organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3,3-Tri­methyl-1,2,3,4-tetra­hydro­pyrido[1,2-a]benzimidazol-1-ol

aSchool of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 18 June 2010; accepted 23 June 2010; online 26 June 2010)

In the title compound, C14H18N2O, the benzimidazole grouping is close to planar, with a maximum deviation of 0.042 Å; the six-membered non-aromatic ring adopts an envelope conformation. In the crystal structure, mol­ecules are linked into infinite sheets lying parallel to the bc plane by O—H⋯N and C—H⋯O hydrogen bonds.

Related literature

For applications of benzimidazole derivatives, see: Horton et al. (2003[Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893-930.]); Insuasty et al. (2008a[Insuasty, B., Orozco, F., Lizarazo, C., Quiroga, J., Abonía, R., Hursthouse, M., Nogueras, M. & Cobo, J. (2008a). Bioorg. Med. Chem. 16, 8492-8500.],b[Insuasty, B., Orozco, F., Quiroga, J., Abonía, R., Nogueras, M. & Cobo, J. (2008b). Eur. J. Med. Chem. 43, 1955-1962.]). For the preparation of the title compound, see: Grech et al. (1994[Grech, O., Sakellariou, R. & Speziale, V. (1994). J. Heterocycl. Chem. 31, 509-511.]). For ring conformations, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18N2O

  • Mr = 230.30

  • Monoclinic, P 21 /c

  • a = 9.615 (5) Å

  • b = 8.194 (4) Å

  • c = 15.965 (8) Å

  • β = 99.601 (12)°

  • V = 1240.2 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.38 × 0.12 × 0.07 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.995

  • 13460 measured reflections

  • 3597 independent reflections

  • 2612 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.117

  • S = 1.02

  • 3597 reflections

  • 226 parameters

  • All H-atom parameters refined

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1i 0.97 (2) 1.84 (2) 2.803 (2) 174 (2)
C5—H5A⋯O1ii 0.962 (15) 2.499 (15) 3.216 (2) 131.3 (11)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzimidazole derivatives are an important class of bioactive molecules and are well known due to their wide range of pharmacological activities as an anti-ulcers, anti-hypertensive, anti-viral, anti-fungal, anti-cancer, and anti-histaminic (Horton et al., 2003; Insuasty et al., 2008a, b) agents. Here we report the synthesis and the crystal structure of title compound.

In the title compound (Fig. 1), the benzimidazole group is essentially coplanar (N1/C1–C6/N2/C11) with the maximum deviation of 0.042 Å at atom C6. The N2/C7–C11 ring adopts an envelope conformation with Q=0.4933 (14) Å, θ=52.81 (15)° and ϕ=182.3 (2)° (Cremer & Pople, 1975).

In the crystal structure, the molecules are linked into infinite two-dimensional planes parallel to bc plane by the intermolecular O1—H1O1···N1 and C5—H5A···O1 hydrogen bonds (Fig. 2, Table 1).

Related literature top

For applications of benzimidazoles derivatives, see: Horton et al. (2003); Insuasty et al. (2008a,b). For the preparation of the title compound, see: Grech et al. (1994). For ring conformations, see Cremer & Pople (1975). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of o-phenylenediamine (0.108 g m) and dimedone (0.140 g m) in molar ratio 1:1 was refluxed in a mixture of acetic acid-ethanol (1:1 v/v) for 3 h (Grech et al., 1994). The reaction mixture was dried on rotavapor at low pressure and further fractionated successively with diethyl ether, chloroform and ethanol. The ethanol fraction was dried on rotavapor and the dry mass so obtained was crystallized in methanol:chloroform (1:1) mixture to give yellow needles of (I) (55%, m.p. 451 K).

Refinement top

All hydrogen atoms were located from the difference Fourier map and was refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the b axis, showing the molecules linked into sheets lying parallel to bc. Intermolecular hydrogen bonds are shown as dashed lines.
1,3,3-Trimethyl-1,2,3,4-tetrahydropyrido[1,2-a]benzimidazol-1-ol top
Crystal data top
C14H18N2OF(000) = 496
Mr = 230.30Dx = 1.233 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2162 reflections
a = 9.615 (5) Åθ = 3.1–29.6°
b = 8.194 (4) ŵ = 0.08 mm1
c = 15.965 (8) ÅT = 100 K
β = 99.601 (12)°Needle, yellow
V = 1240.2 (11) Å30.38 × 0.12 × 0.07 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD
diffractometer
3597 independent reflections
Radiation source: fine-focus sealed tube2612 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ and ω scansθmax = 30.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.971, Tmax = 0.995k = 1110
13460 measured reflectionsl = 2218
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.2357P]
where P = (Fo2 + 2Fc2)/3
3597 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C14H18N2OV = 1240.2 (11) Å3
Mr = 230.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.615 (5) ŵ = 0.08 mm1
b = 8.194 (4) ÅT = 100 K
c = 15.965 (8) Å0.38 × 0.12 × 0.07 mm
β = 99.601 (12)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
3597 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2612 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.995Rint = 0.052
13460 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.117All H-atom parameters refined
S = 1.02Δρmax = 0.33 e Å3
3597 reflectionsΔρmin = 0.25 e Å3
226 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.65445 (9)0.44319 (11)0.12156 (6)0.0178 (2)
N10.40305 (10)0.05504 (14)0.22183 (7)0.0176 (2)
N20.54560 (10)0.19700 (13)0.15038 (6)0.0148 (2)
C10.32424 (12)0.11377 (16)0.14618 (8)0.0160 (3)
C20.17999 (13)0.09810 (17)0.11474 (9)0.0199 (3)
C30.12707 (13)0.17745 (18)0.03945 (9)0.0215 (3)
C40.21420 (13)0.27314 (18)0.00320 (8)0.0199 (3)
C50.35783 (13)0.28830 (17)0.02639 (8)0.0179 (3)
C60.41136 (12)0.20479 (15)0.10110 (8)0.0152 (2)
C70.67647 (12)0.27365 (16)0.13019 (8)0.0153 (3)
C80.79944 (12)0.23815 (16)0.20337 (8)0.0164 (3)
C90.79390 (12)0.07980 (16)0.25468 (8)0.0165 (3)
C100.65512 (13)0.08393 (18)0.29055 (8)0.0186 (3)
C110.53240 (12)0.10891 (16)0.22157 (8)0.0157 (3)
C120.70543 (14)0.21133 (19)0.04460 (9)0.0208 (3)
C130.80018 (14)0.07437 (18)0.20160 (9)0.0218 (3)
C140.91813 (13)0.08019 (19)0.32872 (9)0.0224 (3)
H1A0.0269 (15)0.1672 (18)0.0155 (9)0.020 (4)*
H2A0.1203 (16)0.033 (2)0.1467 (10)0.026 (4)*
H4A0.1727 (15)0.3345 (18)0.0553 (9)0.016 (4)*
H5A0.4140 (15)0.3569 (19)0.0037 (9)0.017 (4)*
H8A0.8923 (16)0.241 (2)0.1794 (10)0.025 (4)*
H8B0.8028 (15)0.334 (2)0.2438 (10)0.025 (4)*
H10A0.6384 (15)0.0185 (19)0.3209 (9)0.018 (4)*
H10B0.6583 (16)0.177 (2)0.3319 (10)0.024 (4)*
H12A0.7260 (17)0.095 (2)0.0457 (11)0.030 (4)*
H12B0.7853 (17)0.279 (2)0.0300 (11)0.032 (4)*
H12C0.6228 (18)0.233 (2)0.0008 (11)0.034 (5)*
H13A0.7168 (16)0.0878 (19)0.1571 (10)0.024 (4)*
H13B0.8059 (15)0.171 (2)0.2371 (10)0.024 (4)*
H13C0.8856 (17)0.074 (2)0.1725 (11)0.032 (4)*
H14A0.9187 (16)0.180 (2)0.3648 (10)0.028 (4)*
H14B0.9107 (17)0.017 (2)0.3658 (11)0.034 (5)*
H14C1.0108 (18)0.082 (2)0.3068 (11)0.036 (5)*
H1O10.640 (2)0.487 (3)0.1756 (13)0.050 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0215 (4)0.0149 (5)0.0175 (5)0.0005 (3)0.0047 (3)0.0024 (4)
N10.0167 (5)0.0195 (6)0.0166 (5)0.0010 (4)0.0028 (4)0.0018 (4)
N20.0138 (4)0.0170 (5)0.0130 (5)0.0010 (4)0.0009 (4)0.0014 (4)
C10.0169 (5)0.0153 (6)0.0158 (6)0.0004 (4)0.0024 (4)0.0007 (5)
C20.0155 (5)0.0206 (7)0.0232 (7)0.0010 (5)0.0020 (5)0.0017 (6)
C30.0171 (6)0.0229 (7)0.0229 (7)0.0009 (5)0.0014 (5)0.0041 (6)
C40.0208 (6)0.0210 (7)0.0164 (6)0.0036 (5)0.0018 (5)0.0009 (5)
C50.0202 (6)0.0173 (7)0.0157 (6)0.0013 (5)0.0014 (5)0.0001 (5)
C60.0148 (5)0.0160 (6)0.0144 (6)0.0001 (4)0.0010 (4)0.0019 (5)
C70.0154 (5)0.0150 (6)0.0157 (6)0.0013 (4)0.0036 (4)0.0021 (5)
C80.0157 (5)0.0162 (6)0.0167 (6)0.0007 (4)0.0007 (4)0.0004 (5)
C90.0145 (5)0.0169 (6)0.0170 (6)0.0002 (4)0.0000 (4)0.0018 (5)
C100.0176 (5)0.0229 (7)0.0147 (6)0.0007 (5)0.0012 (4)0.0041 (6)
C110.0168 (5)0.0153 (6)0.0150 (6)0.0006 (4)0.0030 (4)0.0017 (5)
C120.0223 (6)0.0249 (8)0.0164 (6)0.0014 (5)0.0067 (5)0.0008 (6)
C130.0230 (6)0.0177 (7)0.0241 (7)0.0018 (5)0.0017 (5)0.0002 (6)
C140.0185 (6)0.0244 (8)0.0220 (7)0.0007 (5)0.0030 (5)0.0038 (6)
Geometric parameters (Å, º) top
O1—C71.4085 (17)C8—C91.5400 (19)
O1—H1O10.96 (2)C8—H8A1.029 (15)
N1—C111.3203 (16)C8—H8B1.012 (16)
N1—C11.3997 (17)C9—C131.528 (2)
N2—C111.3700 (17)C9—C141.5340 (18)
N2—C61.3965 (16)C9—C101.5378 (18)
N2—C71.4890 (16)C10—C111.4878 (18)
C1—C21.4000 (18)C10—H10A0.995 (16)
C1—C61.4060 (18)C10—H10B1.004 (16)
C2—C31.387 (2)C12—H12A0.976 (18)
C2—H2A0.988 (16)C12—H12B1.006 (17)
C3—C41.404 (2)C12—H12C0.998 (17)
C3—H1A0.979 (14)C13—H13A0.984 (16)
C4—C51.3886 (18)C13—H13B0.967 (17)
C4—H4A0.997 (15)C13—H13C1.009 (17)
C5—C61.3968 (18)C14—H14A1.000 (17)
C5—H5A0.961 (15)C14—H14B1.001 (18)
C7—C121.5271 (19)C14—H14C1.010 (17)
C7—C81.5450 (18)
C7—O1—H1O1108.6 (12)H8A—C8—H8B106.5 (12)
C11—N1—C1104.90 (11)C13—C9—C14109.35 (11)
C11—N2—C6106.65 (10)C13—C9—C10109.98 (11)
C11—N2—C7126.90 (10)C14—C9—C10109.00 (11)
C6—N2—C7126.43 (10)C13—C9—C8113.17 (11)
N1—C1—C2129.74 (12)C14—C9—C8108.46 (11)
N1—C1—C6109.93 (11)C10—C9—C8106.78 (10)
C2—C1—C6120.29 (12)C11—C10—C9110.96 (11)
C3—C2—C1117.79 (12)C11—C10—H10A107.7 (8)
C3—C2—H2A122.8 (9)C9—C10—H10A112.6 (8)
C1—C2—H2A119.4 (9)C11—C10—H10B108.4 (9)
C2—C3—C4121.33 (12)C9—C10—H10B109.2 (9)
C2—C3—H1A119.5 (9)H10A—C10—H10B108.0 (12)
C4—C3—H1A119.1 (9)N1—C11—N2113.35 (11)
C5—C4—C3121.67 (13)N1—C11—C10125.66 (12)
C5—C4—H4A118.4 (8)N2—C11—C10120.98 (11)
C3—C4—H4A119.9 (8)C7—C12—H12A112.3 (10)
C4—C5—C6116.79 (12)C7—C12—H12B106.4 (10)
C4—C5—H5A119.5 (9)H12A—C12—H12B112.6 (14)
C6—C5—H5A123.7 (9)C7—C12—H12C110.3 (10)
N2—C6—C5132.67 (11)H12A—C12—H12C108.8 (14)
N2—C6—C1105.13 (11)H12B—C12—H12C106.2 (14)
C5—C6—C1122.06 (11)C9—C13—H13A112.9 (9)
O1—C7—N2108.58 (10)C9—C13—H13B110.6 (9)
O1—C7—C12106.80 (10)H13A—C13—H13B106.9 (13)
N2—C7—C12109.84 (10)C9—C13—H13C111.5 (10)
O1—C7—C8110.08 (10)H13A—C13—H13C107.1 (13)
N2—C7—C8108.95 (10)H13B—C13—H13C107.4 (13)
C12—C7—C8112.51 (11)C9—C14—H14A111.9 (9)
C9—C8—C7118.09 (10)C9—C14—H14B109.3 (10)
C9—C8—H8A108.9 (9)H14A—C14—H14B107.6 (13)
C7—C8—H8A108.5 (9)C9—C14—H14C110.6 (10)
C9—C8—H8B108.3 (9)H14A—C14—H14C105.5 (13)
C7—C8—H8B106.0 (9)H14B—C14—H14C111.8 (14)
C11—N1—C1—C2177.80 (14)C6—N2—C7—C1258.00 (16)
C11—N1—C1—C60.14 (15)C11—N2—C7—C80.12 (17)
N1—C1—C2—C3176.20 (13)C6—N2—C7—C8178.34 (11)
C6—C1—C2—C31.2 (2)O1—C7—C8—C9148.09 (11)
C1—C2—C3—C41.3 (2)N2—C7—C8—C929.14 (15)
C2—C3—C4—C52.2 (2)C12—C7—C8—C992.92 (14)
C3—C4—C5—C60.5 (2)C7—C8—C9—C1364.20 (14)
C11—N2—C6—C5173.80 (14)C7—C8—C9—C14174.28 (11)
C7—N2—C6—C54.7 (2)C7—C8—C9—C1056.95 (15)
C11—N2—C6—C11.75 (14)C13—C9—C10—C1168.67 (15)
C7—N2—C6—C1179.73 (11)C14—C9—C10—C11171.46 (11)
C4—C5—C6—N2176.96 (13)C8—C9—C10—C1154.49 (14)
C4—C5—C6—C12.03 (19)C1—N1—C11—N21.04 (15)
N1—C1—C6—N21.20 (14)C1—N1—C11—C10177.57 (12)
C2—C1—C6—N2179.11 (11)C6—N2—C11—N11.82 (15)
N1—C1—C6—C5174.94 (11)C7—N2—C11—N1179.67 (11)
C2—C1—C6—C53.0 (2)C6—N2—C11—C10176.86 (12)
C11—N2—C7—O1119.77 (13)C7—N2—C11—C101.64 (19)
C6—N2—C7—O158.45 (16)C9—C10—C11—N1150.69 (13)
C11—N2—C7—C12123.78 (14)C9—C10—C11—N230.80 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N1i0.97 (2)1.84 (2)2.803 (2)174 (2)
C5—H5A···O1ii0.962 (15)2.499 (15)3.216 (2)131.3 (11)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H18N2O
Mr230.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.615 (5), 8.194 (4), 15.965 (8)
β (°) 99.601 (12)
V3)1240.2 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.38 × 0.12 × 0.07
Data collection
DiffractometerBruker APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.971, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
13460, 3597, 2612
Rint0.052
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.117, 1.02
No. of reflections3597
No. of parameters226
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.33, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N1i0.97 (2)1.84 (2)2.803 (2)174 (2)
C5—H5A···O1ii0.962 (15)2.499 (15)3.216 (2)131.3 (11)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5523-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

SHM and RMG thank Universiti Sains Malaysia (USM) for the University Grant (1001/PTEKIND/8140152). HKF and CSY thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012). CSY also thanks USM for the award of a USM Fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGrech, O., Sakellariou, R. & Speziale, V. (1994). J. Heterocycl. Chem. 31, 509–511.  Google Scholar
First citationHorton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationInsuasty, B., Orozco, F., Lizarazo, C., Quiroga, J., Abonía, R., Hursthouse, M., Nogueras, M. & Cobo, J. (2008a). Bioorg. Med. Chem. 16, 8492–8500.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationInsuasty, B., Orozco, F., Quiroga, J., Abonía, R., Nogueras, M. & Cobo, J. (2008b). Eur. J. Med. Chem. 43, 1955–1962.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds