organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[1-(4-Bromo­phen­yl)ethyl­­idene]-4-(2,4-dimeth­­oxy­phen­yl)thio­semicarbazide

aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 12 June 2010; accepted 12 June 2010; online 18 June 2010)

In the title compound, C17H18BrN3O2S, the dihedral angle between the aromatic rings is 9.15 (17)°. A bifurcated intra­molecular N—H⋯(N,O) hydrogen bond generates two S(5) rings and a weak intra­molecular C—H⋯S inter­action completes an S(6) ring motif. In the crystal, inversion dimers linked by pairs of N—H⋯S hydrogen bonds generate R22(8) loops and weak C—H⋯S and C—H⋯π inter­actions are also present.

Related literature

For the pharmacological applications of thio­semicarbazones see: Beraldo & Gambino (2004[Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 159-165.]); Pervez et al. (2008[Pervez, H., Iqbal, M. S., Tahir, M. Y., Nasim, F. H., Choudhary, M. I. Khan, K. M. & Yaqub, M. (2008). J. Enz. Inhib. Med. Chem. 23, 848-854.], 2010a[Pervez, H., Manzoor, N., Yaqub, M., Khan, A., Khan, K. M., Nasim, F. H. & Choudhary, M. I. (2010a). Lett. Drug Des. Discov. 7, 102-108.],b[Pervez, H., Iqbal, M. S., Saira, N., Yaqub, M. & Tahir, M. N. (2010b). Acta Cryst. E66, o1169-o1170.]). For related structures, see: Jian et al. (2005[Jian, F., Li, Y. & Xiao, H. (2005). Acta Cryst. E61, o2219-o2220.]); Martínez et al. (2006[Martínez, J., Adrio, L. A., Antelo, J. M., Ortigueira, J. M., Pereira, M. T., López-Torres, M. & Vila, M. J. (2006). J. Organomet. Chem. 691, 2891-2901.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18BrN3O2S

  • Mr = 408.31

  • Monoclinic, P 21 /n

  • a = 5.8390 (2) Å

  • b = 30.3335 (11) Å

  • c = 9.9423 (4) Å

  • β = 94.910 (2)°

  • V = 1754.49 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.48 mm−1

  • T = 296 K

  • 0.25 × 0.22 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.642, Tmax = 0.652

  • 17115 measured reflections

  • 4346 independent reflections

  • 2654 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.100

  • S = 1.01

  • 4346 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 2.12 2.573 (3) 113
N1—H1⋯N3 0.86 2.05 2.538 (3) 115
N2—H2A⋯S1i 0.86 2.84 3.662 (2) 161
C2—H2⋯S1 0.93 2.58 3.248 (3) 129
C17—H17A⋯S1ii 0.96 2.86 3.774 (3) 161
C8—H8ACg1iii 0.96 2.98 3.860 (3) 153
Symmetry codes: (i) -x+2, -y, -z+2; (ii) x+1, y, z; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Thiosemicarbazones have wide pharmacological properties (Beraldo & Gambino, 2004). Prompted by this, we recently reported the synthesis and medicinal importance of some isatins-thiosemicarbazones (Pervez et al., 2008, 2010a,b). Now, we report the synthesis and crystal structure of the title compound (I), (Fig. I).

The crystal structure of (II) i.e. 4-fluoroacetophenone-N-propylthiosemicarbazone (Martinez et al., 2006) and (III) i.e. 4-phenyl-1-(1-phenylethylidene)thiosemicarbazide (Jian, et al., 2005) have been published. The title compound (I) is different from (II) and (III) due to attachment of substituants at the phenyl rings.

In (I), the phenyl ring A (C1–C6) of 2,4-dimethoxyanilino group, B (C11—C16) of 4-bromophenyl are planar with r. m. s. deviations of 0.0034 and 0.0036 Å, respectively. The thiosemicarbazone moiety C (N1—N3/C9/S1) is also planar with r. m. s. deviation of 0.0062 Å from its mean square plane. The dihedral angle between A/B, A/C and B/C is 9.15 (17), 2.07 (17) and 9.12 (16)°, respectively. Two S(5) ring motifs (Bernstein et al., 1995) (Table 1, Fig. 1) are formed due to strong intramolecular H-bonding of N—H···N and N—H···O types. The weak interaction of C—H···S type completes an S(6) ring motif. The molecules are dimerized due to intermolecular interactions of N—H···S type and complete R22(8) ring motif (Fig. 2). The dimers are interlinked through C—H···S interactions (Table 1). The C—H···π interaction (Table 1) also play role in stabilizing the molecules.

Related literature top

For the pharmacological applications of thiosemicarbazones see: Beraldo & Gambino (2004); Pervez et al. (2008, 2010a,b). For related structures, see: Jian et al. (2005); Martínez et al. (2006). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A solution of 4-(2,4-dimethoxyphenyl)thiosemicarbazide (0.15 g, 0.66 mole) in warm ethanol (20 ml) was added drop wise to the stirred solution of 4-bromoacetophenone (0.13 g, 0.66 mol) in warm ethanol (10 ml) containing 2–3 drops of acetic acid. The resultant mixture was then heated under reflux for 30 min. After cooling the reaction mixture to room temperature, the yellow solid was collected by suction filtration, washing with ethanol furnished the title compound in pure form (0.21 g, 95%), m.p. 502 K. Colourless prisms of (I) were grown in chloroform-petroleum ether (1:5) system at room temperature by diffusion method.

Refinement top

The H-atoms were positioned geometrically (N–H = 0.86 Å, C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. The dotted lines indicate the intra-molecular H-bonds.
[Figure 2] Fig. 2. The partial packing of (I), which shows that molecules form dimers.
1-[1-(4-Bromophenyl)ethylidene]-4-(2,4-dimethoxyphenyl)thiosemicarbazide top
Crystal data top
C17H18BrN3O2SF(000) = 832
Mr = 408.31Dx = 1.546 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2654 reflections
a = 5.8390 (2) Åθ = 2.2–28.3°
b = 30.3335 (11) ŵ = 2.48 mm1
c = 9.9423 (4) ÅT = 296 K
β = 94.910 (2)°Prism, colorless
V = 1754.49 (11) Å30.25 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4346 independent reflections
Radiation source: fine-focus sealed tube2654 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 7.5 pixels mm-1θmax = 28.3°, θmin = 2.2°
ω scansh = 47
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 4040
Tmin = 0.642, Tmax = 0.652l = 1313
17115 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0413P)2 + 0.4088P]
where P = (Fo2 + 2Fc2)/3
4346 reflections(Δ/σ)max = 0.001
220 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C17H18BrN3O2SV = 1754.49 (11) Å3
Mr = 408.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.8390 (2) ŵ = 2.48 mm1
b = 30.3335 (11) ÅT = 296 K
c = 9.9423 (4) Å0.25 × 0.22 × 0.20 mm
β = 94.910 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4346 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2654 reflections with I > 2σ(I)
Tmin = 0.642, Tmax = 0.652Rint = 0.044
17115 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.01Δρmax = 0.42 e Å3
4346 reflectionsΔρmin = 0.36 e Å3
220 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.68144 (7)0.28876 (1)0.66065 (3)0.0846 (1)
S10.69373 (12)0.00989 (2)0.87217 (7)0.0577 (2)
O10.7242 (3)0.14610 (6)0.55058 (18)0.0598 (7)
O20.0390 (3)0.09126 (7)0.3147 (2)0.0710 (8)
N10.7530 (3)0.08160 (7)0.7192 (2)0.0504 (7)
N21.0174 (3)0.06989 (7)0.8946 (2)0.0490 (7)
N31.1192 (3)0.10729 (7)0.8520 (2)0.0465 (7)
C10.5629 (4)0.08091 (8)0.6222 (2)0.0453 (8)
C20.3956 (5)0.04927 (10)0.6085 (3)0.0684 (11)
C30.2178 (5)0.05173 (10)0.5075 (3)0.0707 (11)
C40.2059 (4)0.08609 (9)0.4186 (3)0.0536 (9)
C50.3721 (4)0.11870 (9)0.4316 (3)0.0519 (9)
C60.5493 (4)0.11606 (8)0.5315 (2)0.0449 (8)
C70.7459 (5)0.17845 (10)0.4497 (3)0.0718 (11)
C80.1278 (5)0.05715 (11)0.2945 (3)0.0714 (11)
C90.8214 (4)0.05526 (8)0.8225 (2)0.0426 (8)
C101.2991 (4)0.12299 (8)0.9180 (2)0.0413 (8)
C111.3922 (4)0.16334 (8)0.8596 (2)0.0397 (7)
C121.2659 (4)0.18592 (9)0.7571 (3)0.0522 (9)
C131.3493 (5)0.22333 (9)0.7001 (3)0.0585 (10)
C141.5632 (4)0.23844 (9)0.7440 (3)0.0511 (9)
C151.6935 (5)0.21732 (9)0.8453 (3)0.0560 (10)
C161.6074 (4)0.17997 (9)0.9025 (3)0.0508 (9)
C171.4082 (5)0.10312 (9)1.0456 (3)0.0565 (9)
H10.843890.103500.710090.0605*
H20.401570.025640.668310.0820*
H2A1.074560.055880.964810.0587*
H30.105830.029850.500220.0849*
H50.363750.142510.372410.0623*
H7A0.613210.197270.443970.1075*
H7B0.757830.164260.364290.1075*
H7C0.881330.195760.472520.1075*
H8A0.219190.056090.370270.1075*
H8B0.051480.029380.286020.1075*
H8C0.225140.062960.213730.1075*
H121.121060.175520.726130.0626*
H131.260850.238200.632260.0701*
H151.838200.227990.875360.0672*
H161.695790.165640.971450.0610*
H17A1.489710.076851.024620.0848*
H17B1.291340.095891.104180.0848*
H17C1.513610.123881.089730.0848*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1088 (3)0.0700 (2)0.0736 (2)0.0456 (2)0.0001 (2)0.0106 (2)
S10.0585 (4)0.0489 (4)0.0642 (4)0.0114 (3)0.0030 (3)0.0194 (3)
O10.0677 (12)0.0508 (11)0.0587 (12)0.0148 (9)0.0080 (9)0.0172 (9)
O20.0668 (12)0.0697 (14)0.0712 (13)0.0015 (11)0.0242 (10)0.0076 (11)
N10.0543 (12)0.0453 (12)0.0496 (12)0.0150 (10)0.0074 (10)0.0128 (10)
N20.0522 (12)0.0458 (12)0.0470 (12)0.0095 (10)0.0066 (10)0.0129 (10)
N30.0493 (12)0.0431 (12)0.0464 (12)0.0070 (9)0.0005 (10)0.0087 (9)
C10.0483 (14)0.0439 (14)0.0429 (13)0.0044 (11)0.0008 (11)0.0061 (11)
C20.077 (2)0.0571 (18)0.0670 (19)0.0215 (15)0.0181 (16)0.0215 (15)
C30.0721 (19)0.063 (2)0.072 (2)0.0253 (16)0.0223 (16)0.0155 (16)
C40.0529 (16)0.0520 (16)0.0540 (16)0.0031 (12)0.0056 (13)0.0032 (13)
C50.0644 (17)0.0443 (14)0.0462 (15)0.0062 (12)0.0006 (13)0.0072 (11)
C60.0517 (15)0.0390 (13)0.0442 (14)0.0022 (11)0.0051 (12)0.0012 (10)
C70.090 (2)0.0543 (19)0.070 (2)0.0172 (16)0.0010 (17)0.0197 (15)
C80.0591 (18)0.076 (2)0.075 (2)0.0018 (16)0.0180 (15)0.0104 (17)
C90.0461 (14)0.0407 (13)0.0412 (13)0.0013 (10)0.0043 (11)0.0027 (10)
C100.0435 (14)0.0416 (13)0.0384 (13)0.0037 (10)0.0018 (11)0.0006 (10)
C110.0417 (13)0.0388 (13)0.0384 (12)0.0005 (10)0.0025 (10)0.0044 (10)
C120.0475 (15)0.0506 (15)0.0572 (16)0.0094 (12)0.0030 (12)0.0095 (13)
C130.0617 (18)0.0552 (17)0.0567 (17)0.0082 (13)0.0053 (14)0.0109 (13)
C140.0603 (16)0.0469 (15)0.0465 (15)0.0135 (12)0.0075 (13)0.0047 (12)
C150.0539 (16)0.0591 (18)0.0544 (16)0.0181 (13)0.0004 (13)0.0090 (13)
C160.0507 (15)0.0525 (16)0.0480 (14)0.0024 (12)0.0029 (12)0.0005 (12)
C170.0650 (17)0.0505 (16)0.0515 (16)0.0036 (13)0.0099 (13)0.0063 (12)
Geometric parameters (Å, º) top
Br1—C141.895 (3)C11—C121.387 (4)
S1—C91.660 (2)C12—C131.376 (4)
O1—C61.370 (3)C13—C141.366 (4)
O1—C71.417 (3)C14—C151.368 (4)
O2—C41.367 (3)C15—C161.382 (4)
O2—C81.423 (4)C2—H20.9300
N1—C11.407 (3)C3—H30.9300
N1—C91.335 (3)C5—H50.9300
N2—N31.365 (3)C7—H7A0.9600
N2—C91.371 (3)C7—H7B0.9600
N3—C101.282 (3)C7—H7C0.9600
N1—H10.8600C8—H8A0.9600
N2—H2A0.8600C8—H8B0.9600
C1—C21.368 (4)C8—H8C0.9600
C1—C61.394 (3)C12—H120.9300
C2—C31.383 (4)C13—H130.9300
C3—C41.365 (4)C15—H150.9300
C4—C51.384 (4)C16—H160.9300
C5—C61.374 (3)C17—H17A0.9600
C10—C111.478 (3)C17—H17B0.9600
C10—C171.497 (4)C17—H17C0.9600
C11—C161.387 (3)
C6—O1—C7118.27 (19)C14—C15—C16119.2 (3)
C4—O2—C8117.3 (2)C11—C16—C15121.6 (3)
C1—N1—C9133.2 (2)C1—C2—H2119.00
N3—N2—C9118.23 (19)C3—C2—H2119.00
N2—N3—C10120.6 (2)C2—C3—H3120.00
C9—N1—H1113.00C4—C3—H3120.00
C1—N1—H1113.00C4—C5—H5120.00
N3—N2—H2A121.00C6—C5—H5120.00
C9—N2—H2A121.00O1—C7—H7A109.00
C2—C1—C6118.1 (2)O1—C7—H7B109.00
N1—C1—C6115.5 (2)O1—C7—H7C109.00
N1—C1—C2126.4 (2)H7A—C7—H7B109.00
C1—C2—C3121.3 (3)H7A—C7—H7C109.00
C2—C3—C4120.3 (3)H7B—C7—H7C109.00
O2—C4—C3124.8 (2)O2—C8—H8A109.00
O2—C4—C5115.9 (2)O2—C8—H8B109.00
C3—C4—C5119.3 (3)O2—C8—H8C109.00
C4—C5—C6120.3 (3)H8A—C8—H8B109.00
O1—C6—C5124.6 (2)H8A—C8—H8C109.00
C1—C6—C5120.7 (2)H8B—C8—H8C109.00
O1—C6—C1114.75 (19)C11—C12—H12119.00
S1—C9—N1127.77 (18)C13—C12—H12119.00
S1—C9—N2119.25 (17)C12—C13—H13120.00
N1—C9—N2112.9 (2)C14—C13—H13120.00
C11—C10—C17121.5 (2)C14—C15—H15120.00
N3—C10—C11114.80 (19)C16—C15—H15120.00
N3—C10—C17123.7 (2)C11—C16—H16119.00
C10—C11—C16122.3 (2)C15—C16—H16119.00
C12—C11—C16117.2 (2)C10—C17—H17A109.00
C10—C11—C12120.5 (2)C10—C17—H17B109.00
C11—C12—C13121.7 (2)C10—C17—H17C109.00
C12—C13—C14119.4 (3)H17A—C17—H17B109.00
Br1—C14—C13119.2 (2)H17A—C17—H17C109.00
C13—C14—C15120.9 (3)H17B—C17—H17C110.00
Br1—C14—C15119.90 (19)
C7—O1—C6—C1169.2 (2)C2—C3—C4—O2179.3 (3)
C7—O1—C6—C510.1 (3)C2—C3—C4—C50.8 (4)
C8—O2—C4—C33.1 (4)O2—C4—C5—C6178.9 (2)
C8—O2—C4—C5176.9 (2)C3—C4—C5—C61.1 (4)
C9—N1—C1—C22.8 (4)C4—C5—C6—O1178.5 (2)
C9—N1—C1—C6178.0 (2)C4—C5—C6—C10.8 (4)
C1—N1—C9—S10.2 (4)N3—C10—C11—C1211.5 (3)
C1—N1—C9—N2177.7 (2)N3—C10—C11—C16167.7 (2)
C9—N2—N3—C10178.1 (2)C17—C10—C11—C12167.6 (2)
N3—N2—C9—S1179.91 (16)C17—C10—C11—C1613.1 (4)
N3—N2—C9—N11.8 (3)C10—C11—C12—C13179.4 (2)
N2—N3—C10—C11179.44 (19)C16—C11—C12—C130.1 (4)
N2—N3—C10—C171.4 (3)C10—C11—C16—C15178.9 (2)
N1—C1—C2—C3179.0 (3)C12—C11—C16—C150.3 (4)
C6—C1—C2—C30.2 (4)C11—C12—C13—C140.9 (4)
N1—C1—C6—O10.1 (3)C12—C13—C14—Br1177.8 (2)
N1—C1—C6—C5179.5 (2)C12—C13—C14—C151.2 (4)
C2—C1—C6—O1179.3 (2)Br1—C14—C15—C16178.2 (2)
C2—C1—C6—C50.2 (4)C13—C14—C15—C160.7 (4)
C1—C2—C3—C40.1 (4)C14—C15—C16—C110.1 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.122.573 (3)113
N1—H1···N30.862.052.538 (3)115
N2—H2A···S1i0.862.843.662 (2)161
C2—H2···S10.932.583.248 (3)129
C17—H17A···S1ii0.962.863.774 (3)161
C8—H8A···Cg1iii0.962.983.860 (3)153
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC17H18BrN3O2S
Mr408.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)5.8390 (2), 30.3335 (11), 9.9423 (4)
β (°) 94.910 (2)
V3)1754.49 (11)
Z4
Radiation typeMo Kα
µ (mm1)2.48
Crystal size (mm)0.25 × 0.22 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.642, 0.652
No. of measured, independent and
observed [I > 2σ(I)] reflections
17115, 4346, 2654
Rint0.044
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.100, 1.01
No. of reflections4346
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.36

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.122.573 (3)113
N1—H1···N30.862.052.538 (3)115
N2—H2A···S1i0.862.843.662 (2)161
C2—H2···S10.932.583.248 (3)129
C17—H17A···S1ii0.962.863.774 (3)161
C8—H8A···Cg1iii0.962.983.860 (3)153
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z; (iii) x1, y, z.
 

Acknowledgements

NA gratefully acknowledges the Higher Education Commission (HEC), Islamabad, Pakistan, for providing her with a Scholarship under the Indigenous PhD Program and also for partial funding of this research work.

References

First citationBeraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 159–165.  Web of Science CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJian, F., Li, Y. & Xiao, H. (2005). Acta Cryst. E61, o2219–o2220.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMartínez, J., Adrio, L. A., Antelo, J. M., Ortigueira, J. M., Pereira, M. T., López-Torres, M. & Vila, M. J. (2006). J. Organomet. Chem. 691, 2891–2901.  Google Scholar
First citationPervez, H., Iqbal, M. S., Tahir, M. Y., Nasim, F. H., Choudhary, M. I. Khan, K. M. & Yaqub, M. (2008). J. Enz. Inhib. Med. Chem. 23, 848–854.  Web of Science CrossRef CAS Google Scholar
First citationPervez, H., Manzoor, N., Yaqub, M., Khan, A., Khan, K. M., Nasim, F. H. & Choudhary, M. I. (2010a). Lett. Drug Des. Discov. 7, 102–108.  CrossRef CAS Google Scholar
First citationPervez, H., Iqbal, M. S., Saira, N., Yaqub, M. & Tahir, M. N. (2010b). Acta Cryst. E66, o1169–o1170.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds