organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Meth­­oxy­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: azizhej@hotmail.com, akkurt@erciyes.edu.tr

(Received 15 June 2010; accepted 19 June 2010; online 26 June 2010)

The asymmetric unit of the title compound, C13H13NO3S, contains two crystallographically independent mol­ecules in which the dihedral angles between the phenyl and benzene rings are 88.16 (12) and 44.50 (12)°. One of the mol­ecules features an intra­molecular N—H⋯O hydrogen bond. In the crystal, the mol­ecules are linked into dimers by pairs of N—H⋯O hydrogen bonds. The dimers are further connected by C—H⋯O and C—H⋯π inter­actions, forming a three-dimensional network.

Related literature

For the biological activity of sulfonamides, see: Arshad et al. (2008[Arshad, M. N., Khan, I. U. & Zia-ur-Rehman, M. (2008). Acta Cryst. E64, o2283-o2284.]); Gennarti et al. (1994[Gennarti, C., Salom, B., Potenza, D. & Williams, A. (1994). Angew. Chem. Int. Ed. Engl. 33, 2067-2069.]); Kayser et al. (2004[Kayser, F. H., Bienz, K. A., Eckert, J. & Zinkernagel, R. M. (2004). Medical Microbiology, pp. 1-20. Berlin: Thieme Medical.]); Rough et al. (1998[Rough, W. R., Gwaltney, S. L., Cheng, J., Scheidt, K. A., Mc Kerrow, J. H. & Hansell, E. (1998). J. Am. Chem. Soc. 120, 10994-10995.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13NO3S

  • Mr = 263.31

  • Monoclinic, P 21 /n

  • a = 8.7705 (2) Å

  • b = 28.1684 (7) Å

  • c = 10.7256 (3) Å

  • β = 105.968 (1)°

  • V = 2547.53 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.25 × 0.17 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 24823 measured reflections

  • 6318 independent reflections

  • 4145 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.113

  • S = 1.02

  • 6318 reflections

  • 333 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C7′–C12′ phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1′—H1N′⋯O2 0.828 (18) 2.310 (17) 3.074 (2) 153.6 (17)
N1—H1N⋯O1′ 0.843 (17) 2.129 (17) 2.961 (2) 168.7 (17)
N1—H1N⋯O3 0.843 (17) 2.258 (18) 2.592 (2) 103.8 (14)
C4—H4⋯O2′i 0.93 2.47 3.377 (3) 167
C4′—H4′⋯Cg4ii 0.93 2.85 3.601 (2) 138
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+2, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonamides are well known for their enormous potential as biologically active molecules (Rough et al., 1998) in areas such as anti-microbial (Kayser et al., 2004), anti-convulsant (Arshad et al., 2008), anti-cancer agents and for the treatment of inflammatory rheumatic and non-rheumatic processes including onsets and traumatologic lesions (Gennarti et al., 1994). In the present paper, the structure of N-(2-methoxyphenyl)benzene sulfonamide has been determined as part of a research program involving the synthesis and biological evaluation of sulfur containing compounds.

In the crystal structure of the title compound (I), (Fig. 1), there exist two independent molecules, A (with S1) and B (with S1'). Both independent molecules are bent at their S atoms with the C—S—N(H)—C torsion angles of 67.25 (15)° in molecule A and -81.17 (16)° in molecule B. The dihedral angles between the phenyl and benzene rings is 88.16 (12)° in molecule A and 44.50 (12)° in molecule B.

Molecular packing of (I) is stabilized by N–H···O, C—H···O interactions and C—H···π interactions, forming a three dimensional network (Table 1). Fig. 2 shows N—H···O hydrogen bonds between the molecules A and B in the asymmetric unit.

Related literature top

For the biological activity of sulfonamides, see: Arshad et al. (2008); Gennarti et al. (1994); Kayser et al. (2004); Rough et al. (1998).

Experimental top

A mixture benzenesulfonyl chloride (10.0 mmol; 1.45 ml), ortho-methoxy aniline (o-anisidine) (10.0 mmol; 1.12 ml), aqueous sodium carbonate (10%; 15.0 ml) and water (25 ml) was stirred for one hour at room temperature. The crude mixture was washed with water and dried. The product was dissolved in methanol and recrystallized by slow evaporation of the solvent, to generate colourless blocks of (I) in 74% yield.

Refinement top

The H atoms of the NH groups were located in a difference Fourier map and refined with the N—H distance restrained to 0.86 (2) %A. The other H atoms were positioned geometrically using a riding model with C–H = 0.93 and 0.96 Å. All H atoms were refined with isotropic displacement parameters with Uiso(H) = 1.2Ueq(aromatic, NH) and Uiso(H) = 1.5Ueq(methyl).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the two independent molecules in the asymmetric unit of (I0 with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. View of N—H···O hydrogen bonds shown as dashed lines between the two independent molecules in the asymmetric unit.
N-(2-Methoxyphenyl)benzenesulfonamide top
Crystal data top
C13H13NO3SF(000) = 1104
Mr = 263.31Dx = 1.373 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5117 reflections
a = 8.7705 (2) Åθ = 2.5–23.9°
b = 28.1684 (7) ŵ = 0.25 mm1
c = 10.7256 (3) ÅT = 296 K
β = 105.968 (1)°Block, colourless
V = 2547.53 (11) Å30.25 × 0.17 × 0.07 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
4145 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.043
Graphite monochromatorθmax = 28.3°, θmin = 3.3°
ϕ and ω scansh = 1111
24823 measured reflectionsk = 3737
6318 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.3381P]
where P = (Fo2 + 2Fc2)/3
6318 reflections(Δ/σ)max = 0.001
333 parametersΔρmax = 0.29 e Å3
2 restraintsΔρmin = 0.29 e Å3
Crystal data top
C13H13NO3SV = 2547.53 (11) Å3
Mr = 263.31Z = 8
Monoclinic, P21/nMo Kα radiation
a = 8.7705 (2) ŵ = 0.25 mm1
b = 28.1684 (7) ÅT = 296 K
c = 10.7256 (3) Å0.25 × 0.17 × 0.07 mm
β = 105.968 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4145 reflections with I > 2σ(I)
24823 measured reflectionsRint = 0.043
6318 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0472 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.29 e Å3
6318 reflectionsΔρmin = 0.29 e Å3
333 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.33115 (5)0.81887 (2)0.56961 (5)0.0412 (2)
O10.29814 (16)0.77142 (5)0.59898 (15)0.0561 (5)
O20.21225 (14)0.84480 (5)0.47617 (14)0.0518 (5)
O30.68975 (15)0.82034 (5)0.38159 (14)0.0507 (5)
N10.48440 (18)0.81979 (6)0.51516 (16)0.0430 (5)
C10.3503 (3)0.83266 (9)0.8243 (2)0.0681 (9)
C20.3878 (4)0.85873 (11)0.9379 (3)0.0865 (11)
C30.4523 (3)0.90282 (11)0.9397 (3)0.0764 (10)
C40.4848 (3)0.92123 (8)0.8326 (3)0.0663 (9)
C50.4496 (2)0.89536 (7)0.7189 (2)0.0511 (7)
C60.3823 (2)0.85108 (7)0.71581 (19)0.0424 (6)
C70.6322 (2)0.79744 (6)0.57144 (18)0.0388 (6)
C80.6717 (3)0.77602 (7)0.6914 (2)0.0536 (7)
C90.8209 (3)0.75621 (9)0.7392 (3)0.0681 (9)
C100.9276 (3)0.75748 (9)0.6684 (3)0.0728 (9)
C110.8897 (2)0.77854 (8)0.5478 (3)0.0596 (8)
C120.7411 (2)0.79839 (6)0.4983 (2)0.0417 (6)
C130.7966 (3)0.82674 (9)0.3050 (2)0.0653 (9)
S1'0.31232 (5)0.92918 (2)0.25688 (5)0.0434 (2)
O1'0.41671 (16)0.89021 (5)0.30204 (16)0.0599 (5)
O2'0.37153 (17)0.97058 (5)0.21000 (15)0.0587 (5)
O3'0.07087 (16)0.95549 (5)0.29180 (16)0.0619 (5)
N1'0.24881 (18)0.94574 (6)0.37937 (16)0.0432 (6)
C1'0.1023 (3)0.86096 (7)0.1393 (2)0.0540 (7)
C2'0.0250 (3)0.84437 (9)0.0434 (3)0.0675 (9)
C3'0.1041 (3)0.87391 (10)0.0551 (2)0.0720 (10)
C4'0.0567 (3)0.92019 (9)0.0586 (2)0.0687 (9)
C5'0.0710 (3)0.93721 (8)0.0355 (2)0.0542 (7)
C6'0.1504 (2)0.90740 (7)0.13445 (18)0.0412 (6)
C7'0.1746 (2)0.99118 (7)0.37841 (18)0.0415 (6)
C8'0.2668 (3)1.02998 (7)0.4245 (2)0.0570 (8)
C9'0.1992 (3)1.07399 (8)0.4279 (3)0.0711 (10)
C10'0.0390 (3)1.07863 (9)0.3853 (3)0.0694 (10)
C11'0.0561 (3)1.04027 (8)0.3392 (2)0.0593 (8)
C12'0.0103 (2)0.99586 (7)0.33485 (19)0.0453 (7)
C13'0.2368 (3)0.95970 (11)0.2309 (3)0.0931 (13)
H10.303700.802900.821500.0820*
H1N0.476 (2)0.8381 (6)0.4514 (17)0.0520*
H20.369100.846201.012600.1040*
H30.474600.920601.015600.0910*
H40.530600.951100.836000.0800*
H50.471200.907700.645100.0610*
H80.598700.774900.740000.0640*
H90.848300.741900.820500.0820*
H101.027300.744000.701700.0870*
H110.963600.779400.500100.0710*
H13A0.882700.846700.350500.0980*
H13B0.742100.841400.224200.0980*
H13C0.837300.796500.288400.0980*
H1'0.155500.841100.206500.0650*
H1N'0.210 (2)0.9225 (6)0.4068 (19)0.0520*
H2'0.057700.813000.045300.0810*
H3'0.190200.862500.119700.0860*
H4'0.111300.940100.125200.0820*
H5'0.103700.968500.032800.0650*
H8'0.376401.026600.453800.0680*
H9'0.262601.100200.459100.0850*
H10'0.006801.108300.387400.0830*
H11'0.165601.044100.310800.0710*
H13D0.289500.970500.293100.1400*
H13E0.278600.929300.197700.1400*
H13F0.253900.982100.160900.1400*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0350 (2)0.0431 (3)0.0485 (3)0.0004 (2)0.0165 (2)0.0006 (2)
O10.0577 (9)0.0437 (8)0.0721 (11)0.0080 (7)0.0265 (8)0.0027 (7)
O20.0329 (7)0.0658 (9)0.0574 (9)0.0070 (6)0.0137 (6)0.0053 (7)
O30.0403 (7)0.0654 (9)0.0508 (8)0.0048 (7)0.0200 (6)0.0008 (7)
N10.0351 (8)0.0546 (10)0.0419 (9)0.0105 (7)0.0148 (7)0.0079 (7)
C10.0940 (18)0.0595 (15)0.0663 (16)0.0063 (13)0.0479 (14)0.0035 (12)
C20.114 (2)0.098 (2)0.0639 (18)0.0013 (19)0.0522 (17)0.0102 (16)
C30.0722 (17)0.093 (2)0.0642 (17)0.0062 (15)0.0193 (14)0.0275 (15)
C40.0516 (13)0.0576 (15)0.0858 (19)0.0042 (11)0.0126 (13)0.0189 (13)
C50.0466 (11)0.0494 (12)0.0588 (14)0.0019 (10)0.0169 (10)0.0001 (10)
C60.0410 (10)0.0436 (11)0.0469 (11)0.0050 (8)0.0195 (9)0.0004 (9)
C70.0333 (9)0.0354 (10)0.0463 (11)0.0035 (8)0.0084 (8)0.0031 (8)
C80.0521 (12)0.0505 (13)0.0560 (13)0.0049 (10)0.0114 (10)0.0089 (10)
C90.0635 (15)0.0601 (15)0.0686 (16)0.0082 (12)0.0022 (13)0.0190 (12)
C100.0448 (12)0.0618 (16)0.101 (2)0.0167 (11)0.0017 (13)0.0162 (14)
C110.0365 (11)0.0537 (13)0.0886 (18)0.0076 (10)0.0174 (11)0.0007 (12)
C120.0328 (9)0.0362 (10)0.0543 (12)0.0000 (8)0.0091 (8)0.0062 (9)
C130.0596 (13)0.0753 (16)0.0730 (16)0.0073 (12)0.0383 (13)0.0062 (13)
S1'0.0351 (2)0.0419 (3)0.0543 (3)0.0050 (2)0.0143 (2)0.0066 (2)
O1'0.0452 (8)0.0579 (9)0.0768 (11)0.0199 (7)0.0172 (7)0.0121 (8)
O2'0.0542 (8)0.0521 (9)0.0770 (11)0.0079 (7)0.0304 (8)0.0062 (8)
O3'0.0368 (7)0.0664 (10)0.0780 (11)0.0051 (7)0.0085 (7)0.0066 (8)
N1'0.0405 (9)0.0425 (10)0.0463 (10)0.0013 (7)0.0113 (7)0.0067 (7)
C1'0.0641 (13)0.0433 (12)0.0555 (13)0.0007 (10)0.0178 (11)0.0076 (10)
C2'0.0769 (16)0.0555 (15)0.0686 (16)0.0142 (12)0.0174 (14)0.0068 (12)
C3'0.0709 (16)0.0831 (19)0.0549 (15)0.0082 (14)0.0053 (12)0.0136 (13)
C4'0.0729 (16)0.0741 (17)0.0503 (14)0.0100 (13)0.0023 (12)0.0064 (12)
C5'0.0635 (13)0.0466 (12)0.0515 (13)0.0081 (10)0.0141 (11)0.0089 (10)
C6'0.0431 (10)0.0406 (11)0.0429 (11)0.0061 (8)0.0168 (9)0.0027 (8)
C7'0.0403 (10)0.0456 (11)0.0391 (10)0.0035 (8)0.0120 (8)0.0001 (8)
C8'0.0460 (11)0.0542 (13)0.0696 (15)0.0039 (10)0.0141 (11)0.0114 (11)
C9'0.0695 (16)0.0507 (14)0.094 (2)0.0067 (12)0.0242 (14)0.0202 (13)
C10'0.0766 (17)0.0563 (15)0.0807 (18)0.0155 (13)0.0306 (14)0.0106 (13)
C11'0.0474 (12)0.0714 (16)0.0611 (15)0.0170 (11)0.0183 (11)0.0006 (12)
C12'0.0389 (10)0.0543 (13)0.0433 (11)0.0013 (9)0.0122 (9)0.0005 (9)
C13'0.0414 (13)0.098 (2)0.123 (3)0.0113 (13)0.0060 (14)0.0054 (18)
Geometric parameters (Å, º) top
S1—O11.4212 (15)C5—H50.9300
S1—O21.4319 (15)C8—H80.9300
S1—N11.6063 (17)C9—H90.9300
S1—C61.760 (2)C10—H100.9300
S1'—C6'1.7582 (19)C11—H110.9300
S1'—N1'1.6299 (17)C13—H13A0.9600
S1'—O1'1.4260 (15)C13—H13C0.9600
S1'—O2'1.4235 (15)C13—H13B0.9600
O3—C121.357 (2)C1'—C2'1.375 (4)
O3—C131.417 (3)C1'—C6'1.380 (3)
O3'—C12'1.354 (2)C2'—C3'1.374 (4)
O3'—C13'1.427 (3)C3'—C4'1.372 (4)
N1—C71.418 (2)C4'—C5'1.372 (3)
N1—H1N0.843 (17)C5'—C6'1.382 (3)
N1'—C7'1.435 (3)C7'—C12'1.394 (3)
N1'—H1N'0.828 (18)C7'—C8'1.369 (3)
C1—C21.383 (4)C8'—C9'1.379 (3)
C1—C61.372 (3)C9'—C10'1.359 (4)
C2—C31.363 (4)C10'—C11'1.371 (4)
C3—C41.360 (4)C11'—C12'1.386 (3)
C4—C51.381 (4)C1'—H1'0.9300
C5—C61.376 (3)C2'—H2'0.9300
C7—C121.393 (3)C3'—H3'0.9300
C7—C81.376 (3)C4'—H4'0.9300
C8—C91.385 (4)C5'—H5'0.9300
C9—C101.358 (4)C8'—H8'0.9300
C10—C111.378 (4)C9'—H9'0.9300
C11—C121.383 (3)C10'—H10'0.9300
C1—H10.9300C11'—H11'0.9300
C2—H20.9300C13'—H13D0.9600
C3—H30.9300C13'—H13E0.9600
C4—H40.9300C13'—H13F0.9600
O1—S1—O2118.77 (9)C9—C10—H10120.00
O1—S1—N1109.73 (9)C11—C10—H10120.00
O1—S1—C6107.75 (9)C10—C11—H11120.00
O2—S1—N1104.98 (9)C12—C11—H11120.00
O2—S1—C6108.59 (9)O3—C13—H13A109.00
N1—S1—C6106.38 (9)H13A—C13—H13C109.00
O1'—S1'—O2'119.21 (9)H13B—C13—H13C109.00
O1'—S1'—N1'106.05 (9)H13A—C13—H13B109.00
O1'—S1'—C6'107.24 (9)O3—C13—H13B109.00
O2'—S1'—N1'106.80 (9)O3—C13—H13C110.00
O2'—S1'—C6'108.68 (9)C2'—C1'—C6'119.2 (2)
N1'—S1'—C6'108.48 (9)C1'—C2'—C3'120.3 (2)
C12—O3—C13119.21 (16)C2'—C3'—C4'120.3 (2)
C12'—O3'—C13'117.44 (18)C3'—C4'—C5'120.3 (2)
S1—N1—C7126.62 (14)C4'—C5'—C6'119.3 (2)
C7—N1—H1N118.8 (12)S1'—C6'—C5'119.63 (16)
S1—N1—H1N114.2 (12)C1'—C6'—C5'120.68 (19)
S1'—N1'—C7'120.30 (13)S1'—C6'—C1'119.68 (15)
C7'—N1'—H1N'118.5 (13)C8'—C7'—C12'119.96 (19)
S1'—N1'—H1N'109.0 (13)N1'—C7'—C8'119.22 (18)
C2—C1—C6119.5 (2)N1'—C7'—C12'120.80 (17)
C1—C2—C3119.6 (3)C7'—C8'—C9'120.8 (2)
C2—C3—C4121.2 (3)C8'—C9'—C10'119.3 (2)
C3—C4—C5119.8 (2)C9'—C10'—C11'121.0 (2)
C4—C5—C6119.3 (2)C10'—C11'—C12'120.3 (2)
C1—C6—C5120.58 (19)C7'—C12'—C11'118.65 (19)
S1—C6—C1119.96 (16)O3'—C12'—C7'115.67 (17)
S1—C6—C5119.42 (15)O3'—C12'—C11'125.68 (18)
C8—C7—C12119.97 (19)C2'—C1'—H1'120.00
N1—C7—C8123.93 (19)C6'—C1'—H1'120.00
N1—C7—C12116.10 (16)C1'—C2'—H2'120.00
C7—C8—C9119.5 (2)C3'—C2'—H2'120.00
C8—C9—C10120.6 (3)C2'—C3'—H3'120.00
C9—C10—C11120.7 (3)C4'—C3'—H3'120.00
C10—C11—C12119.5 (2)C3'—C4'—H4'120.00
C7—C12—C11119.7 (2)C5'—C4'—H4'120.00
O3—C12—C7115.04 (16)C4'—C5'—H5'120.00
O3—C12—C11125.23 (19)C6'—C5'—H5'120.00
C6—C1—H1120.00C7'—C8'—H8'120.00
C2—C1—H1120.00C9'—C8'—H8'120.00
C3—C2—H2120.00C8'—C9'—H9'120.00
C1—C2—H2120.00C10'—C9'—H9'120.00
C4—C3—H3119.00C9'—C10'—H10'119.00
C2—C3—H3119.00C11'—C10'—H10'120.00
C5—C4—H4120.00C10'—C11'—H11'120.00
C3—C4—H4120.00C12'—C11'—H11'120.00
C4—C5—H5120.00O3'—C13'—H13D109.00
C6—C5—H5120.00O3'—C13'—H13E109.00
C7—C8—H8120.00O3'—C13'—H13F109.00
C9—C8—H8120.00H13D—C13'—H13E109.00
C10—C9—H9120.00H13D—C13'—H13F109.00
C8—C9—H9120.00H13E—C13'—H13F110.00
O1—S1—N1—C749.05 (18)C4—C5—C6—S1177.86 (17)
O2—S1—N1—C7177.75 (15)C4—C5—C6—C10.0 (3)
C6—S1—N1—C767.25 (18)C12—C7—C8—C91.0 (3)
O1—S1—C6—C114.8 (2)N1—C7—C12—O30.7 (2)
O1—S1—C6—C5167.32 (15)N1—C7—C8—C9178.4 (2)
O2—S1—C6—C1115.07 (18)C8—C7—C12—O3179.93 (17)
O2—S1—C6—C562.83 (17)C8—C7—C12—C111.2 (3)
N1—S1—C6—C1132.41 (18)N1—C7—C12—C11178.21 (18)
N1—S1—C6—C549.70 (18)C7—C8—C9—C100.5 (4)
N1'—S1'—C6'—C5'95.33 (18)C8—C9—C10—C110.1 (4)
O1'—S1'—N1'—C7'163.92 (14)C9—C10—C11—C120.3 (4)
O2'—S1'—N1'—C7'35.80 (17)C10—C11—C12—C70.8 (3)
C6'—S1'—N1'—C7'81.17 (16)C10—C11—C12—O3179.6 (2)
O1'—S1'—C6'—C1'30.5 (2)C6'—C1'—C2'—C3'0.7 (4)
O1'—S1'—C6'—C5'150.54 (17)C2'—C1'—C6'—S1'179.66 (19)
O2'—S1'—C6'—C1'160.64 (17)C2'—C1'—C6'—C5'0.7 (3)
O2'—S1'—C6'—C5'20.4 (2)C1'—C2'—C3'—C4'0.0 (4)
N1'—S1'—C6'—C1'83.61 (19)C2'—C3'—C4'—C5'0.7 (4)
C13—O3—C12—C7174.60 (17)C3'—C4'—C5'—C6'0.6 (4)
C13—O3—C12—C114.2 (3)C4'—C5'—C6'—S1'179.01 (18)
C13'—O3'—C12'—C7'172.1 (2)C4'—C5'—C6'—C1'0.1 (3)
C13'—O3'—C12'—C11'8.2 (3)N1'—C7'—C8'—C9'178.5 (2)
S1—N1—C7—C88.1 (3)C12'—C7'—C8'—C9'0.3 (3)
S1—N1—C7—C12172.47 (14)N1'—C7'—C12'—O3'1.5 (3)
S1'—N1'—C7'—C8'88.1 (2)N1'—C7'—C12'—C11'178.22 (18)
S1'—N1'—C7'—C12'93.8 (2)C8'—C7'—C12'—O3'179.62 (18)
C2—C1—C6—C50.7 (4)C8'—C7'—C12'—C11'0.1 (3)
C6—C1—C2—C31.6 (4)C7'—C8'—C9'—C10'0.3 (4)
C2—C1—C6—S1178.6 (2)C8'—C9'—C10'—C11'0.1 (4)
C1—C2—C3—C41.9 (5)C9'—C10'—C11'—C12'0.3 (4)
C2—C3—C4—C51.2 (4)C10'—C11'—C12'—O3'179.9 (2)
C3—C4—C5—C60.2 (4)C10'—C11'—C12'—C7'0.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C7'–C12' phenyl ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.828 (18)2.310 (17)3.074 (2)153.6 (17)
N1—H1N···O10.843 (17)2.129 (17)2.961 (2)168.7 (17)
N1—H1N···O30.843 (17)2.258 (18)2.592 (2)103.8 (14)
C4—H4···O2i0.932.473.377 (3)167
C4—H4···Cg4ii0.932.853.601 (2)138
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC13H13NO3S
Mr263.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.7705 (2), 28.1684 (7), 10.7256 (3)
β (°) 105.968 (1)
V3)2547.53 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.25 × 0.17 × 0.07
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
24823, 6318, 4145
Rint0.043
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.113, 1.02
No. of reflections6318
No. of parameters333
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.29

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C7'–C12' phenyl ring.
D—H···AD—HH···AD···AD—H···A
N1'—H1N'···O20.828 (18)2.310 (17)3.074 (2)153.6 (17)
N1—H1N···O1'0.843 (17)2.129 (17)2.961 (2)168.7 (17)
N1—H1N···O30.843 (17)2.258 (18)2.592 (2)103.8 (14)
C4—H4···O2'i0.932.473.377 (3)167
C4'—H4'···Cg4ii0.932.853.601 (2)138
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z.
 

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for financial support to purchase the diffractometer.

References

First citationArshad, M. N., Khan, I. U. & Zia-ur-Rehman, M. (2008). Acta Cryst. E64, o2283–o2284.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGennarti, C., Salom, B., Potenza, D. & Williams, A. (1994). Angew. Chem. Int. Ed. Engl. 33, 2067–2069.  Google Scholar
First citationKayser, F. H., Bienz, K. A., Eckert, J. & Zinkernagel, R. M. (2004). Medical Microbiology, pp. 1–20. Berlin: Thieme Medical.  Google Scholar
First citationRough, W. R., Gwaltney, S. L., Cheng, J., Scheidt, K. A., Mc Kerrow, J. H. & Hansell, E. (1998). J. Am. Chem. Soc. 120, 10994–10995.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds