organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(2-Hy­dr­oxy-4-meth­­oxy­benzyl­­idene)aza­nium­yl]benzoate monohydrate

aCollege of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, People's Republic of China, bCollege of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China, and cDepartment of Biological and Enviromental Engineering, Hefei University, Hefei 230022, People's Republic of China
*Correspondence e-mail: hangzhx@163.com

(Received 18 June 2010; accepted 20 June 2010; online 26 June 2010)

In the title compound, C15H13NO4·H2O, the Schiff base exists in a zwitterionic form and a bifurcated intra­molecular N—H⋯(O,O) hydrogen bond generates two S(6) rings. The dihedral angle between the two benzene rings is 25.8 (2)°. The crystal structure is stabilized by inter­molecular O—H⋯O hydrogen bonds.

Related literature

For a related compound and background references to Schiff bases, see: Hang (2010[Hang, Z.-X. (2010). Acta Cryst. E66, o1650.]). For related structures, see: Alpaslan et al. (2010a[Alpaslan, G., Macit, M., Büyükgüngör, O. & Erdönmez, A. (2010a). Acta Cryst. E66, o1178.],b[Alpaslan, Y. B., Alpaslan, G., Agar, A. & Isik, S. (2010b). Acta Cryst. E66, o510.]); Aritake et al. (2010[Aritake, Y., Watanabe, Y. & Akitsu, T. (2010). Acta Cryst. E66, o749.]); Bahron et al. (2010[Bahron, H., Bakar, S. N. A., Kassim, K., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o883.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13NO4·H2O

  • Mr = 289.28

  • Triclinic, [P \overline 1]

  • a = 8.7240 (5) Å

  • b = 8.9252 (4) Å

  • c = 10.7967 (5) Å

  • α = 111.312 (2)°

  • β = 93.084 (3)°

  • γ = 117.500 (2)°

  • V = 669.24 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.30 × 0.28 × 0.28 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.968, Tmax = 0.970

  • 4045 measured reflections

  • 2810 independent reflections

  • 1992 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.122

  • S = 1.08

  • 2810 reflections

  • 203 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.91 (1) 2.14 (2) 2.7257 (17) 121 (2)
N1—H1⋯O2 0.91 (1) 1.88 (2) 2.6366 (17) 139 (2)
O1—H1A⋯O2i 0.86 (1) 1.72 (1) 2.5675 (16) 165 (2)
O5—H5A⋯O3ii 0.85 (1) 2.07 (1) 2.907 (2) 169 (2)
O5—H5B⋯O3 0.86 (1) 1.95 (1) 2.806 (2) 178 (2)
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The crystal structures of Schiff bases have been widely reported (Alpaslan et al., 2010a,b; Aritake et al., 2010; Bahron et al., 2010). As a continuation of our work on Schiff bases (Hang, 2010), the present paper reports the title Schiff base compound.

The title compound contains a Schiff base molecule and a water molecule of crystallization (Fig. 1). There exist two intramolecular N–H···O hydrogen bonds in the molecule of the compound. The dihedral angle between the two benzene rings is 25.8 (2)°. The crystal structure is stabilized by intermolecular O–H···O hydrogen bonds (Table 1, Fig. 2).

Related literature top

For a related compound and background references to Schiff bases, see: Hang (2010). For related structures, see: Alpaslan et al. (2010a,b); Aritake et al. (2010); Bahron et al. (2010).

Experimental top

Equimolar quantities (1 mmol each) of 2-aminobenzoic acid and 4-methoxysalicylaldehyde were mixed and stirred in methanol for 2 h at ambient temperature. The resulting mixture was concentrated under recuced pressure. The residue, purified by washing with cold methanol and diethyl ether, afforded the pure product of the hydrazone compound. Colorless blocks of (I) were obtained by recrystallization of the product from 95% ethanol.

Refinement top

The H atoms attached to N and O atoms were found from a difference Fourier map and refined isotropically, with N–H, O–H, and H···H distances restrained to 0.90 (1), 0.85 (1), and 1.37 (2) Å, respectively. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 and 0.96 Å, and Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot of the title compound at the 30% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. O–H···N hydrogen bond is drawn by a dashed line.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed along the c axis. Hydrogen bonds are drawn as dashed lines.
2-[(2-Hydroxy-4-methoxybenzylidene)azaniumyl]benzoate monohydrate top
Crystal data top
C15H13NO4·H2OZ = 2
Mr = 289.28F(000) = 304
Triclinic, P1Dx = 1.436 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7240 (5) ÅCell parameters from 1109 reflections
b = 8.9252 (4) Åθ = 2.6–26.2°
c = 10.7967 (5) ŵ = 0.11 mm1
α = 111.312 (2)°T = 298 K
β = 93.084 (3)°Block, colorless
γ = 117.500 (2)°0.30 × 0.28 × 0.28 mm
V = 669.24 (6) Å3
Data collection top
Bruker SMART CCD
diffractometer
2810 independent reflections
Radiation source: fine-focus sealed tube1992 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 611
Tmin = 0.968, Tmax = 0.970k = 1111
4045 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.0161P]
where P = (Fo2 + 2Fc2)/3
2810 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.15 e Å3
5 restraintsΔρmin = 0.18 e Å3
Crystal data top
C15H13NO4·H2Oγ = 117.500 (2)°
Mr = 289.28V = 669.24 (6) Å3
Triclinic, P1Z = 2
a = 8.7240 (5) ÅMo Kα radiation
b = 8.9252 (4) ŵ = 0.11 mm1
c = 10.7967 (5) ÅT = 298 K
α = 111.312 (2)°0.30 × 0.28 × 0.28 mm
β = 93.084 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2810 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1992 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.970Rint = 0.013
4045 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0435 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.15 e Å3
2810 reflectionsΔρmin = 0.18 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.91763 (18)0.38037 (19)0.21508 (14)0.0364 (3)
O10.65275 (15)0.22394 (15)0.01717 (12)0.0446 (3)
O20.65944 (15)0.04540 (16)0.17602 (12)0.0491 (3)
O30.65792 (17)0.01967 (18)0.35525 (13)0.0611 (4)
O40.59187 (15)0.62901 (16)0.17000 (12)0.0459 (3)
O50.68483 (19)0.0450 (2)0.63223 (16)0.0715 (5)
C10.8648 (2)0.5485 (2)0.10069 (16)0.0356 (4)
C20.7092 (2)0.3956 (2)0.00735 (16)0.0341 (4)
C30.6248 (2)0.4303 (2)0.09650 (16)0.0364 (4)
H30.52440.33060.16820.044*
C40.6884 (2)0.6120 (2)0.07994 (16)0.0371 (4)
C50.8428 (2)0.7642 (2)0.02468 (18)0.0431 (4)
H50.88660.88590.03460.052*
C60.9272 (2)0.7302 (2)0.11142 (18)0.0430 (4)
H61.03010.83090.18050.052*
C70.9597 (2)0.5313 (2)0.19950 (17)0.0377 (4)
H71.06450.64040.26050.045*
C81.0163 (2)0.3714 (2)0.31829 (16)0.0371 (4)
C90.9308 (2)0.2225 (2)0.35416 (16)0.0381 (4)
C101.0311 (2)0.2180 (3)0.45585 (19)0.0486 (5)
H100.97640.12050.48130.058*
C111.2094 (3)0.3539 (3)0.5200 (2)0.0542 (5)
H111.27430.34650.58650.065*
C121.2902 (2)0.5003 (3)0.48467 (19)0.0520 (5)
H121.40980.59370.52890.062*
C131.1959 (2)0.5100 (2)0.38442 (18)0.0449 (4)
H131.25200.60920.36080.054*
C140.7341 (2)0.0706 (2)0.29112 (17)0.0408 (4)
C150.6600 (3)0.8098 (3)0.1699 (2)0.0545 (5)
H15A0.68320.90170.07870.082*
H15B0.57300.80350.23300.082*
H15C0.76930.84470.19780.082*
H5B0.675 (3)0.022 (3)0.5468 (12)0.080*
H5A0.591 (2)0.046 (3)0.648 (2)0.080*
H10.8112 (18)0.2707 (19)0.166 (2)0.080*
H1A0.5504 (18)0.145 (3)0.0780 (19)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0349 (8)0.0350 (8)0.0348 (7)0.0161 (6)0.0043 (6)0.0143 (6)
O10.0436 (7)0.0320 (6)0.0458 (7)0.0131 (5)0.0044 (5)0.0157 (5)
O20.0443 (7)0.0412 (7)0.0466 (7)0.0112 (5)0.0061 (6)0.0213 (6)
O30.0562 (8)0.0592 (8)0.0482 (8)0.0121 (7)0.0074 (6)0.0288 (7)
O40.0474 (7)0.0416 (7)0.0490 (7)0.0213 (6)0.0037 (6)0.0238 (6)
O50.0548 (9)0.0918 (11)0.0524 (9)0.0265 (9)0.0044 (7)0.0331 (9)
C10.0335 (8)0.0346 (9)0.0336 (8)0.0154 (7)0.0053 (7)0.0135 (7)
C20.0337 (8)0.0306 (8)0.0361 (9)0.0151 (7)0.0096 (7)0.0148 (7)
C30.0325 (8)0.0326 (8)0.0355 (9)0.0127 (7)0.0043 (7)0.0127 (7)
C40.0375 (9)0.0389 (9)0.0383 (9)0.0203 (8)0.0106 (7)0.0196 (8)
C50.0433 (10)0.0328 (9)0.0494 (10)0.0155 (8)0.0090 (8)0.0202 (8)
C60.0397 (9)0.0320 (9)0.0419 (10)0.0098 (7)0.0028 (7)0.0137 (7)
C70.0339 (9)0.0342 (9)0.0366 (9)0.0135 (7)0.0056 (7)0.0131 (7)
C80.0375 (9)0.0398 (9)0.0324 (8)0.0225 (8)0.0060 (7)0.0114 (7)
C90.0403 (9)0.0407 (9)0.0338 (9)0.0239 (8)0.0072 (7)0.0133 (7)
C100.0517 (11)0.0553 (11)0.0456 (10)0.0313 (10)0.0098 (8)0.0246 (9)
C110.0513 (11)0.0727 (13)0.0441 (11)0.0381 (11)0.0041 (9)0.0241 (10)
C120.0379 (10)0.0631 (12)0.0454 (11)0.0255 (9)0.0019 (8)0.0164 (10)
C130.0374 (9)0.0456 (10)0.0439 (10)0.0192 (8)0.0061 (8)0.0157 (8)
C140.0441 (10)0.0373 (9)0.0395 (9)0.0207 (8)0.0068 (8)0.0163 (8)
C150.0688 (13)0.0461 (11)0.0553 (12)0.0315 (10)0.0085 (10)0.0275 (9)
Geometric parameters (Å, º) top
N1—C71.301 (2)C5—C61.360 (2)
N1—C81.420 (2)C5—H50.9300
N1—H10.912 (9)C6—H60.9300
O1—C21.3346 (18)C7—H70.9300
O1—H1A0.863 (10)C8—C131.393 (2)
O2—C141.2625 (19)C8—C91.400 (2)
O3—C141.237 (2)C9—C101.391 (2)
O4—C41.3474 (18)C9—C141.517 (2)
O4—C151.438 (2)C10—C111.379 (3)
O5—H5B0.858 (9)C10—H100.9300
O5—H5A0.851 (9)C11—C121.375 (3)
C1—C61.408 (2)C11—H110.9300
C1—C71.410 (2)C12—C131.377 (2)
C1—C21.424 (2)C12—H120.9300
C2—C31.384 (2)C13—H130.9300
C3—C41.384 (2)C15—H15A0.9600
C3—H30.9300C15—H15B0.9600
C4—C51.403 (2)C15—H15C0.9600
C7—N1—C8125.26 (14)C13—C8—C9120.22 (15)
C7—N1—H1121.8 (13)C13—C8—N1120.48 (15)
C8—N1—H1112.5 (13)C9—C8—N1119.29 (14)
C2—O1—H1A109.4 (15)C10—C9—C8117.87 (16)
C4—O4—C15118.67 (13)C10—C9—C14118.71 (16)
H5B—O5—H5A105.0 (17)C8—C9—C14123.39 (15)
C6—C1—C7117.43 (14)C11—C10—C9121.89 (18)
C6—C1—C2117.96 (14)C11—C10—H10119.1
C7—C1—C2124.60 (14)C9—C10—H10119.1
O1—C2—C3123.29 (14)C12—C11—C10119.34 (17)
O1—C2—C1117.29 (14)C12—C11—H11120.3
C3—C2—C1119.42 (14)C10—C11—H11120.3
C2—C3—C4120.63 (14)C11—C12—C13120.63 (17)
C2—C3—H3119.7C11—C12—H12119.7
C4—C3—H3119.7C13—C12—H12119.7
O4—C4—C3115.29 (14)C12—C13—C8120.03 (17)
O4—C4—C5123.87 (14)C12—C13—H13120.0
C3—C4—C5120.83 (14)C8—C13—H13120.0
C6—C5—C4118.62 (15)O3—C14—O2124.52 (16)
C6—C5—H5120.7O3—C14—C9118.27 (15)
C4—C5—H5120.7O2—C14—C9117.21 (15)
C5—C6—C1122.51 (15)O4—C15—H15A109.5
C5—C6—H6118.7O4—C15—H15B109.5
C1—C6—H6118.7H15A—C15—H15B109.5
N1—C7—C1127.47 (15)O4—C15—H15C109.5
N1—C7—H7116.3H15A—C15—H15C109.5
C1—C7—H7116.3H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.91 (1)2.14 (2)2.7257 (17)121 (2)
N1—H1···O20.91 (1)1.88 (2)2.6366 (17)139 (2)
O1—H1A···O2i0.86 (1)1.72 (1)2.5675 (16)165 (2)
O5—H5A···O3ii0.85 (1)2.07 (1)2.907 (2)169 (2)
O5—H5B···O30.86 (1)1.95 (1)2.806 (2)178 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H13NO4·H2O
Mr289.28
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.7240 (5), 8.9252 (4), 10.7967 (5)
α, β, γ (°)111.312 (2), 93.084 (3), 117.500 (2)
V3)669.24 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.28 × 0.28
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.968, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
4045, 2810, 1992
Rint0.013
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.122, 1.08
No. of reflections2810
No. of parameters203
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.18

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.912 (9)2.137 (19)2.7257 (17)121.4 (17)
N1—H1···O20.912 (9)1.877 (16)2.6366 (17)139.3 (19)
O1—H1A···O2i0.863 (10)1.724 (11)2.5675 (16)165 (2)
O5—H5A···O3ii0.851 (9)2.068 (11)2.907 (2)169 (2)
O5—H5B···O30.858 (9)1.948 (9)2.806 (2)178 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge the Pivot Construction Subject of Applied Chemistry and the Teaching Group of the Courses Construction on Engineering Course Chemistry for financial support.

References

First citationAlpaslan, Y. B., Alpaslan, G., Agar, A. & Isik, S. (2010b). Acta Cryst. E66, o510.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlpaslan, G., Macit, M., Büyükgüngör, O. & Erdönmez, A. (2010a). Acta Cryst. E66, o1178.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAritake, Y., Watanabe, Y. & Akitsu, T. (2010). Acta Cryst. E66, o749.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBahron, H., Bakar, S. N. A., Kassim, K., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHang, Z.-X. (2010). Acta Cryst. E66, o1650.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds