C40.0471 (16)0.080 (2)0.0453 (16)0.0045 (18)0.0018 (13)0.0133 (19)
C50.0554 (17)0.067 (2)0.059 (2)0.0138 (18)0.0137 (15)0.024 (2)
C60.0552 (17)0.0512 (19)0.070 (2)0.0060 (17)0.0147 (15)0.0140 (18)
C70.0426 (14)0.0538 (19)0.0523 (17)0.0035 (14)0.0059 (12)0.0047 (16)
C80.0354 (12)0.0391 (15)0.0470 (16)0.0060 (12)0.0010 (11)0.0046 (13)
C90.084 (2)0.051 (2)0.0476 (17)0.0102 (19)0.0115 (16)0.0008 (16)
C100.082 (2)0.071 (3)0.0513 (19)0.001 (2)0.0104 (17)0.010 (2)
C110.0624 (19)0.062 (2)0.067 (2)0.010 (2)0.0116 (16)0.022 (2)
C120.0633 (19)0.0396 (18)0.083 (3)0.0053 (16)0.0001 (17)0.0068 (18)
C130.0457 (15)0.0427 (17)0.0560 (19)0.0010 (14)0.0021 (13)0.0011 (15)
Geometric parameters (Å, º) top
O1—C11.236 (3)C8—C91.526 (4)
N1—C11.331 (4)C8—H80.9800
N1—C81.456 (4)C9—C101.511 (5)
N1—H1n0.80 (3)C9—H9A0.9700
C1—C21.493 (4)C9—H9B0.9700
C2—C71.379 (4)C10—C111.502 (5)
C2—C31.395 (4)C10—H10A0.9700
C3—C41.379 (5)C10—H10B0.9700
C3—H30.9300C11—C121.512 (5)
C4—C51.365 (5)C11—H11A0.9700
C4—H40.9300C11—H11B0.9700
C5—C61.389 (5)C12—C131.519 (5)
C5—H50.9300C12—H12A0.9700
C6—C71.372 (5)C12—H12B0.9700
C6—H60.9300C13—H13A0.9700
C7—H70.9300C13—H13B0.9700
C8—C131.505 (4)
C1—N1—C8123.1 (2)C10—C9—C8110.6 (3)
C1—N1—H1N116 (3)C10—C9—H9A109.5
C8—N1—H1N120 (2)C8—C9—H9A109.5
O1—C1—N1122.5 (3)C10—C9—H9B109.5
O1—C1—C2119.8 (2)C8—C9—H9B109.5
N1—C1—C2117.7 (2)H9A—C9—H9B108.1
C7—C2—C3118.8 (3)C11—C10—C9112.5 (3)
C7—C2—C1118.2 (2)C11—C10—H10A109.1
C3—C2—C1123.0 (3)C9—C10—H10A109.1
C4—C3—C2119.7 (3)C11—C10—H10B109.1
C4—C3—H3120.2C9—C10—H10B109.1
C2—C3—H3120.2H10A—C10—H10B107.8
C5—C4—C3121.2 (3)C10—C11—C12111.4 (3)
C5—C4—H4119.4C10—C11—H11A109.4
C3—C4—H4119.4C12—C11—H11A109.4
C4—C5—C6119.4 (3)C10—C11—H11B109.4
C4—C5—H5120.3C12—C11—H11B109.4
C6—C5—H5120.3H11A—C11—H11B108.0
C7—C6—C5119.8 (3)C11—C12—C13111.4 (3)
C7—C6—H6120.1C11—C12—H12A109.4
C5—C6—H6120.1C13—C12—H12A109.4
C6—C7—C2121.2 (3)C11—C12—H12B109.4
C6—C7—H7119.4C13—C12—H12B109.4
C2—C7—H7119.4H12A—C12—H12B108.0
N1—C8—C13111.3 (2)C8—C13—C12111.4 (2)
N1—C8—C9110.8 (3)C8—C13—H13A109.3
C13—C8—C9111.1 (3)C12—C13—H13A109.3
N1—C8—H8107.8C8—C13—H13B109.3
C13—C8—H8107.8C12—C13—H13B109.3
C9—C8—H8107.8H13A—C13—H13B108.0
C8—N1—C1—O10.7 (5)C3—C2—C7—C60.1 (4)
C8—N1—C1—C2177.6 (2)C1—C2—C7—C6179.2 (3)
O1—C1—C2—C728.3 (4)C1—N1—C8—C13146.5 (3)
N1—C1—C2—C7150.1 (3)C1—N1—C8—C989.3 (3)
O1—C1—C2—C3150.9 (3)N1—C8—C9—C10179.5 (3)
N1—C1—C2—C330.8 (4)C13—C8—C9—C1055.2 (3)
C7—C2—C3—C41.0 (4)C8—C9—C10—C1154.8 (4)
C1—C2—C3—C4178.2 (3)C9—C10—C11—C1254.6 (4)
C2—C3—C4—C50.6 (5)C10—C11—C12—C1354.1 (4)
C3—C4—C5—C60.7 (5)N1—C8—C13—C12179.8 (3)
C4—C5—C6—C71.6 (5)C9—C8—C13—C1255.8 (3)
C5—C6—C7—C21.2 (5)C11—C12—C13—C855.2 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1n···O1i0.80 (3)2.32 (3)3.065 (3)157 (3)
C13—H13a···Cg1ii0.972.823.722 (4)154
C5—H5···Cg1iii0.932.963.729 (4)141
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x+1, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC13H17NO
Mr203.28
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)5.2372 (3), 6.5841 (4), 16.6029 (12)
β (°) 91.176 (2)
V3)572.38 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.28 × 0.17 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5479, 1423, 1105
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.163, 1.07
No. of reflections1423
No. of parameters140
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.21
Absolute structureUnk

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1n···O1i0.80 (3)2.32 (3)3.065 (3)157 (3)
C13—H13a···Cg1ii0.972.823.722 (4)154
C5—H5···Cg1iii0.932.963.729 (4)141
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x+1, y+1/2, z.
 

Footnotes

Additional correspondence author, e-mail: iuklodhi@yahoo.com.

Acknowledgements

We are thankful to Mr Munawar Hussain, Engineering Cell Government College University, Lahore, for providing supportive services to the Materials Chemistry Laboratory.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 & SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClark, C. R. (1988). Epilepsia, 29, 198–203.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDiouf, O., Bourhim, M., Lambert, D. M., Poupaert, J. H., Stables, J. P. & Vamecq, J. (1997). Biomed. Pharmacother. 51, 131–136.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLeander, J. D., Robertson, D. W., Clark, C. R., Lawson, R. R. & Rathbun, R. C. (1988). Epilepsia, 29, 83–90.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds