organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-[(2,7-Di­bromo­fluorene-9,9-di­yl)di­methyl­ene]dipyridinium bis­­(perchlorate)

aMaterials Chemistry Laboratory, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China, and bNew Materials & Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao Shandong 266042, People's Republic of China
*Correspondence e-mail: zhaopusu@163.com, xzwqd@163.com

(Received 13 May 2010; accepted 8 June 2010; online 18 June 2010)

In the crystal of the title compound, C25H20Br2N22+·2ClO4, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, along with C—H⋯π inter­actions, stabilize the crystal structure.

Related literature

A variety of ligands of different mol­ecular dimensions and functional properties have been utilized in the preparation of numerous supra­molecular assemblies with exotic architectures, see: Applegarth et al., (2005[Applegarth, L., Goetra, A. E. & Steed, J. W. (2005). Chem. Commun. 18, 2405-2406.]). For related structures, see: Meerssche et al. (1979[Meerssche, M., Germain, G., Declercq, J. P. & Touillaux, R. (1979). Cryst. Struct. Commun. 8, 119-122.], 1980[Meerssche, M., Germain, G., Declercq, J. P., Touillaux, R., Roberfroid, M. & Razzouk, C. (1980). Cryst. Struct. Commun. 9, 515-518.]).

[Scheme 1]

Experimental

Crystal data
  • C25H20Br2N22+·2ClO4

  • Mr = 707.15

  • Monoclinic, C 2/c

  • a = 15.605 (3) Å

  • b = 11.267 (2) Å

  • c = 16.318 (3) Å

  • β = 117.60 (3)°

  • V = 2542.6 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.45 mm−1

  • T = 295 K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.441, Tmax = 0.537

  • 11835 measured reflections

  • 2915 independent reflections

  • 2611 reflections with I > 2σ(I)

  • Rint = 0.062

  • 3 standard reflections every 100 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.103

  • S = 1.06

  • 2915 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 1.01 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3 0.86 2.24 2.997 (3) 148
C11—H11A⋯O1 0.93 2.57 3.196 (3) 125
C12—H12A⋯O4i 0.93 2.44 3.193 (3) 138
C13—H13A⋯O1ii 0.93 2.47 3.376 (3) 164
C10—H10ACg3 0.93 2.93 3.688 (2) 140
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

A variety of ligands of different molecular dimensions and functional properties were utilized for the preparation of numerous supramolecular assemblies of exotic architectures as reported in the recent literature (Applegarth et al., 2005). Herein, we report a new bipyridine derivative of 2,7-dibromo-9,9-(4-pyridyl-methyl) fluorene [DBPMF].

scheme I

The structure of the title compound contains a protonated 2,7-dibromo-9,9-bis(4-pyridinium-methyl) fluorene dications DBPMFH22+ and two perchlorate anions ClO4-. All the bond lengths and bond angles in the phenyl ring and five-membered ring are corresponding with those observed in 2-acetylaminofluorene (Meerssche et al., 1980) and 4-acetylamino-fluorene (Meerssche et al., 1979). Two bromine atoms along with the thirteen atoms of fluorenyl ring are coplanar (P1) and the biggest deviation is 0.038Å for C6 atom. The dihedral angle between the plane P1 and the pyridyl ring containing N1 atom is 72.11 (2)°.

In the crystal lattice, there are four types of supramolecular interactions (Table 1), including N—H···O hydrogen bonds, C—H···O potential hydrogen bonds, C—H···π supramolecular interaction and ππ stacking interactions. Among these supramolecular interactions, the two types N—H···O hydrogen bonds link two DBPMFH22+ cations with two ClO4- anions to construct one-dimensional chains, then the other supramolecular interactions help the 1D chains to form three-dimensional net-works, which stabilize the crystal structure.

Related literature top

A variety of ligands of different molecular dimensions and functional properties have been utilized in the preparation of numerous supramolecular assemblies with exotic architectures, see: Applegarth et al., (2005). For related structures, see: Meerssche et al. (1979, 1980).

Experimental top

DBPMF was synthesized by the reaction of 2,7-dibromofluorene (3.24 g, 0.01 mol) and 4-chloromethyl pyridine hydrochloride (1.64 g, 0.02 mol) in DMSO (70 ml). The title compound was obtained by the reaction of DBPMF (2.55 g, 5.0 mmol) and HClO4 (0.26 ml, 5.0 mmol) in EtOH (50 ml). Single crystals suitable for x-ray measurements were obtained by recrystallization at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances=0.93-0.97 Å, N—H distance=0.86Å and with Uiso=1.2-1.5Ueq.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
4,4'-[(2,7-Dibromofluorene-9,9-diyl)dimethylene]dipyridinium bis(perchlorate) top
Crystal data top
C25H20Br2N22+·2ClO4F(000) = 1408
Mr = 707.15Dx = 1.847 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 15.605 (3) Åθ = 4–14°
b = 11.267 (2) ŵ = 3.45 mm1
c = 16.318 (3) ÅT = 295 K
β = 117.60 (3)°Block, yellow
V = 2542.6 (11) Å30.25 × 0.20 × 0.18 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2611 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
ω/2θ scansh = 2020
Absorption correction: ψ scan
(North et al., 1968)
k = 1414
Tmin = 0.441, Tmax = 0.537l = 2121
11835 measured reflections3 standard reflections every 100 reflections
2915 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.5103P]
where P = (Fo2 + 2Fc2)/3
2915 reflections(Δ/σ)max = 0.001
177 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = 0.79 e Å3
Crystal data top
C25H20Br2N22+·2ClO4V = 2542.6 (11) Å3
Mr = 707.15Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.605 (3) ŵ = 3.45 mm1
b = 11.267 (2) ÅT = 295 K
c = 16.318 (3) Å0.25 × 0.20 × 0.18 mm
β = 117.60 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2611 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.062
Tmin = 0.441, Tmax = 0.5373 standard reflections every 100 reflections
11835 measured reflections intensity decay: none
2915 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.06Δρmax = 1.01 e Å3
2915 reflectionsΔρmin = 0.79 e Å3
177 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.201221 (15)0.319251 (18)0.114789 (15)0.01844 (12)
N10.33006 (13)0.39368 (16)0.24329 (14)0.0178 (4)
H1A0.38190.37070.24180.021*
C10.13197 (15)0.2901 (2)0.01439 (16)0.0153 (4)
C20.11455 (16)0.17300 (17)0.04368 (17)0.0162 (5)
H2A0.13770.11150.00090.019*
C30.06207 (15)0.14838 (19)0.13788 (15)0.0154 (4)
H3A0.05000.07040.15890.019*
C40.02836 (14)0.24228 (18)0.19940 (15)0.0140 (4)
C50.04692 (14)0.36049 (18)0.16834 (16)0.0141 (4)
C60.09989 (14)0.38606 (18)0.07490 (15)0.0146 (4)
H6A0.11340.46380.05360.017*
C70.00000.4457 (2)0.25000.0123 (5)
C80.07543 (14)0.52981 (17)0.24235 (15)0.0136 (4)
H8A0.04290.57370.18490.016*
H8B0.09650.58700.29240.016*
C90.16421 (14)0.47237 (18)0.24518 (15)0.0133 (4)
C100.16000 (15)0.39694 (18)0.17545 (15)0.0157 (4)
H10A0.10040.37220.12900.019*
C110.24415 (15)0.35912 (19)0.17540 (16)0.0175 (4)
H11A0.24130.30980.12850.021*
C120.33797 (15)0.46320 (19)0.31370 (16)0.0183 (4)
H12A0.39860.48410.36050.022*
C130.25553 (15)0.50303 (18)0.31584 (15)0.0152 (4)
H13A0.26060.55050.36450.018*
Cl10.41022 (4)0.31707 (4)0.05644 (4)0.01488 (15)
O10.31184 (11)0.35890 (17)0.01812 (12)0.0258 (4)
O20.41264 (16)0.19359 (15)0.03767 (15)0.0321 (5)
O30.45717 (12)0.33505 (14)0.15648 (12)0.0213 (4)
O40.46088 (12)0.38494 (16)0.01772 (12)0.0286 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02330 (17)0.01761 (16)0.01334 (17)0.00066 (7)0.00760 (12)0.00009 (7)
N10.0150 (8)0.0174 (9)0.0236 (10)0.0018 (7)0.0112 (8)0.0021 (8)
C10.0146 (9)0.0182 (9)0.0130 (10)0.0009 (8)0.0064 (8)0.0001 (9)
C20.0211 (11)0.0122 (10)0.0171 (12)0.0033 (7)0.0105 (10)0.0052 (8)
C30.0200 (10)0.0111 (9)0.0167 (11)0.0006 (8)0.0097 (9)0.0000 (9)
C40.0152 (9)0.0124 (9)0.0165 (11)0.0002 (7)0.0090 (8)0.0018 (8)
C50.0144 (9)0.0106 (9)0.0196 (11)0.0009 (7)0.0097 (8)0.0020 (9)
C60.0158 (9)0.0119 (9)0.0171 (10)0.0002 (7)0.0086 (8)0.0008 (8)
C70.0125 (12)0.0115 (13)0.0135 (14)0.0000.0064 (11)0.000
C80.0160 (9)0.0095 (8)0.0167 (10)0.0007 (7)0.0088 (8)0.0001 (8)
C90.0162 (9)0.0108 (9)0.0152 (10)0.0005 (7)0.0091 (8)0.0032 (8)
C100.0165 (9)0.0158 (10)0.0154 (10)0.0007 (8)0.0079 (8)0.0000 (8)
C110.0207 (10)0.0148 (10)0.0201 (12)0.0005 (8)0.0121 (9)0.0000 (9)
C120.0153 (9)0.0183 (10)0.0184 (11)0.0014 (8)0.0054 (8)0.0019 (9)
C130.0181 (10)0.0134 (9)0.0135 (10)0.0010 (8)0.0068 (8)0.0017 (8)
Cl10.0145 (3)0.0161 (3)0.0132 (3)0.00181 (16)0.0057 (2)0.00099 (17)
O10.0162 (8)0.0345 (9)0.0247 (9)0.0037 (7)0.0077 (7)0.0074 (8)
O20.0390 (10)0.0178 (9)0.0283 (11)0.0006 (7)0.0061 (9)0.0061 (7)
O30.0210 (8)0.0273 (8)0.0128 (8)0.0003 (6)0.0055 (7)0.0034 (7)
O40.0253 (8)0.0390 (10)0.0264 (9)0.0070 (7)0.0161 (7)0.0037 (8)
Geometric parameters (Å, º) top
Br1—C11.900 (2)C7—C81.561 (2)
N1—C111.342 (3)C8—C91.510 (3)
N1—C121.348 (3)C8—H8A0.9700
N1—H1A0.8600C8—H8B0.9700
C1—C21.387 (3)C9—C101.397 (3)
C1—C61.392 (3)C9—C131.399 (3)
C2—C31.394 (3)C10—C111.381 (3)
C2—H2A0.9300C10—H10A0.9300
C3—C41.384 (3)C11—H11A0.9300
C3—H3A0.9300C12—C131.378 (3)
C4—C51.407 (3)C12—H12A0.9300
C4—C4i1.468 (4)C13—H13A0.9300
C5—C61.387 (3)Cl1—O21.4289 (18)
C5—C71.526 (3)Cl1—O41.4395 (17)
C6—H6A0.9300Cl1—O11.4423 (16)
C7—C5i1.526 (3)Cl1—O31.4609 (19)
C7—C8i1.561 (2)
C11—N1—C12122.30 (19)C9—C8—C7116.89 (17)
C11—N1—H1A118.9C9—C8—H8A108.1
C12—N1—H1A118.9C7—C8—H8A108.1
C2—C1—C6123.1 (2)C9—C8—H8B108.1
C2—C1—Br1117.84 (18)C7—C8—H8B108.1
C6—C1—Br1119.06 (17)H8A—C8—H8B107.3
C1—C2—C3119.4 (2)C10—C9—C13117.85 (19)
C1—C2—H2A120.3C10—C9—C8122.64 (18)
C3—C2—H2A120.3C13—C9—C8119.28 (19)
C4—C3—C2118.7 (2)C11—C10—C9120.1 (2)
C4—C3—H3A120.7C11—C10—H10A119.9
C2—C3—H3A120.7C9—C10—H10A119.9
C3—C4—C5121.1 (2)N1—C11—C10119.8 (2)
C3—C4—C4i130.12 (13)N1—C11—H11A120.1
C5—C4—C4i108.75 (13)C10—C11—H11A120.1
C6—C5—C4120.7 (2)N1—C12—C13119.5 (2)
C6—C5—C7129.05 (19)N1—C12—H12A120.2
C4—C5—C7110.21 (19)C13—C12—H12A120.2
C5—C6—C1117.00 (19)C12—C13—C9120.3 (2)
C5—C6—H6A121.5C12—C13—H13A119.8
C1—C6—H6A121.5C9—C13—H13A119.8
C5—C7—C5i102.1 (2)O2—Cl1—O4110.40 (13)
C5—C7—C8i112.17 (11)O2—Cl1—O1110.72 (12)
C5i—C7—C8i112.75 (11)O4—Cl1—O1109.07 (11)
C5—C7—C8112.75 (11)O2—Cl1—O3108.98 (11)
C5i—C7—C8112.17 (11)O4—Cl1—O3108.89 (10)
C8i—C7—C8105.2 (2)O1—Cl1—O3108.74 (11)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.862.242.997 (3)148
C11—H11A···O10.932.573.196 (3)125
C12—H12A···O4ii0.932.443.193 (3)138
C13—H13A···O1iii0.932.473.376 (3)164
C10—H10A···Cg30.932.933.688 (2)140
Symmetry codes: (ii) x+1, y, z+1/2; (iii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC25H20Br2N22+·2ClO4
Mr707.15
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)15.605 (3), 11.267 (2), 16.318 (3)
β (°) 117.60 (3)
V3)2542.6 (11)
Z4
Radiation typeMo Kα
µ (mm1)3.45
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.441, 0.537
No. of measured, independent and
observed [I > 2σ(I)] reflections
11835, 2915, 2611
Rint0.062
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.103, 1.06
No. of reflections2915
No. of parameters177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.01, 0.79

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.86002.23562.997 (3)147.53
C11—H11A···O10.93002.56873.196 (3)125.18
C12—H12A···O4i0.93002.44283.193 (3)137.77
C13—H13A···O1ii0.93002.47123.376 (3)164.43
C10—H10A···Cg30.93002.92603.688 (2)140.07
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y+1, z+1/2.
 

Acknowledgements

The authors would like to thank the Natural Science Foundation of Shandong Province (No. Y2007B14).

References

First citationApplegarth, L., Goetra, A. E. & Steed, J. W. (2005). Chem. Commun. 18, 2405–2406.  Web of Science CSD CrossRef Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMeerssche, M., Germain, G., Declercq, J. P. & Touillaux, R. (1979). Cryst. Struct. Commun. 8, 119–122.  Google Scholar
First citationMeerssche, M., Germain, G., Declercq, J. P., Touillaux, R., Roberfroid, M. & Razzouk, C. (1980). Cryst. Struct. Commun. 9, 515–518.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds