organic compounds
4,4′-[(2,7-Dibromofluorene-9,9-diyl)dimethylene]dipyridinium bis(perchlorate)
aMaterials Chemistry Laboratory, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China, and bNew Materials & Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao Shandong 266042, People's Republic of China
*Correspondence e-mail: zhaopusu@163.com, xzwqd@163.com
In the crystal of the title compound, C25H20Br2N22+·2ClO4−, intermolecular N—H⋯O and C—H⋯O hydrogen bonds, along with C—H⋯π interactions, stabilize the crystal structure.
Related literature
A variety of ligands of different molecular dimensions and functional properties have been utilized in the preparation of numerous supramolecular assemblies with exotic architectures, see: Applegarth et al., (2005). For related structures, see: Meerssche et al. (1979, 1980).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536810021859/hg2685sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810021859/hg2685Isup2.hkl
DBPMF was synthesized by the reaction of 2,7-dibromofluorene (3.24 g, 0.01 mol) and 4-chloromethyl pyridine hydrochloride (1.64 g, 0.02 mol) in DMSO (70 ml). The title compound was obtained by the reaction of DBPMF (2.55 g, 5.0 mmol) and HClO4 (0.26 ml, 5.0 mmol) in EtOH (50 ml). Single crystals suitable for x-ray measurements were obtained by recrystallization at room temperature.
H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances=0.93-0.97 Å, N—H distance=0.86Å and with Uiso=1.2-1.5Ueq.
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme. |
C25H20Br2N22+·2ClO4− | F(000) = 1408 |
Mr = 707.15 | Dx = 1.847 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 25 reflections |
a = 15.605 (3) Å | θ = 4–14° |
b = 11.267 (2) Å | µ = 3.45 mm−1 |
c = 16.318 (3) Å | T = 295 K |
β = 117.60 (3)° | Block, yellow |
V = 2542.6 (11) Å3 | 0.25 × 0.20 × 0.18 mm |
Z = 4 |
Enraf–Nonius CAD-4 diffractometer | 2611 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.062 |
Graphite monochromator | θmax = 27.5°, θmin = 3.1° |
ω/2θ scans | h = −20→20 |
Absorption correction: ψ scan (North et al., 1968) | k = −14→14 |
Tmin = 0.441, Tmax = 0.537 | l = −21→21 |
11835 measured reflections | 3 standard reflections every 100 reflections |
2915 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.103 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0681P)2 + 0.5103P] where P = (Fo2 + 2Fc2)/3 |
2915 reflections | (Δ/σ)max = 0.001 |
177 parameters | Δρmax = 1.01 e Å−3 |
0 restraints | Δρmin = −0.79 e Å−3 |
C25H20Br2N22+·2ClO4− | V = 2542.6 (11) Å3 |
Mr = 707.15 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 15.605 (3) Å | µ = 3.45 mm−1 |
b = 11.267 (2) Å | T = 295 K |
c = 16.318 (3) Å | 0.25 × 0.20 × 0.18 mm |
β = 117.60 (3)° |
Enraf–Nonius CAD-4 diffractometer | 2611 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.062 |
Tmin = 0.441, Tmax = 0.537 | 3 standard reflections every 100 reflections |
11835 measured reflections | intensity decay: none |
2915 independent reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.103 | H-atom parameters constrained |
S = 1.06 | Δρmax = 1.01 e Å−3 |
2915 reflections | Δρmin = −0.79 e Å−3 |
177 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | −0.201221 (15) | 0.319251 (18) | −0.114789 (15) | 0.01844 (12) | |
N1 | 0.33006 (13) | 0.39368 (16) | 0.24329 (14) | 0.0178 (4) | |
H1A | 0.3819 | 0.3707 | 0.2418 | 0.021* | |
C1 | −0.13197 (15) | 0.2901 (2) | 0.01439 (16) | 0.0153 (4) | |
C2 | −0.11455 (16) | 0.17300 (17) | 0.04368 (17) | 0.0162 (5) | |
H2A | −0.1377 | 0.1115 | 0.0009 | 0.019* | |
C3 | −0.06207 (15) | 0.14838 (19) | 0.13788 (15) | 0.0154 (4) | |
H3A | −0.0500 | 0.0704 | 0.1589 | 0.019* | |
C4 | −0.02836 (14) | 0.24228 (18) | 0.19940 (15) | 0.0140 (4) | |
C5 | −0.04692 (14) | 0.36049 (18) | 0.16834 (16) | 0.0141 (4) | |
C6 | −0.09989 (14) | 0.38606 (18) | 0.07490 (15) | 0.0146 (4) | |
H6A | −0.1134 | 0.4638 | 0.0536 | 0.017* | |
C7 | 0.0000 | 0.4457 (2) | 0.2500 | 0.0123 (5) | |
C8 | 0.07543 (14) | 0.52981 (17) | 0.24235 (15) | 0.0136 (4) | |
H8A | 0.0429 | 0.5737 | 0.1849 | 0.016* | |
H8B | 0.0965 | 0.5870 | 0.2924 | 0.016* | |
C9 | 0.16421 (14) | 0.47237 (18) | 0.24518 (15) | 0.0133 (4) | |
C10 | 0.16000 (15) | 0.39694 (18) | 0.17545 (15) | 0.0157 (4) | |
H10A | 0.1004 | 0.3722 | 0.1290 | 0.019* | |
C11 | 0.24415 (15) | 0.35912 (19) | 0.17540 (16) | 0.0175 (4) | |
H11A | 0.2413 | 0.3098 | 0.1285 | 0.021* | |
C12 | 0.33797 (15) | 0.46320 (19) | 0.31370 (16) | 0.0183 (4) | |
H12A | 0.3986 | 0.4841 | 0.3605 | 0.022* | |
C13 | 0.25553 (15) | 0.50303 (18) | 0.31584 (15) | 0.0152 (4) | |
H13A | 0.2606 | 0.5505 | 0.3645 | 0.018* | |
Cl1 | 0.41022 (4) | 0.31707 (4) | 0.05644 (4) | 0.01488 (15) | |
O1 | 0.31184 (11) | 0.35890 (17) | 0.01812 (12) | 0.0258 (4) | |
O2 | 0.41264 (16) | 0.19359 (15) | 0.03767 (15) | 0.0321 (5) | |
O3 | 0.45717 (12) | 0.33505 (14) | 0.15648 (12) | 0.0213 (4) | |
O4 | 0.46088 (12) | 0.38494 (16) | 0.01772 (12) | 0.0286 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02330 (17) | 0.01761 (16) | 0.01334 (17) | −0.00066 (7) | 0.00760 (12) | −0.00009 (7) |
N1 | 0.0150 (8) | 0.0174 (9) | 0.0236 (10) | 0.0018 (7) | 0.0112 (8) | 0.0021 (8) |
C1 | 0.0146 (9) | 0.0182 (9) | 0.0130 (10) | −0.0009 (8) | 0.0064 (8) | 0.0001 (9) |
C2 | 0.0211 (11) | 0.0122 (10) | 0.0171 (12) | −0.0033 (7) | 0.0105 (10) | −0.0052 (8) |
C3 | 0.0200 (10) | 0.0111 (9) | 0.0167 (11) | 0.0006 (8) | 0.0097 (9) | 0.0000 (9) |
C4 | 0.0152 (9) | 0.0124 (9) | 0.0165 (11) | 0.0002 (7) | 0.0090 (8) | 0.0018 (8) |
C5 | 0.0144 (9) | 0.0106 (9) | 0.0196 (11) | −0.0009 (7) | 0.0097 (8) | −0.0020 (9) |
C6 | 0.0158 (9) | 0.0119 (9) | 0.0171 (10) | −0.0002 (7) | 0.0086 (8) | 0.0008 (8) |
C7 | 0.0125 (12) | 0.0115 (13) | 0.0135 (14) | 0.000 | 0.0064 (11) | 0.000 |
C8 | 0.0160 (9) | 0.0095 (8) | 0.0167 (10) | −0.0007 (7) | 0.0088 (8) | 0.0001 (8) |
C9 | 0.0162 (9) | 0.0108 (9) | 0.0152 (10) | −0.0005 (7) | 0.0091 (8) | 0.0032 (8) |
C10 | 0.0165 (9) | 0.0158 (10) | 0.0154 (10) | −0.0007 (8) | 0.0079 (8) | 0.0000 (8) |
C11 | 0.0207 (10) | 0.0148 (10) | 0.0201 (12) | 0.0005 (8) | 0.0121 (9) | 0.0000 (9) |
C12 | 0.0153 (9) | 0.0183 (10) | 0.0184 (11) | −0.0014 (8) | 0.0054 (8) | 0.0019 (9) |
C13 | 0.0181 (10) | 0.0134 (9) | 0.0135 (10) | −0.0010 (8) | 0.0068 (8) | 0.0017 (8) |
Cl1 | 0.0145 (3) | 0.0161 (3) | 0.0132 (3) | −0.00181 (16) | 0.0057 (2) | −0.00099 (17) |
O1 | 0.0162 (8) | 0.0345 (9) | 0.0247 (9) | 0.0037 (7) | 0.0077 (7) | 0.0074 (8) |
O2 | 0.0390 (10) | 0.0178 (9) | 0.0283 (11) | −0.0006 (7) | 0.0061 (9) | −0.0061 (7) |
O3 | 0.0210 (8) | 0.0273 (8) | 0.0128 (8) | −0.0003 (6) | 0.0055 (7) | −0.0034 (7) |
O4 | 0.0253 (8) | 0.0390 (10) | 0.0264 (9) | −0.0070 (7) | 0.0161 (7) | 0.0037 (8) |
Br1—C1 | 1.900 (2) | C7—C8 | 1.561 (2) |
N1—C11 | 1.342 (3) | C8—C9 | 1.510 (3) |
N1—C12 | 1.348 (3) | C8—H8A | 0.9700 |
N1—H1A | 0.8600 | C8—H8B | 0.9700 |
C1—C2 | 1.387 (3) | C9—C10 | 1.397 (3) |
C1—C6 | 1.392 (3) | C9—C13 | 1.399 (3) |
C2—C3 | 1.394 (3) | C10—C11 | 1.381 (3) |
C2—H2A | 0.9300 | C10—H10A | 0.9300 |
C3—C4 | 1.384 (3) | C11—H11A | 0.9300 |
C3—H3A | 0.9300 | C12—C13 | 1.378 (3) |
C4—C5 | 1.407 (3) | C12—H12A | 0.9300 |
C4—C4i | 1.468 (4) | C13—H13A | 0.9300 |
C5—C6 | 1.387 (3) | Cl1—O2 | 1.4289 (18) |
C5—C7 | 1.526 (3) | Cl1—O4 | 1.4395 (17) |
C6—H6A | 0.9300 | Cl1—O1 | 1.4423 (16) |
C7—C5i | 1.526 (3) | Cl1—O3 | 1.4609 (19) |
C7—C8i | 1.561 (2) | ||
C11—N1—C12 | 122.30 (19) | C9—C8—C7 | 116.89 (17) |
C11—N1—H1A | 118.9 | C9—C8—H8A | 108.1 |
C12—N1—H1A | 118.9 | C7—C8—H8A | 108.1 |
C2—C1—C6 | 123.1 (2) | C9—C8—H8B | 108.1 |
C2—C1—Br1 | 117.84 (18) | C7—C8—H8B | 108.1 |
C6—C1—Br1 | 119.06 (17) | H8A—C8—H8B | 107.3 |
C1—C2—C3 | 119.4 (2) | C10—C9—C13 | 117.85 (19) |
C1—C2—H2A | 120.3 | C10—C9—C8 | 122.64 (18) |
C3—C2—H2A | 120.3 | C13—C9—C8 | 119.28 (19) |
C4—C3—C2 | 118.7 (2) | C11—C10—C9 | 120.1 (2) |
C4—C3—H3A | 120.7 | C11—C10—H10A | 119.9 |
C2—C3—H3A | 120.7 | C9—C10—H10A | 119.9 |
C3—C4—C5 | 121.1 (2) | N1—C11—C10 | 119.8 (2) |
C3—C4—C4i | 130.12 (13) | N1—C11—H11A | 120.1 |
C5—C4—C4i | 108.75 (13) | C10—C11—H11A | 120.1 |
C6—C5—C4 | 120.7 (2) | N1—C12—C13 | 119.5 (2) |
C6—C5—C7 | 129.05 (19) | N1—C12—H12A | 120.2 |
C4—C5—C7 | 110.21 (19) | C13—C12—H12A | 120.2 |
C5—C6—C1 | 117.00 (19) | C12—C13—C9 | 120.3 (2) |
C5—C6—H6A | 121.5 | C12—C13—H13A | 119.8 |
C1—C6—H6A | 121.5 | C9—C13—H13A | 119.8 |
C5—C7—C5i | 102.1 (2) | O2—Cl1—O4 | 110.40 (13) |
C5—C7—C8i | 112.17 (11) | O2—Cl1—O1 | 110.72 (12) |
C5i—C7—C8i | 112.75 (11) | O4—Cl1—O1 | 109.07 (11) |
C5—C7—C8 | 112.75 (11) | O2—Cl1—O3 | 108.98 (11) |
C5i—C7—C8 | 112.17 (11) | O4—Cl1—O3 | 108.89 (10) |
C8i—C7—C8 | 105.2 (2) | O1—Cl1—O3 | 108.74 (11) |
Symmetry code: (i) −x, y, −z+1/2. |
Cg3 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3 | 0.86 | 2.24 | 2.997 (3) | 148 |
C11—H11A···O1 | 0.93 | 2.57 | 3.196 (3) | 125 |
C12—H12A···O4ii | 0.93 | 2.44 | 3.193 (3) | 138 |
C13—H13A···O1iii | 0.93 | 2.47 | 3.376 (3) | 164 |
C10—H10A···Cg3 | 0.93 | 2.93 | 3.688 (2) | 140 |
Symmetry codes: (ii) −x+1, y, −z+1/2; (iii) x, −y+1, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C25H20Br2N22+·2ClO4− |
Mr | 707.15 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 295 |
a, b, c (Å) | 15.605 (3), 11.267 (2), 16.318 (3) |
β (°) | 117.60 (3) |
V (Å3) | 2542.6 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.45 |
Crystal size (mm) | 0.25 × 0.20 × 0.18 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.441, 0.537 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11835, 2915, 2611 |
Rint | 0.062 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.103, 1.06 |
No. of reflections | 2915 |
No. of parameters | 177 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.01, −0.79 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008), WinGX (Farrugia, 1999).
Cg3 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3 | 0.8600 | 2.2356 | 2.997 (3) | 147.53 |
C11—H11A···O1 | 0.9300 | 2.5687 | 3.196 (3) | 125.18 |
C12—H12A···O4i | 0.9300 | 2.4428 | 3.193 (3) | 137.77 |
C13—H13A···O1ii | 0.9300 | 2.4712 | 3.376 (3) | 164.43 |
C10—H10A···Cg3 | 0.9300 | 2.9260 | 3.688 (2) | 140.07 |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) x, −y+1, z+1/2. |
Acknowledgements
The authors would like to thank the Natural Science Foundation of Shandong Province (No. Y2007B14).
References
Applegarth, L., Goetra, A. E. & Steed, J. W. (2005). Chem. Commun. 18, 2405–2406. Web of Science CSD CrossRef Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387. CrossRef CAS Web of Science IUCr Journals Google Scholar
Meerssche, M., Germain, G., Declercq, J. P. & Touillaux, R. (1979). Cryst. Struct. Commun. 8, 119–122. Google Scholar
Meerssche, M., Germain, G., Declercq, J. P., Touillaux, R., Roberfroid, M. & Razzouk, C. (1980). Cryst. Struct. Commun. 9, 515–518. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
A variety of ligands of different molecular dimensions and functional properties were utilized for the preparation of numerous supramolecular assemblies of exotic architectures as reported in the recent literature (Applegarth et al., 2005). Herein, we report a new bipyridine derivative of 2,7-dibromo-9,9-(4-pyridyl-methyl) fluorene [DBPMF].
scheme I
The structure of the title compound contains a protonated 2,7-dibromo-9,9-bis(4-pyridinium-methyl) fluorene dications DBPMFH22+ and two perchlorate anions ClO4-. All the bond lengths and bond angles in the phenyl ring and five-membered ring are corresponding with those observed in 2-acetylaminofluorene (Meerssche et al., 1980) and 4-acetylamino-fluorene (Meerssche et al., 1979). Two bromine atoms along with the thirteen atoms of fluorenyl ring are coplanar (P1) and the biggest deviation is 0.038Å for C6 atom. The dihedral angle between the plane P1 and the pyridyl ring containing N1 atom is 72.11 (2)°.
In the crystal lattice, there are four types of supramolecular interactions (Table 1), including N—H···O hydrogen bonds, C—H···O potential hydrogen bonds, C—H···π supramolecular interaction and π–π stacking interactions. Among these supramolecular interactions, the two types N—H···O hydrogen bonds link two DBPMFH22+ cations with two ClO4- anions to construct one-dimensional chains, then the other supramolecular interactions help the 1D chains to form three-dimensional net-works, which stabilize the crystal structure.