organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1830-o1831

2,3-Di­methyl-6-nitro­quinoxaline

aSchool of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 18 June 2010; accepted 23 June 2010; online 26 June 2010)

The asymmetric unit of the title quinoxaline compound, C10H9N3O2, contains two crystallographically independent mol­ecules (A and B). The quinoxaline ring systems are essentially planar, with maximum deviations of 0.006 (1) and 0.017 (1) Å, respectively, for mol­ecules A and B. In mol­ecule A, the dihedral angle formed between the quinoxaline ring system and nitro group is 10.94 (3)° [6.31 (13)° for mol­ecule B]. In the crystal, mol­ecules are linked into chains propagating along [001]: one forms zigzag chains linked by C—H⋯O hydrogen bonds, whilst the other forms ladder-like chains by way of C—H⋯N and C—H⋯O hydrogen bonds. The packing is further consolidated by weak ππ inter­actions [range of centroid–centroid distances = 3.5895 (7)–3.6324 (7) Å].

Related literature

For general background to and applications of the title quinoxaline compound, see: Darabi et al. (2008[Darabi, H. R., Tahoori, F., Aghapoor, K., Taala, F. & Mohsenzadeh, F. (2008). J. Braz. Chem. Soc. 19, 1646-1652.]). For the synthesis, see: Ajaikumar & Pandurangan (2009[Ajaikumar, S. & Pandurangan, A. (2009). Appl. Catal. A, 357, 184-192.]); Darabi et al. (2009[Darabi, H. R., Aghapoor, K., Mohsenzadeh, F., Taala, F., Asadollahnejad, N. & Badiei, A. (2009). Catal. Lett. 133, 84-89.]). For related quinoxaline structures, see: Ghalib et al. (2010[Ghalib, R. M., Hashim, R., Sulaiman, O., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1494.]); Wozniak et al. (1993[Wozniak, K., Krygowski, T. M., Grech, E., Kolodziejski, W. & Klinowski, J. (1993). J. Phys. Chem. 97, 1862-1867.]). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9N3O2

  • Mr = 203.20

  • Monoclinic, P 21 /c

  • a = 7.1125 (7) Å

  • b = 22.490 (2) Å

  • c = 12.9596 (10) Å

  • β = 115.026 (4)°

  • V = 1878.4 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.26 × 0.21 × 0.10 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.990

  • 52279 measured reflections

  • 7510 independent reflections

  • 5559 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.136

  • S = 1.03

  • 7510 reflections

  • 275 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3A—H3A⋯N2Ai 0.93 2.56 3.4486 (14) 160
C9B—H9D⋯O1Bii 0.96 2.58 3.5380 (14) 176
C10A—H10A⋯O2Ai 0.96 2.38 3.3355 (15) 171
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The direct condensation of various benzene-1,2-diamines with 1,2-dicarboxyl compounds has been successfully achieved in excellent yields using (NH4Cl-CH3OH) catalyst system at room temperature (Darabi et al., 2008). Here in this study our method comprises the synthesis of the title compound by the reaction of 4-nitro-o-phenylenediamine and butanedione in distilled water. The procedure can be performed for a broad scope of quinoxaline derivatives and is eco-friendly.

The asymmetric unit of the title quinoxaline compound comprises of two crystallographically independent 2,3-dimethyl-6-nitroquinoxaline molecules, designated molecules A and B (Fig. 1). The two independent molecules having closely similar geometries, as shown in the superposition of the non-H atoms of molecules A and B (Fig. 2) using XP in SHELXTL (Sheldrick, 2008), giving an r.m.s. deviation of 0.116 Å.

In each molecule, the quinoxaline ring system (C1-C8/N1/N2) is essentially planar, with maximum deviations of -0.006 (1) and -0.017 (1) Å, respectively, for atoms C1A of molecule A and C3B of molecule B. There are slight inclinations between the quinoxaline ring systems and nitro groups, as indicated by the dihedral angles formed of 10.94 (3) and 6.31 (13)°, respectively, for molecules A and B. The bond lengths and angles are comparable to those observed in the reported quinoxaline structures (Ghalib et al., 2010; Wozniak et al., 1993).

The interesting feature of the crystal packing (Fig. 3) is that no intermolecular hydrogen bond is observed between the two independent molecules and they are packed in different manners. Adjacent molecules A are linked by intermolecular C3A—H3A···N2A and C10A—H10A···O2A hydrogen bonds (Table 1) into ladder-like chains incorporating R22(13) ring motifs (Bernstein et al., 1995) whereas intermolecular C9B—H9D···O1B hydrogen bonds (Table 1) link adjacent molecules B into zig-zag shaped chains. Both chains are running along the [001] direction. Further consolidation of the crystal packing is provided by weak Cg1···Cg2 and Cg1···Cg3 interactions [Cg1···Cg2 = 3.5895 (7) Å, symmetry code: x, y, z; Cg1···Cg2 = 3.6324 (7) Å, symmetry code: x-1, y, z; Cg1···Cg3 = 3.6228 (7) Å, symmetry code: x, y, z; Cg1 and Cg2 are the centroids of the C2A–C7A and C2B–C7B benzene rings, respectively; Cg3 is the centroid of the C1B/N1B/C2B/C7B/N2B/C8B pyrazine ring].

Related literature top

For general background to and applications of the title quinoxaline compound, see: Darabi et al. (2008). For the synthesis, see: Ajaikumar & Pandurangan (2009); Darabi et al. (2009). For related quinoxaline structures, see: Ghalib et al. (2010); Wozniak et al. (1993). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized as reported in the literatures (Darabi et al., 2009; Ajaikumar & Pandurangan, 2009). A mixture of 4-nitro-o-phenylenediamine (1.5310 g) and butanedione (0.8775 g) in molar ratio 1:1 were refluxed in distilled water for 1 h. The reaction mixture was dried on rota vapor at low pressure and then recrystallized with a 1:1 mixture of alcohol-chloroform to afford brownish crystals of the title compound (1.76 g, M.p. 406 K).

Refinement top

All H atoms were placed in their calculated positions, with C—H = 0.93 or 0.96 Å, and refined using a riding model, with Uiso = 1.2 or 1.5 Ueq(C). The rotating group model is applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30 % probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Fit of molecule A (dashed lines) on molecule B (solid lines). H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The crystal structure of (I), viewed along the a axis, showing the molecules being linked into one-dimensional chains along the [001] direction. Intermolecular hydrogen bonds are shown as dashed lines.
2,3-Dimethyl-6-nitroquinoxaline top
Crystal data top
C10H9N3O2F(000) = 848
Mr = 203.20Dx = 1.437 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9916 reflections
a = 7.1125 (7) Åθ = 3.4–33.5°
b = 22.490 (2) ŵ = 0.10 mm1
c = 12.9596 (10) ÅT = 100 K
β = 115.026 (4)°Block, brown
V = 1878.4 (3) Å30.26 × 0.21 × 0.10 mm
Z = 8
Data collection top
Bruker APEXII DUO CCD
diffractometer
7510 independent reflections
Radiation source: fine-focus sealed tube5559 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 33.8°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1011
Tmin = 0.973, Tmax = 0.990k = 3535
52279 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.077P)2 + 0.2747P]
where P = (Fo2 + 2Fc2)/3
7510 reflections(Δ/σ)max = 0.001
275 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C10H9N3O2V = 1878.4 (3) Å3
Mr = 203.20Z = 8
Monoclinic, P21/cMo Kα radiation
a = 7.1125 (7) ŵ = 0.10 mm1
b = 22.490 (2) ÅT = 100 K
c = 12.9596 (10) Å0.26 × 0.21 × 0.10 mm
β = 115.026 (4)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
7510 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5559 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.990Rint = 0.043
52279 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.03Δρmax = 0.55 e Å3
7510 reflectionsΔρmin = 0.20 e Å3
275 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.42483 (15)0.54231 (3)0.13432 (7)0.03320 (19)
O2A0.40149 (14)0.57864 (4)0.28272 (7)0.03070 (18)
N1A0.46872 (13)0.81176 (4)0.03295 (7)0.02043 (16)
N2A0.50093 (12)0.79631 (4)0.25642 (7)0.01853 (15)
N3A0.41730 (13)0.58434 (4)0.19278 (7)0.02205 (16)
C1A0.49512 (15)0.85691 (4)0.10172 (8)0.02068 (17)
C2A0.45607 (13)0.75638 (4)0.07370 (8)0.01702 (16)
C3A0.42621 (14)0.70659 (4)0.00252 (8)0.01940 (17)
H3A0.41600.71160.07090.023*
C4A0.41210 (14)0.65075 (4)0.04132 (8)0.01985 (17)
H4A0.39150.61770.00530.024*
C5A0.42934 (14)0.64452 (4)0.15257 (8)0.01822 (16)
C6A0.45822 (14)0.69133 (4)0.22529 (8)0.01792 (16)
H6A0.46860.68550.29850.022*
C7A0.47173 (13)0.74866 (4)0.18519 (7)0.01652 (15)
C8A0.51266 (14)0.84900 (4)0.21625 (8)0.01909 (16)
C9A0.54442 (18)0.90164 (5)0.29221 (9)0.0257 (2)
H9A0.56500.88840.36670.039*
H9B0.42440.92690.26130.039*
H9C0.66420.92340.29750.039*
C10A0.5085 (2)0.91790 (5)0.05931 (10)0.0309 (2)
H10A0.48900.91560.01860.046*
H10B0.64250.93460.10490.046*
H10C0.40270.94260.06430.046*
O1B1.02498 (14)0.88142 (4)0.11899 (7)0.03279 (18)
O2B1.01367 (14)0.86371 (3)0.28010 (7)0.03235 (18)
N1B0.91353 (13)0.60539 (4)0.08423 (7)0.02072 (15)
N2B0.96057 (12)0.64557 (4)0.30076 (7)0.01937 (15)
N3B1.00834 (13)0.84739 (4)0.18868 (8)0.02304 (17)
C1B0.91658 (15)0.56851 (4)0.16330 (8)0.02119 (17)
C2B0.93380 (13)0.66464 (4)0.11081 (8)0.01795 (16)
C3B0.92863 (15)0.70603 (4)0.02753 (8)0.02017 (17)
H3B0.90910.69280.04430.024*
C4B0.95218 (14)0.76554 (4)0.05198 (8)0.02043 (17)
H4B0.94960.79300.00220.025*
C5B0.98036 (14)0.78392 (4)0.16108 (8)0.01887 (16)
C6B0.98399 (14)0.74548 (4)0.24403 (8)0.01843 (16)
H6B1.00230.75950.31520.022*
C7B0.95944 (13)0.68435 (4)0.21894 (8)0.01721 (16)
C8B0.93904 (15)0.58899 (4)0.27364 (8)0.02046 (17)
C9B0.93881 (19)0.54547 (5)0.36108 (9)0.0285 (2)
H9D0.95540.56640.42890.043*
H9E1.05120.51790.37860.043*
H9F0.80970.52420.33180.043*
C10B0.8977 (2)0.50367 (5)0.13618 (11)0.0306 (2)
H10D0.88900.49780.06090.046*
H10E0.77470.48830.13990.046*
H10F1.01710.48320.19030.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0509 (5)0.0197 (3)0.0321 (4)0.0016 (3)0.0206 (4)0.0041 (3)
O2A0.0432 (5)0.0283 (4)0.0244 (4)0.0055 (3)0.0179 (3)0.0018 (3)
N1A0.0232 (4)0.0210 (4)0.0172 (4)0.0026 (3)0.0086 (3)0.0016 (3)
N2A0.0196 (3)0.0201 (3)0.0165 (3)0.0004 (3)0.0082 (3)0.0012 (3)
N3A0.0244 (4)0.0203 (4)0.0210 (4)0.0024 (3)0.0092 (3)0.0006 (3)
C1A0.0230 (4)0.0203 (4)0.0185 (4)0.0031 (3)0.0085 (3)0.0016 (3)
C2A0.0161 (4)0.0199 (4)0.0152 (4)0.0017 (3)0.0067 (3)0.0005 (3)
C3A0.0208 (4)0.0232 (4)0.0153 (4)0.0006 (3)0.0086 (3)0.0019 (3)
C4A0.0204 (4)0.0216 (4)0.0182 (4)0.0013 (3)0.0088 (3)0.0033 (3)
C5A0.0174 (4)0.0188 (4)0.0187 (4)0.0010 (3)0.0079 (3)0.0003 (3)
C6A0.0175 (4)0.0208 (4)0.0157 (4)0.0001 (3)0.0073 (3)0.0004 (3)
C7A0.0149 (3)0.0201 (4)0.0145 (4)0.0004 (3)0.0061 (3)0.0010 (3)
C8A0.0195 (4)0.0202 (4)0.0178 (4)0.0013 (3)0.0081 (3)0.0011 (3)
C9A0.0338 (5)0.0209 (4)0.0239 (5)0.0006 (4)0.0137 (4)0.0044 (4)
C10A0.0488 (7)0.0204 (4)0.0243 (5)0.0037 (4)0.0162 (5)0.0043 (4)
O1B0.0440 (5)0.0202 (3)0.0365 (5)0.0034 (3)0.0192 (4)0.0045 (3)
O2B0.0469 (5)0.0206 (3)0.0330 (4)0.0026 (3)0.0203 (4)0.0061 (3)
N1B0.0221 (4)0.0186 (3)0.0209 (4)0.0005 (3)0.0085 (3)0.0020 (3)
N2B0.0200 (3)0.0183 (3)0.0195 (4)0.0003 (3)0.0081 (3)0.0010 (3)
N3B0.0229 (4)0.0176 (3)0.0284 (4)0.0011 (3)0.0106 (3)0.0001 (3)
C1B0.0223 (4)0.0171 (4)0.0234 (4)0.0008 (3)0.0089 (3)0.0009 (3)
C2B0.0159 (4)0.0186 (4)0.0187 (4)0.0005 (3)0.0066 (3)0.0011 (3)
C3B0.0208 (4)0.0212 (4)0.0188 (4)0.0017 (3)0.0086 (3)0.0003 (3)
C4B0.0194 (4)0.0207 (4)0.0213 (4)0.0007 (3)0.0087 (3)0.0018 (3)
C5B0.0174 (4)0.0160 (4)0.0233 (4)0.0009 (3)0.0087 (3)0.0006 (3)
C6B0.0180 (4)0.0181 (4)0.0198 (4)0.0009 (3)0.0085 (3)0.0017 (3)
C7B0.0157 (3)0.0173 (4)0.0186 (4)0.0006 (3)0.0072 (3)0.0010 (3)
C8B0.0206 (4)0.0190 (4)0.0209 (4)0.0009 (3)0.0079 (3)0.0014 (3)
C9B0.0386 (6)0.0209 (4)0.0255 (5)0.0002 (4)0.0131 (4)0.0042 (4)
C10B0.0433 (6)0.0176 (4)0.0334 (6)0.0009 (4)0.0188 (5)0.0027 (4)
Geometric parameters (Å, º) top
O1A—N3A1.2267 (11)O1B—N3B1.2272 (11)
O2A—N3A1.2242 (11)O2B—N3B1.2255 (12)
N1A—C1A1.3111 (12)N1B—C1B1.3114 (12)
N1A—C2A1.3705 (12)N1B—C2B1.3686 (12)
N2A—C8A1.3111 (12)N2B—C8B1.3117 (12)
N2A—C7A1.3717 (11)N2B—C7B1.3703 (12)
N3A—C5A1.4658 (12)N3B—C5B1.4646 (12)
C1A—C8A1.4469 (13)C1B—C8B1.4454 (14)
C1A—C10A1.4956 (14)C1B—C10B1.4927 (14)
C2A—C3A1.4087 (13)C2B—C7B1.4062 (13)
C2A—C7A1.4121 (12)C2B—C3B1.4138 (13)
C3A—C4A1.3722 (13)C3B—C4B1.3693 (13)
C3A—H3A0.9300C3B—H3B0.9300
C4A—C5A1.4014 (13)C4B—C5B1.4036 (13)
C4A—H4A0.9300C4B—H4B0.9300
C5A—C6A1.3691 (13)C5B—C6B1.3711 (13)
C6A—C7A1.4086 (13)C6B—C7B1.4066 (12)
C6A—H6A0.9300C6B—H6B0.9300
C8A—C9A1.4944 (13)C8B—C9B1.4978 (14)
C9A—H9A0.9600C9B—H9D0.9600
C9A—H9B0.9600C9B—H9E0.9600
C9A—H9C0.9600C9B—H9F0.9600
C10A—H10A0.9600C10B—H10D0.9600
C10A—H10B0.9600C10B—H10E0.9600
C10A—H10C0.9600C10B—H10F0.9600
C1A—N1A—C2A117.11 (8)C1B—N1B—C2B117.01 (8)
C8A—N2A—C7A117.13 (8)C8B—N2B—C7B116.63 (8)
O2A—N3A—O1A123.57 (9)O2B—N3B—O1B123.47 (9)
O2A—N3A—C5A118.55 (8)O2B—N3B—C5B118.27 (8)
O1A—N3A—C5A117.88 (8)O1B—N3B—C5B118.27 (9)
N1A—C1A—C8A121.84 (9)N1B—C1B—C8B121.99 (9)
N1A—C1A—C10A118.27 (8)N1B—C1B—C10B117.64 (9)
C8A—C1A—C10A119.90 (9)C8B—C1B—C10B120.37 (9)
N1A—C2A—C3A119.10 (8)N1B—C2B—C7B120.87 (8)
N1A—C2A—C7A121.09 (8)N1B—C2B—C3B118.88 (8)
C3A—C2A—C7A119.80 (8)C7B—C2B—C3B120.25 (8)
C4A—C3A—C2A120.12 (8)C4B—C3B—C2B120.38 (9)
C4A—C3A—H3A119.9C4B—C3B—H3B119.8
C2A—C3A—H3A119.9C2B—C3B—H3B119.8
C3A—C4A—C5A118.70 (8)C3B—C4B—C5B118.18 (9)
C3A—C4A—H4A120.6C3B—C4B—H4B120.9
C5A—C4A—H4A120.6C5B—C4B—H4B120.9
C6A—C5A—C4A123.62 (8)C6B—C5B—C4B123.47 (9)
C6A—C5A—N3A118.66 (8)C6B—C5B—N3B117.86 (8)
C4A—C5A—N3A117.72 (8)C4B—C5B—N3B118.67 (8)
C5A—C6A—C7A117.63 (8)C5B—C6B—C7B118.40 (9)
C5A—C6A—H6A121.2C5B—C6B—H6B120.8
C7A—C6A—H6A121.2C7B—C6B—H6B120.8
N2A—C7A—C6A118.79 (8)N2B—C7B—C2B121.76 (8)
N2A—C7A—C2A121.09 (8)N2B—C7B—C6B118.93 (8)
C6A—C7A—C2A120.12 (8)C2B—C7B—C6B119.31 (8)
N2A—C8A—C1A121.74 (8)N2B—C8B—C1B121.72 (9)
N2A—C8A—C9A118.14 (8)N2B—C8B—C9B117.94 (9)
C1A—C8A—C9A120.12 (8)C1B—C8B—C9B120.34 (9)
C8A—C9A—H9A109.5C8B—C9B—H9D109.5
C8A—C9A—H9B109.5C8B—C9B—H9E109.5
H9A—C9A—H9B109.5H9D—C9B—H9E109.5
C8A—C9A—H9C109.5C8B—C9B—H9F109.5
H9A—C9A—H9C109.5H9D—C9B—H9F109.5
H9B—C9A—H9C109.5H9E—C9B—H9F109.5
C1A—C10A—H10A109.5C1B—C10B—H10D109.5
C1A—C10A—H10B109.5C1B—C10B—H10E109.5
H10A—C10A—H10B109.5H10D—C10B—H10E109.5
C1A—C10A—H10C109.5C1B—C10B—H10F109.5
H10A—C10A—H10C109.5H10D—C10B—H10F109.5
H10B—C10A—H10C109.5H10E—C10B—H10F109.5
C2A—N1A—C1A—C8A0.68 (14)C2B—N1B—C1B—C8B0.35 (14)
C2A—N1A—C1A—C10A179.74 (9)C2B—N1B—C1B—C10B179.15 (9)
C1A—N1A—C2A—C3A179.54 (9)C1B—N1B—C2B—C7B0.83 (13)
C1A—N1A—C2A—C7A0.23 (13)C1B—N1B—C2B—C3B179.19 (9)
N1A—C2A—C3A—C4A179.69 (8)N1B—C2B—C3B—C4B178.82 (9)
C7A—C2A—C3A—C4A0.09 (13)C7B—C2B—C3B—C4B1.16 (14)
C2A—C3A—C4A—C5A0.42 (14)C2B—C3B—C4B—C5B0.29 (14)
C3A—C4A—C5A—C6A0.49 (14)C3B—C4B—C5B—C6B0.49 (14)
C3A—C4A—C5A—N3A178.99 (8)C3B—C4B—C5B—N3B179.24 (8)
O2A—N3A—C5A—C6A11.04 (13)O2B—N3B—C5B—C6B6.86 (13)
O1A—N3A—C5A—C6A168.57 (9)O1B—N3B—C5B—C6B173.21 (9)
O2A—N3A—C5A—C4A169.46 (9)O2B—N3B—C5B—C4B173.39 (9)
O1A—N3A—C5A—C4A10.93 (13)O1B—N3B—C5B—C4B6.54 (13)
C4A—C5A—C6A—C7A0.20 (14)C4B—C5B—C6B—C7B0.38 (14)
N3A—C5A—C6A—C7A179.27 (8)N3B—C5B—C6B—C7B179.35 (8)
C8A—N2A—C7A—C6A179.96 (8)C8B—N2B—C7B—C2B0.80 (13)
C8A—N2A—C7A—C2A0.28 (13)C8B—N2B—C7B—C6B179.40 (8)
C5A—C6A—C7A—N2A179.91 (8)N1B—C2B—C7B—N2B1.47 (13)
C5A—C6A—C7A—C2A0.15 (13)C3B—C2B—C7B—N2B178.54 (8)
N1A—C2A—C7A—N2A0.27 (13)N1B—C2B—C7B—C6B178.72 (8)
C3A—C2A—C7A—N2A179.96 (8)C3B—C2B—C7B—C6B1.26 (13)
N1A—C2A—C7A—C6A179.98 (8)C5B—C6B—C7B—N2B179.31 (8)
C3A—C2A—C7A—C6A0.21 (13)C5B—C6B—C7B—C2B0.50 (13)
C7A—N2A—C8A—C1A0.16 (13)C7B—N2B—C8B—C1B0.39 (13)
C7A—N2A—C8A—C9A179.99 (8)C7B—N2B—C8B—C9B179.77 (9)
N1A—C1A—C8A—N2A0.68 (15)N1B—C1B—C8B—N2B1.02 (15)
C10A—C1A—C8A—N2A179.74 (9)C10B—C1B—C8B—N2B178.47 (9)
N1A—C1A—C8A—C9A179.49 (9)N1B—C1B—C8B—C9B179.14 (9)
C10A—C1A—C8A—C9A0.08 (14)C10B—C1B—C8B—C9B1.37 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3A—H3A···N2Ai0.932.563.4486 (14)160
C9B—H9D···O1Bii0.962.583.5380 (14)176
C10A—H10A···O2Ai0.962.383.3355 (15)171
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H9N3O2
Mr203.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.1125 (7), 22.490 (2), 12.9596 (10)
β (°) 115.026 (4)
V3)1878.4 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.26 × 0.21 × 0.10
Data collection
DiffractometerBruker APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.973, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
52279, 7510, 5559
Rint0.043
(sin θ/λ)max1)0.783
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.136, 1.03
No. of reflections7510
No. of parameters275
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3A—H3A···N2Ai0.932.563.4486 (14)160
C9B—H9D···O1Bii0.962.583.5380 (14)176
C10A—H10A···O2Ai0.962.383.3355 (15)171
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: C-7576-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

RMG and SHM would like to acknowledge Universiti Sains Malaysia (USM) for the University Grant (No. 1001/PTEKIND/8140152). HKF and JHG thank USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

References

First citationAjaikumar, S. & Pandurangan, A. (2009). Appl. Catal. A, 357, 184–192.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDarabi, H. R., Aghapoor, K., Mohsenzadeh, F., Taala, F., Asadollahnejad, N. & Badiei, A. (2009). Catal. Lett. 133, 84–89.  Web of Science CrossRef CAS Google Scholar
First citationDarabi, H. R., Tahoori, F., Aghapoor, K., Taala, F. & Mohsenzadeh, F. (2008). J. Braz. Chem. Soc. 19, 1646–1652.  Web of Science CrossRef CAS Google Scholar
First citationGhalib, R. M., Hashim, R., Sulaiman, O., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1494.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWozniak, K., Krygowski, T. M., Grech, E., Kolodziejski, W. & Klinowski, J. (1993). J. Phys. Chem. 97, 1862–1867.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1830-o1831
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds