organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2,6-bis­­[(5-bromo-4,6-dimeth­­oxy­pyrimidin-2-yl)­­oxy]benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Manipal Institute of Technology, Manipal University, Manipal 576 104, India, cOrganic Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and dDepartment of Printing, Manipal Institute of Technology, Manipal University, Manipal 576 104, India
*Correspondence e-mail: hkfun@usm.my

(Received 23 June 2010; accepted 24 June 2010; online 30 June 2010)

In the title compound, C20H18Br2N4O8, the inter­planar angle of the pyrimidine rings is 75.1 (2)°. The central benzene ring is inclined at inter­planar angles of 66.5 (2) and 71.9 (2)° with respect to the two pyrimidine rings. In the crystal structure, adjacent mol­ecules are connected into two-mol­ecule-thick arrays parallel to the bc plane via short Br⋯Br [3.5328 (12) Å] and Br⋯O [3.206 (3) and 3.301 (4) Å] inter­actions. A weak inter­molecular ππ aromatic stacking inter­action [centroid–centroid distance = 3.526 (3) Å] is also observed.

Related literature

For general background to and applications of the title compound, see: Koichiro et al. (1988[Koichiro, S., Shoji, K., Yasubumi, T., Takeshige, M. & Ryo, Y. (1988). Japan Patent 88-132167 (CA112:216956, 1998).]); He et al. (2007[He, Y.-Z., Li, Y.-X., Zhu, X.-L., Xi, Z., Niu, C., Wan, J., Zhang, L. & Yang, G.-F. (2007). J. Chem. Inf. Model. 47, 2335-2344.]); Li et al. (2006[Li, Y.-X., Luo, Y.-P., Xi, Z., Niu, C., He, Y.-Z. & Yang, G.-F. (2006). J. Agric. Food Chem. 54, 9135-9139.]); Gerorge (1983[Gerorge, L. (1983). US Patent No. 4 394 506.]). For closely related structures, see: Fun et al. (2010[Fun, H.-K., Goh, J. H., Rai, S., Isloor, A. M. & Shetty, P. (2010). Acta Cryst. E66, ci5115.]); Li & Luo (2006[Li, Y.-X. & Luo, Y.-P. (2006). Acta Cryst. E62, o1323-o1325.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18Br2N4O8

  • Mr = 602.20

  • Monoclinic, C 2/c

  • a = 29.972 (5) Å

  • b = 8.1392 (12) Å

  • c = 23.061 (3) Å

  • β = 123.120 (3)°

  • V = 4711.8 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.49 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.14 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.549, Tmax = 0.640

  • 25204 measured reflections

  • 8438 independent reflections

  • 4458 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.254

  • S = 1.02

  • 8438 reflections

  • 306 parameters

  • H-atom parameters constrained

  • Δρmax = 1.32 e Å−3

  • Δρmin = −1.56 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Methyl-2,6-bis[(5-bromo-4,6-dimethoxypyrimidin-2-yl)oxy]benzoate is a derivative of herbicide showing excellent herbicidal effects on annual and perennial weeds and high-safety crops, especially rice and wheat and is applied to paddy fields, ploughed fields and non-agricultural land (Koichiro et al., 1988). Most sulphonylurea herbicides and all pyrimidinylbenzoate herbicides (He et al., 2007) such as nicofulfuron, amidosulfuron, halopyrazosulfuron, ethoxysulfuron, pyriminobac-methyl and pyriftalid, possess 4,6-dimethoxypyrimidin-2-yl groups (Li et al., 2006), while sulfometuron-methyl, a kind of sulfonylurea, contains 4,6-dimethylpyrimidin-2-yl groups, which suggests that the two disubstituted pyrimidin-2-yl groups possess high biological activity (Gerorge, 1983).

In the title compound (Fig. 1), the two pyrimidine rings with atom sequences N1/C1/C2/C3/N2/C4 and C11/N3/C12/C13/C14/N4 are essentially planar, with maximum deviations of -0.028 (6) and 0.010 (5) Å, respectively, at atoms C1 and N4. An interplanar angle of 75.1 (2)° is formed between these two pyrimidine rings. The central phenyl ring (C5-C10) is inclined at interplanar angles of 66.5 (2) and 71.9 (2)°, respectively, with respect to the N1/C1/C2/C3/N2/C4 and C11/N3/C12/C13/C14/N4 pyrimidine rings. The geometric parameters agree well with those observed in closely related structures (Fun et al., 2010; Li & Luo, 2006).

In the crystal structure, no classical hydrogen bond is observed. The interesting features of the crystal structure are the intermolecular short Br···Br [Br1···Br2i = 3.5328 (12) Å; (i) -x+1/2, y-1/2, -z+1/2] and Br···O [Br1···O8i = 3.301 (4) and Br2···O1ii = 3.206 (3) Å; (ii) x, -y+2, z+1/2] interactions, which are shorter than the sum of the Van der Waals radii of the relevant atoms, interconnecting adjacent molecules into two-molecule-thick arrays parallel to the bc plane. Weak intermolecular ππ aromatic stacking interactions [Cg1···Cg1iii = 3.526 (3) Å; (iii): -x, y, -z+1/2] involving the C11/N3/C12/C13/C14/N4 pyrimidine ring further stabilize the crystal structure.

Related literature top

For general background to and applications of the title compound, see: Koichiro et al. (1988); He et al. (2007); Li et al. (2006); Gerorge (1983). For closely related structures, see: Fun et al. (2010); Li & Luo (2006).

Experimental top

To a stirred solution of methyl-2,6-dihydroxybenzoate (0.50 g, 0.0026 mol) in acetonitrile (10 ml) was added potassium carbonate (1.00 g, 0.0070 mol) and 5-bromo-4,6-dimethoxy-2-(methylsulfonyl)pyrimidine (1.78 g, 0.0050 mol). The reaction mixture was heated to reflux for 4 h. Mass analysis showed completion of the reaction. The reaction mixture was filtered and filtrate was concentrated. The residue was recrystallized using dichloromethane to obtain brown blocks of (I) (Yield: 67 %, M.p. 440–443 K).

Refinement top

All H atoms were placed in their calculated positions, with C—H = 0.93 – 0.96 Å, and refined using a riding model with Uiso = 1.2 or 1.5 Ueq(C). The rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 20 % probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of (I), viewed along the b axis, showing two-molecule-wide arrays parallel to the bc plane. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
Methyl 2,6-bis[(5-bromo-4,6-dimethoxypyrimidin-2-yl)oxy]benzoate top
Crystal data top
C20H18Br2N4O8F(000) = 2400
Mr = 602.20Dx = 1.698 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2909 reflections
a = 29.972 (5) Åθ = 2.7–25.5°
b = 8.1392 (12) ŵ = 3.49 mm1
c = 23.061 (3) ÅT = 293 K
β = 123.120 (3)°Block, brown
V = 4711.8 (12) Å30.20 × 0.18 × 0.14 mm
Z = 8
Data collection top
Bruker APEXII DUO CCD
diffractometer
8438 independent reflections
Radiation source: fine-focus sealed tube4458 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ϕ and ω scansθmax = 32.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 4545
Tmin = 0.549, Tmax = 0.640k = 1212
25204 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.254H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1449P)2]
where P = (Fo2 + 2Fc2)/3
8438 reflections(Δ/σ)max = 0.001
306 parametersΔρmax = 1.32 e Å3
0 restraintsΔρmin = 1.56 e Å3
Crystal data top
C20H18Br2N4O8V = 4711.8 (12) Å3
Mr = 602.20Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.972 (5) ŵ = 3.49 mm1
b = 8.1392 (12) ÅT = 293 K
c = 23.061 (3) Å0.20 × 0.18 × 0.14 mm
β = 123.120 (3)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
8438 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4458 reflections with I > 2σ(I)
Tmin = 0.549, Tmax = 0.640Rint = 0.066
25204 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.254H-atom parameters constrained
S = 1.02Δρmax = 1.32 e Å3
8438 reflectionsΔρmin = 1.56 e Å3
306 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.30639 (2)0.57188 (7)0.09822 (4)0.0594 (2)
Br20.08330 (2)0.91910 (6)0.40182 (3)0.04252 (17)
O10.11548 (12)0.9112 (3)0.04513 (18)0.0337 (7)
O20.05069 (15)0.5753 (3)0.15875 (19)0.0372 (7)
O30.28301 (15)0.9322 (4)0.0904 (3)0.0563 (11)
O40.20456 (14)0.4280 (4)0.0769 (2)0.0459 (9)
O50.16295 (15)0.8884 (5)0.1855 (2)0.0568 (10)
O60.16019 (17)0.6258 (6)0.2086 (3)0.0729 (14)
O70.07542 (16)0.5580 (4)0.3707 (2)0.0422 (8)
O80.06803 (15)1.0608 (4)0.27029 (19)0.0409 (8)
N10.19889 (16)0.9262 (4)0.0691 (2)0.0377 (9)
N20.15798 (13)0.6659 (4)0.0595 (2)0.0324 (8)
N30.06285 (16)0.5635 (4)0.2625 (2)0.0334 (8)
N40.05992 (14)0.8206 (4)0.21251 (19)0.0320 (7)
C10.24118 (18)0.8474 (6)0.0787 (3)0.0378 (10)
C20.24567 (18)0.6781 (6)0.0836 (3)0.0389 (10)
C30.20209 (17)0.5919 (5)0.0728 (3)0.0352 (9)
C40.15971 (16)0.8269 (5)0.0587 (2)0.0311 (9)
C50.07637 (16)0.8238 (5)0.0466 (2)0.0314 (9)
C60.02573 (18)0.8241 (6)0.0133 (3)0.0410 (11)
H6A0.01980.87770.05260.049*
C70.01538 (19)0.7465 (6)0.0153 (3)0.0472 (12)
H7A0.04940.74940.05540.057*
C80.00662 (19)0.6642 (6)0.0420 (3)0.0410 (11)
H8A0.03430.60820.04050.049*
C90.04382 (18)0.6656 (5)0.1021 (2)0.0337 (9)
C100.08581 (17)0.7468 (5)0.1067 (2)0.0314 (8)
C110.05805 (17)0.6583 (5)0.2136 (2)0.0310 (8)
C120.06957 (17)0.6433 (5)0.3175 (2)0.0315 (8)
C130.07150 (16)0.8121 (5)0.3220 (2)0.0318 (9)
C140.06590 (16)0.8963 (5)0.2677 (2)0.0300 (8)
C150.2797 (3)1.1092 (7)0.0878 (5)0.068 (2)
H15A0.31051.15410.09090.101*
H15B0.27801.14860.12590.101*
H15C0.24821.14280.04500.101*
C160.1604 (2)0.3438 (6)0.0691 (4)0.0586 (17)
H16A0.16530.22770.06750.088*
H16B0.12850.37790.02690.088*
H16C0.15750.36860.10760.088*
C170.1402 (2)0.7456 (6)0.1719 (3)0.0437 (11)
C180.2141 (3)0.9103 (8)0.2484 (4)0.0720 (14)
H18A0.22141.02560.25740.108*
H18B0.24090.86020.24380.108*
H18C0.21410.86000.28600.108*
C190.0734 (3)0.3785 (6)0.3658 (4)0.0590 (16)
H19A0.06950.33360.40130.089*
H19B0.10570.33820.37170.089*
H19C0.04360.34590.32120.089*
C200.0691 (3)1.1479 (9)0.2166 (4)0.0720 (14)
H20A0.07321.26340.22670.108*
H20B0.03641.12890.17290.108*
H20C0.09851.10930.21450.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0381 (3)0.0527 (3)0.0907 (5)0.0122 (2)0.0374 (3)0.0068 (3)
Br20.0570 (3)0.0430 (3)0.0376 (3)0.0108 (2)0.0324 (2)0.0123 (2)
O10.0330 (14)0.0321 (15)0.0452 (19)0.0082 (11)0.0272 (14)0.0116 (13)
O20.058 (2)0.0298 (15)0.0372 (18)0.0026 (13)0.0347 (17)0.0028 (13)
O30.0390 (18)0.0438 (19)0.096 (3)0.0040 (14)0.043 (2)0.0001 (19)
O40.0391 (17)0.0321 (16)0.068 (3)0.0026 (12)0.0305 (18)0.0035 (16)
O50.048 (2)0.067 (2)0.040 (2)0.0182 (17)0.0144 (18)0.0008 (19)
O60.057 (2)0.075 (3)0.057 (3)0.013 (2)0.012 (2)0.024 (2)
O70.062 (2)0.0343 (17)0.040 (2)0.0001 (14)0.0346 (18)0.0038 (14)
O80.056 (2)0.0282 (15)0.038 (2)0.0019 (13)0.0257 (17)0.0022 (14)
N10.0375 (19)0.0338 (19)0.048 (2)0.0027 (14)0.0270 (19)0.0063 (17)
N20.0304 (16)0.0305 (17)0.036 (2)0.0020 (13)0.0180 (15)0.0021 (15)
N30.0444 (19)0.0308 (18)0.035 (2)0.0017 (14)0.0279 (18)0.0015 (15)
N40.0391 (18)0.0312 (17)0.0285 (19)0.0000 (14)0.0202 (16)0.0004 (15)
C10.035 (2)0.038 (2)0.042 (3)0.0017 (17)0.022 (2)0.000 (2)
C20.035 (2)0.037 (2)0.046 (3)0.0058 (17)0.023 (2)0.001 (2)
C30.034 (2)0.031 (2)0.040 (3)0.0046 (15)0.0196 (19)0.0021 (18)
C40.0302 (18)0.037 (2)0.028 (2)0.0081 (15)0.0168 (17)0.0035 (18)
C50.0341 (19)0.035 (2)0.032 (2)0.0063 (16)0.0225 (18)0.0031 (18)
C60.037 (2)0.052 (3)0.037 (3)0.0065 (19)0.022 (2)0.011 (2)
C70.033 (2)0.060 (3)0.040 (3)0.002 (2)0.015 (2)0.000 (2)
C80.038 (2)0.049 (3)0.038 (3)0.0044 (19)0.022 (2)0.006 (2)
C90.044 (2)0.031 (2)0.036 (2)0.0029 (16)0.028 (2)0.0070 (18)
C100.038 (2)0.031 (2)0.029 (2)0.0024 (16)0.0204 (18)0.0012 (17)
C110.039 (2)0.0274 (19)0.033 (2)0.0021 (15)0.0233 (19)0.0040 (17)
C120.0352 (19)0.035 (2)0.030 (2)0.0022 (16)0.0214 (18)0.0028 (18)
C130.0311 (18)0.037 (2)0.032 (2)0.0015 (15)0.0199 (18)0.0054 (18)
C140.0306 (18)0.0305 (19)0.030 (2)0.0004 (14)0.0169 (17)0.0062 (17)
C150.065 (4)0.039 (3)0.109 (6)0.011 (2)0.055 (4)0.006 (3)
C160.045 (3)0.037 (3)0.093 (5)0.001 (2)0.037 (3)0.002 (3)
C170.042 (2)0.055 (3)0.033 (3)0.000 (2)0.020 (2)0.004 (2)
C180.073 (3)0.073 (3)0.053 (3)0.018 (2)0.023 (2)0.003 (2)
C190.104 (5)0.032 (2)0.054 (4)0.000 (3)0.052 (4)0.006 (2)
C200.073 (3)0.073 (3)0.053 (3)0.018 (2)0.023 (2)0.003 (2)
Geometric parameters (Å, º) top
Br1—C21.872 (4)C5—C61.386 (7)
Br2—C131.887 (4)C5—C101.401 (6)
O1—C41.368 (5)C6—C71.363 (7)
O1—C51.388 (5)C6—H6A0.9300
O2—C111.342 (5)C7—C81.373 (8)
O2—C91.412 (6)C7—H7A0.9300
O3—C11.324 (6)C8—C91.384 (7)
O3—C151.443 (6)C8—H8A0.9300
O4—C31.337 (5)C9—C101.374 (6)
O4—C161.411 (6)C10—C171.496 (7)
O5—C171.297 (6)C12—C131.376 (6)
O5—C181.433 (8)C13—C141.356 (6)
O6—C171.213 (7)C15—H15A0.9600
O7—C121.336 (5)C15—H15B0.9600
O7—C191.464 (6)C15—H15C0.9600
O8—C141.341 (5)C16—H16A0.9600
O8—C201.442 (8)C16—H16B0.9600
N1—C11.327 (6)C16—H16C0.9600
N1—C41.335 (6)C18—H18A0.9600
N2—C41.312 (6)C18—H18B0.9600
N2—C31.328 (5)C18—H18C0.9600
N3—C111.308 (6)C19—H19A0.9600
N3—C121.339 (6)C19—H19B0.9600
N4—C111.323 (5)C19—H19C0.9600
N4—C141.334 (6)C20—H20A0.9600
C1—C21.383 (6)C20—H20B0.9600
C2—C31.380 (6)C20—H20C0.9600
C4—O1—C5117.6 (3)N4—C11—O2118.2 (4)
C11—O2—C9118.4 (3)O7—C12—N3119.6 (4)
C1—O3—C15118.4 (4)O7—C12—C13118.1 (4)
C3—O4—C16117.6 (4)N3—C12—C13122.3 (4)
C17—O5—C18119.2 (5)C14—C13—C12117.1 (4)
C12—O7—C19118.0 (4)C14—C13—Br2122.1 (3)
C14—O8—C20118.4 (5)C12—C13—Br2120.8 (4)
C1—N1—C4113.8 (4)N4—C14—O8118.8 (4)
C4—N2—C3114.4 (4)N4—C14—C13122.2 (4)
C11—N3—C12114.7 (4)O8—C14—C13119.0 (4)
C11—N4—C14115.3 (4)O3—C15—H15A109.5
O3—C1—N1119.6 (4)O3—C15—H15B109.5
O3—C1—C2117.7 (4)H15A—C15—H15B109.5
N1—C1—C2122.4 (4)O3—C15—H15C109.5
C3—C2—C1116.9 (4)H15A—C15—H15C109.5
C3—C2—Br1121.9 (3)H15B—C15—H15C109.5
C1—C2—Br1121.1 (3)O4—C16—H16A109.5
N2—C3—O4118.6 (4)O4—C16—H16B109.5
N2—C3—C2122.4 (4)H16A—C16—H16B109.5
O4—C3—C2119.0 (4)O4—C16—H16C109.5
N2—C4—N1129.8 (4)H16A—C16—H16C109.5
N2—C4—O1117.6 (4)H16B—C16—H16C109.5
N1—C4—O1112.6 (4)O6—C17—O5123.8 (5)
C6—C5—O1117.0 (4)O6—C17—C10124.0 (5)
C6—C5—C10120.5 (4)O5—C17—C10112.2 (4)
O1—C5—C10122.5 (4)O5—C18—H18A109.5
C7—C6—C5120.6 (5)O5—C18—H18B109.5
C7—C6—H6A119.7H18A—C18—H18B109.5
C5—C6—H6A119.7O5—C18—H18C109.5
C6—C7—C8120.0 (5)H18A—C18—H18C109.5
C6—C7—H7A120.0H18B—C18—H18C109.5
C8—C7—H7A120.0O7—C19—H19A109.5
C7—C8—C9119.3 (4)O7—C19—H19B109.5
C7—C8—H8A120.3H19A—C19—H19B109.5
C9—C8—H8A120.3O7—C19—H19C109.5
C10—C9—C8122.3 (4)H19A—C19—H19C109.5
C10—C9—O2121.0 (4)H19B—C19—H19C109.5
C8—C9—O2116.7 (4)O8—C20—H20A109.5
C9—C10—C5117.2 (4)O8—C20—H20B109.5
C9—C10—C17121.5 (4)H20A—C20—H20B109.5
C5—C10—C17121.2 (4)O8—C20—H20C109.5
N3—C11—N4128.3 (4)H20A—C20—H20C109.5
N3—C11—O2113.5 (3)H20B—C20—H20C109.5
C15—O3—C1—N14.0 (8)C8—C9—C10—C17179.4 (4)
C15—O3—C1—C2177.8 (6)O2—C9—C10—C171.0 (6)
C4—N1—C1—O3179.2 (5)C6—C5—C10—C93.4 (6)
C4—N1—C1—C25.6 (7)O1—C5—C10—C9179.2 (4)
O3—C1—C2—C3178.6 (5)C6—C5—C10—C17179.9 (4)
N1—C1—C2—C34.9 (8)O1—C5—C10—C174.1 (6)
O3—C1—C2—Br15.6 (7)C12—N3—C11—N41.2 (7)
N1—C1—C2—Br1179.2 (4)C12—N3—C11—O2179.2 (4)
C4—N2—C3—O4177.9 (5)C14—N4—C11—N32.2 (7)
C4—N2—C3—C21.0 (7)C14—N4—C11—O2178.3 (4)
C16—O4—C3—N22.1 (7)C9—O2—C11—N3178.6 (4)
C16—O4—C3—C2176.8 (5)C9—O2—C11—N41.8 (6)
C1—C2—C3—N21.4 (8)C19—O7—C12—N30.9 (7)
Br1—C2—C3—N2177.1 (4)C19—O7—C12—C13180.0 (5)
C1—C2—C3—O4179.8 (5)C11—N3—C12—O7179.3 (4)
Br1—C2—C3—O44.0 (7)C11—N3—C12—C130.3 (6)
C3—N2—C4—N10.0 (7)O7—C12—C13—C14179.5 (4)
C3—N2—C4—O1179.8 (4)N3—C12—C13—C140.4 (6)
C1—N1—C4—N23.2 (8)O7—C12—C13—Br21.1 (5)
C1—N1—C4—O1176.5 (4)N3—C12—C13—Br2178.0 (3)
C5—O1—C4—N212.3 (6)C11—N4—C14—O8179.9 (4)
C5—O1—C4—N1167.9 (4)C11—N4—C14—C132.2 (6)
C4—O1—C5—C6121.7 (5)C20—O8—C14—N46.1 (6)
C4—O1—C5—C1062.4 (5)C20—O8—C14—C13171.9 (5)
O1—C5—C6—C7177.4 (4)C12—C13—C14—N41.4 (6)
C10—C5—C6—C71.4 (7)Br2—C13—C14—N4177.0 (3)
C5—C6—C7—C81.4 (8)C12—C13—C14—O8179.4 (4)
C6—C7—C8—C92.1 (8)Br2—C13—C14—O81.0 (5)
C7—C8—C9—C100.1 (7)C18—O5—C17—O62.0 (9)
C7—C8—C9—O2178.4 (4)C18—O5—C17—C10176.5 (5)
C11—O2—C9—C1072.1 (5)C9—C10—C17—O639.9 (7)
C11—O2—C9—C8109.4 (5)C5—C10—C17—O6136.6 (6)
C8—C9—C10—C52.8 (6)C9—C10—C17—O5138.5 (5)
O2—C9—C10—C5175.7 (4)C5—C10—C17—O544.9 (6)

Experimental details

Crystal data
Chemical formulaC20H18Br2N4O8
Mr602.20
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)29.972 (5), 8.1392 (12), 23.061 (3)
β (°) 123.120 (3)
V3)4711.8 (12)
Z8
Radiation typeMo Kα
µ (mm1)3.49
Crystal size (mm)0.20 × 0.18 × 0.14
Data collection
DiffractometerBruker APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.549, 0.640
No. of measured, independent and
observed [I > 2σ(I)] reflections
25204, 8438, 4458
Rint0.066
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.254, 1.02
No. of reflections8438
No. of parameters306
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.32, 1.56

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7576-2009.

Acknowledgements

HKF and JHG thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship. AMI is grateful to the Head of the Chemistry Department and the Director, National Institute of Technology-Karnataka for their encouragement. AMI also thanks USM for a partially sponsored research visit to the X-ray Crystallography Unit, School of Physics, USM.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Goh, J. H., Rai, S., Isloor, A. M. & Shetty, P. (2010). Acta Cryst. E66, ci5115Google Scholar
First citationGerorge, L. (1983). US Patent No. 4 394 506.  Google Scholar
First citationHe, Y.-Z., Li, Y.-X., Zhu, X.-L., Xi, Z., Niu, C., Wan, J., Zhang, L. & Yang, G.-F. (2007). J. Chem. Inf. Model. 47, 2335–2344.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKoichiro, S., Shoji, K., Yasubumi, T., Takeshige, M. & Ryo, Y. (1988). Japan Patent 88-132167 (CA112:216956, 1998).  Google Scholar
First citationLi, Y.-X. & Luo, Y.-P. (2006). Acta Cryst. E62, o1323–o1325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y.-X., Luo, Y.-P., Xi, Z., Niu, C., He, Y.-Z. & Yang, G.-F. (2006). J. Agric. Food Chem. 54, 9135–9139.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds