organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2,4-Tri­methyl-7-nitro-2,3-di­hydro-1H-1,5-benzodiazepin-5-ium perchlorate

aSchool of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 18 June 2010; accepted 23 June 2010; online 26 June 2010)

In the title mol­ecular salt, C12H16N3O2+·ClO4, the nitro group is close to being coplanar with the benzene ring [dihedral angle = 8.1 (3)°]. The seven-membered ring has a maximum deviation of 0.502 (3) Å at the C atom between the dimethyl- and methyl-substituted C atoms. In the crystal, the components are linked into infinite sheets lying parallel to the bc plane by N—H⋯O and C—H⋯O hydrogen bonds. A short O⋯N contact of 2.896 (4) Å occurs within the sheets and a short O⋯O contact of 2.608 (4) Å occurs between the sheets.

Related literature

For general background and applications of benzimidazole derivatives, see: Landquist (1984[Landquist, J. K. (1984). Comprehensive Heterocyclic Chemistry, edited by A. R. Katritzky & C. W. Rees, p. 166. Oxford: Pergamon.]); Insuasty et al. (2010[Insuasty, B., Garcia, A., Abonia, R., Nogueras, M. & Cobo, J. (2010). Molbank, 2010, M664.]); Balakrishna & Kaboudin (2001[Balakrishna, M. S. & Kaboudin, B. (2001). Tetrahedron Lett. 42, 1127-1129.]); Ballo et al. (2010[Ballo, D., Ahabchane, N. H., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1277.]). For the preparation of the title compound, see: Grech et al. (1994[Grech, O., Sakellariou, R. & Speziale, V. (1994). J. Heterocycl. Chem. 31, 509-511.]). For ring conformations, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16N3O2+·ClO4

  • Mr = 333.73

  • Monoclinic, C 2/c

  • a = 21.046 (7) Å

  • b = 11.818 (3) Å

  • c = 15.636 (6) Å

  • β = 132.176 (9)°

  • V = 2882.0 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 100 K

  • 0.30 × 0.17 × 0.08 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.915, Tmax = 0.976

  • 24582 measured reflections

  • 3323 independent reflections

  • 2816 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.138

  • S = 1.05

  • 3323 reflections

  • 210 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O6i 0.80 (3) 2.15 (3) 2.941 (3) 173 (3)
N2—H1N2⋯O4 0.82 (5) 2.09 (4) 2.864 (4) 156 (4)
N2—H1N2⋯O4ii 0.82 (5) 2.46 (5) 3.000 (4) 124 (3)
C3—H3A⋯O1i 0.93 2.51 3.373 (3) 155
C11—H11A⋯O5i 0.96 2.58 3.524 (3) 169
C11—H11B⋯O3iii 0.96 2.45 3.396 (3) 168
Symmetry codes: (i) [x, -y+2, z-{\script{1\over 2}}]; (ii) [-x, y, -z+{\script{1\over 2}}]; (iii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzodiazepines are interesting compounds due to their wide range of biological activities (Landquist, 1984). Recently many methods have been employed for the synthesis of benzodiazepines derivatives (Insuasty et al., 2010; Balakrishna & Kaboudin, 2001; Ballo et al., 2010). Here we report the synthesis and the crystal structure of title compound.

The asymmetric unit of title compound (Fig. 1) consists of one the benzodiazepinium cation and one perchlorate anion. The nitro group is coplanar with the benzene ring with the dihedral angle of 8.1 (3)°. The seven-membered ring (N1/C1/C6/N2/C7–C9) have a maximum deviation of 0.502 (3) Å at atom C8. In the crystal structure, the molecules are linked into infinite two-dimensional planes parallel to bc plane by the intermolecular N—H···O, C—H···O hydrogen bonds (Table 1) and short O6···N3 interaction of 2.896 (4) Å. Short O2···O3 interaction of 2.608 (4) Å linked these planes into a three-dimensional framewrok (Fig. 2).

Related literature top

For general background and applications of benzimidazoles derivatives, see: Landquist (1984); Insuasty et al. (2010); Balakrishna & Kaboudin (2001); Ballo et al. (2010). For the preparation of the title compound, see: Grech et al. (1994). For ring conformations, see Cremer & Pople (1975). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 4-nitro o-phenylenediamine (0.153 g m) and 4-hydroxy coumarin (0.162 g m) in molar ratio 1:1 was refluxed in a mixture of acetic acid-ethanol (1:1 v/v) for 3 h (Grech et al., 1994). The solid settled in the reaction mixture was filtered and crystallized from ethanol to furnish brownish plates of the unexpected title compound, (I) (55%, m.p. 458 K).

Refinement top

The N-bound hydrogen atoms were located from the difference Fourier map and were refined freely. The rest of hydrogen atoms were positioned geometrically [C–H = 0.93–0.97 Å] and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). Rotating-group model was applied for methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the c axis, showing the components linked into a 3-D network. Intermolecular hydrogen bonds are shown as dashed lines.
2,2,4-Trimethyl-7-nitro-2,3-dihydro-1H-1,5-benzodiazepin-5-ium perchlorate top
Crystal data top
C12H16N3O2+·ClO4F(000) = 1392
Mr = 333.73Dx = 1.538 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7331 reflections
a = 21.046 (7) Åθ = 2.2–29.8°
b = 11.818 (3) ŵ = 0.30 mm1
c = 15.636 (6) ÅT = 100 K
β = 132.176 (9)°Plate, brown
V = 2882.0 (16) Å30.30 × 0.17 × 0.08 mm
Z = 8
Data collection top
Bruker APEXII DUO CCD
diffractometer
3323 independent reflections
Radiation source: fine-focus sealed tube2816 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ϕ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2727
Tmin = 0.915, Tmax = 0.976k = 1515
24582 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0714P)2 + 7.0069P]
where P = (Fo2 + 2Fc2)/3
3323 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
C12H16N3O2+·ClO4V = 2882.0 (16) Å3
Mr = 333.73Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.046 (7) ŵ = 0.30 mm1
b = 11.818 (3) ÅT = 100 K
c = 15.636 (6) Å0.30 × 0.17 × 0.08 mm
β = 132.176 (9)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
3323 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2816 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.976Rint = 0.066
24582 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.69 e Å3
3323 reflectionsΔρmin = 0.69 e Å3
210 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.15021 (3)0.71202 (4)0.49658 (4)0.01923 (16)
O10.13150 (11)0.68718 (14)0.56727 (14)0.0259 (4)
O20.19403 (11)0.82394 (13)0.52807 (14)0.0245 (4)
O30.21587 (10)0.62367 (14)0.52533 (14)0.0256 (4)
O40.07604 (10)0.70691 (14)0.37336 (13)0.0234 (4)
O50.08273 (11)1.21240 (13)0.25797 (14)0.0249 (4)
O60.09384 (11)1.07773 (14)0.36195 (13)0.0246 (4)
N10.11724 (12)0.79665 (15)0.04379 (16)0.0183 (4)
N20.10204 (12)0.72103 (15)0.21588 (15)0.0176 (4)
N30.08881 (11)1.11171 (16)0.28211 (15)0.0194 (4)
C10.10956 (12)0.86625 (17)0.10449 (16)0.0152 (4)
C20.10763 (13)0.98440 (18)0.08478 (17)0.0166 (4)
H2A0.11271.00790.03280.020*
C30.09866 (12)1.06450 (17)0.13882 (17)0.0166 (4)
H3A0.09671.14100.12320.020*
C40.09241 (12)1.02892 (18)0.21822 (17)0.0172 (4)
C50.09300 (13)0.91616 (18)0.24014 (17)0.0172 (4)
H5A0.08720.89450.29180.021*
C60.10220 (12)0.83451 (17)0.18541 (17)0.0155 (4)
C70.14051 (13)0.63366 (18)0.21973 (17)0.0180 (4)
C80.19130 (13)0.64237 (19)0.18564 (18)0.0191 (4)
H8A0.21840.57000.19910.023*
H8B0.23640.69780.23470.023*
C90.13798 (13)0.67632 (17)0.05830 (17)0.0165 (4)
C100.05645 (14)0.60604 (19)0.02308 (18)0.0216 (4)
H10A0.02690.62600.10150.032*
H10B0.02000.62070.00770.032*
H10C0.07100.52710.01130.032*
C110.19389 (15)0.6604 (2)0.0295 (2)0.0234 (5)
H11A0.16270.68410.04850.035*
H11B0.20910.58210.03770.035*
H11C0.24500.70510.08130.035*
C120.13540 (15)0.52362 (18)0.26078 (19)0.0222 (4)
H12A0.09700.53050.27380.033*
H12B0.19140.50280.33150.033*
H12C0.11450.46650.20350.033*
H1N10.1130 (16)0.826 (2)0.006 (2)0.016 (6)*
H1N20.0798 (19)0.715 (2)0.243 (3)0.030 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0193 (3)0.0214 (3)0.0170 (3)0.00116 (18)0.0122 (2)0.00003 (18)
O10.0328 (9)0.0283 (9)0.0249 (8)0.0029 (7)0.0228 (8)0.0002 (7)
O20.0298 (8)0.0167 (8)0.0277 (8)0.0057 (6)0.0195 (7)0.0039 (6)
O30.0230 (8)0.0219 (8)0.0289 (9)0.0046 (6)0.0162 (7)0.0013 (7)
O40.0169 (7)0.0350 (9)0.0147 (8)0.0018 (6)0.0091 (7)0.0003 (6)
O50.0305 (9)0.0176 (8)0.0253 (8)0.0029 (6)0.0183 (7)0.0006 (6)
O60.0319 (9)0.0267 (8)0.0192 (8)0.0026 (7)0.0188 (7)0.0002 (6)
N10.0239 (9)0.0180 (9)0.0167 (9)0.0012 (7)0.0152 (8)0.0019 (7)
N20.0186 (8)0.0192 (9)0.0156 (8)0.0018 (7)0.0118 (7)0.0008 (7)
N30.0185 (8)0.0213 (9)0.0169 (8)0.0015 (7)0.0113 (7)0.0003 (7)
C10.0108 (8)0.0192 (10)0.0122 (9)0.0005 (7)0.0064 (7)0.0002 (7)
C20.0147 (9)0.0202 (10)0.0134 (9)0.0019 (8)0.0088 (8)0.0006 (7)
C30.0132 (9)0.0174 (10)0.0136 (9)0.0013 (7)0.0067 (8)0.0001 (7)
C40.0146 (9)0.0204 (10)0.0141 (9)0.0014 (8)0.0087 (8)0.0008 (8)
C50.0144 (9)0.0234 (10)0.0127 (9)0.0004 (8)0.0086 (8)0.0012 (8)
C60.0128 (9)0.0179 (10)0.0138 (9)0.0011 (7)0.0082 (8)0.0003 (7)
C70.0164 (9)0.0205 (10)0.0113 (9)0.0025 (8)0.0069 (8)0.0003 (7)
C80.0159 (9)0.0220 (10)0.0172 (10)0.0016 (8)0.0102 (8)0.0027 (8)
C90.0162 (9)0.0164 (9)0.0174 (10)0.0013 (8)0.0115 (8)0.0018 (8)
C100.0209 (10)0.0231 (11)0.0182 (10)0.0032 (8)0.0121 (9)0.0019 (8)
C110.0254 (11)0.0241 (11)0.0289 (12)0.0026 (9)0.0215 (10)0.0029 (9)
C120.0278 (11)0.0181 (10)0.0207 (10)0.0013 (9)0.0163 (9)0.0017 (8)
Geometric parameters (Å, º) top
Cl1—O11.4310 (16)C4—C51.374 (3)
Cl1—O41.4538 (16)C5—C61.387 (3)
Cl1—O21.4941 (16)C5—H5A0.9300
Cl1—O31.5388 (17)C7—C81.484 (3)
O5—N31.229 (2)C7—C121.486 (3)
O6—N31.246 (2)C8—C91.544 (3)
N1—C11.345 (3)C8—H8A0.9700
N1—C91.460 (3)C8—H8B0.9700
N1—H1N10.79 (3)C9—C101.524 (3)
N2—C71.288 (3)C9—C111.528 (3)
N2—C61.424 (3)C10—H10A0.9600
N2—H1N20.81 (3)C10—H10B0.9600
N3—C41.436 (3)C10—H10C0.9600
C1—C61.425 (3)C11—H11A0.9600
C1—C21.425 (3)C11—H11B0.9600
C2—C31.364 (3)C11—H11C0.9600
C2—H2A0.9300C12—H12A0.9600
C3—C41.398 (3)C12—H12B0.9600
C3—H3A0.9300C12—H12C0.9600
O1—Cl1—O4114.06 (10)N2—C7—C8120.61 (19)
O1—Cl1—O2110.86 (10)N2—C7—C12119.75 (19)
O4—Cl1—O2110.46 (10)C8—C7—C12119.63 (19)
O1—Cl1—O3107.10 (10)C7—C8—C9113.96 (17)
O4—Cl1—O3108.27 (10)C7—C8—H8A108.8
O2—Cl1—O3105.65 (10)C9—C8—H8A108.8
C1—N1—C9130.62 (18)C7—C8—H8B108.8
C1—N1—H1N1115.8 (19)C9—C8—H8B108.8
C9—N1—H1N1113.4 (19)H8A—C8—H8B107.7
C7—N2—C6128.90 (19)N1—C9—C10110.47 (17)
C7—N2—H1N2118 (2)N1—C9—C11106.44 (17)
C6—N2—H1N2113 (2)C10—C9—C11110.21 (18)
O5—N3—O6122.75 (18)N1—C9—C8109.64 (17)
O5—N3—C4119.30 (18)C10—C9—C8111.79 (17)
O6—N3—C4117.94 (18)C11—C9—C8108.13 (17)
N1—C1—C6127.01 (19)C9—C10—H10A109.5
N1—C1—C2116.50 (18)C9—C10—H10B109.5
C6—C1—C2116.48 (18)H10A—C10—H10B109.5
C3—C2—C1122.82 (19)C9—C10—H10C109.5
C3—C2—H2A118.6H10A—C10—H10C109.5
C1—C2—H2A118.6H10B—C10—H10C109.5
C2—C3—C4118.43 (19)C9—C11—H11A109.5
C2—C3—H3A120.8C9—C11—H11B109.5
C4—C3—H3A120.8H11A—C11—H11B109.5
C5—C4—C3121.52 (19)C9—C11—H11C109.5
C5—C4—N3118.88 (18)H11A—C11—H11C109.5
C3—C4—N3119.55 (19)H11B—C11—H11C109.5
C4—C5—C6120.17 (19)C7—C12—H12A109.5
C4—C5—H5A119.9C7—C12—H12B109.5
C6—C5—H5A119.9H12A—C12—H12B109.5
C5—C6—N2114.60 (18)C7—C12—H12C109.5
C5—C6—C1120.55 (19)H12A—C12—H12C109.5
N2—C6—C1124.83 (18)H12B—C12—H12C109.5
C9—N1—C1—C614.5 (3)C7—N2—C6—C131.3 (3)
C9—N1—C1—C2166.30 (19)N1—C1—C6—C5178.74 (19)
N1—C1—C2—C3178.87 (18)C2—C1—C6—C50.5 (3)
C6—C1—C2—C30.5 (3)N1—C1—C6—N20.2 (3)
C1—C2—C3—C41.0 (3)C2—C1—C6—N2179.44 (18)
C2—C3—C4—C51.6 (3)C6—N2—C7—C82.4 (3)
C2—C3—C4—N3175.77 (18)C6—N2—C7—C12176.47 (19)
O5—N3—C4—C5175.37 (19)N2—C7—C8—C962.3 (3)
O6—N3—C4—C56.1 (3)C12—C7—C8—C9118.8 (2)
O5—N3—C4—C37.1 (3)C1—N1—C9—C1097.6 (2)
O6—N3—C4—C3171.40 (18)C1—N1—C9—C11142.8 (2)
C3—C4—C5—C61.7 (3)C1—N1—C9—C826.1 (3)
N3—C4—C5—C6175.70 (18)C7—C8—C9—N174.8 (2)
C4—C5—C6—N2179.81 (18)C7—C8—C9—C1048.0 (2)
C4—C5—C6—C11.2 (3)C7—C8—C9—C11169.51 (18)
C7—N2—C6—C5149.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O6i0.80 (3)2.15 (3)2.941 (3)173 (3)
N2—H1N2···O40.82 (5)2.09 (4)2.864 (4)156 (4)
N2—H1N2···O4ii0.82 (5)2.46 (5)3.000 (4)124 (3)
C3—H3A···O1i0.932.513.373 (3)155
C11—H11A···O5i0.962.583.524 (3)169
C11—H11B···O3iii0.962.453.396 (3)168
Symmetry codes: (i) x, y+2, z1/2; (ii) x, y, z+1/2; (iii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC12H16N3O2+·ClO4
Mr333.73
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)21.046 (7), 11.818 (3), 15.636 (6)
β (°) 132.176 (9)
V3)2882.0 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.30 × 0.17 × 0.08
Data collection
DiffractometerBruker APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.915, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
24582, 3323, 2816
Rint0.066
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.138, 1.05
No. of reflections3323
No. of parameters210
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.69, 0.69

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O6i0.80 (3)2.15 (3)2.941 (3)173 (3)
N2—H1N2···O40.82 (5)2.09 (4)2.864 (4)156 (4)
N2—H1N2···O4ii0.82 (5)2.46 (5)3.000 (4)124 (3)
C3—H3A···O1i0.932.513.373 (3)155
C11—H11A···O5i0.962.583.524 (3)169
C11—H11B···O3iii0.962.453.396 (3)168
Symmetry codes: (i) x, y+2, z1/2; (ii) x, y, z+1/2; (iii) x, y+1, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5523-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

SHM and RMG thank Universiti Sains Malaysia (USM) for the University Grant (1001/PTEKIND/8140152). HKF and CSY thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012). CSY also thanks USM for the award of a USM Fellowship.

References

First citationBalakrishna, M. S. & Kaboudin, B. (2001). Tetrahedron Lett. 42, 1127–1129.  Web of Science CrossRef CAS Google Scholar
First citationBallo, D., Ahabchane, N. H., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1277.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGrech, O., Sakellariou, R. & Speziale, V. (1994). J. Heterocycl. Chem. 31, 509–511.  Google Scholar
First citationInsuasty, B., Garcia, A., Abonia, R., Nogueras, M. & Cobo, J. (2010). Molbank, 2010, M664.  CrossRef Google Scholar
First citationLandquist, J. K. (1984). Comprehensive Heterocyclic Chemistry, edited by A. R. Katritzky & C. W. Rees, p. 166. Oxford: Pergamon.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds