organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,6-Tri­phenyl­aniline

aDepartment of Chemistry and Biochemistry, Center for Nanoscience, University of Missouri-St. Louis, St. Louis, Missouri, USA
*Correspondence e-mail: beattya@umsl.edu

(Received 14 May 2010; accepted 16 June 2010; online 26 June 2010)

Individual mol­ecules of the title compound, C24H19N, do not participate in hydrogen-bonding inter­actions due to the steric bulk of the phenyl rings ortho to the amine. The dihedral angles between the central ring and the pendant rings are 68.26 (10), 55.28 (10) and 30.61 (11)°.

Related literature

The reaction of equimolar amounts of pyrazole-3,5-dicarb­oxy­lic acid (HPzDCA) and primary amines have yielded ammonium carboxyl­ate salts that adopt layered architectures, see: Ugono et al. (2009[Ugono, O., Rath, N. P. & Beatty, A. M. (2009). Cryst. Growth Des. 9, 4595-4598.]); Beatty et al. (2002a[Beatty, A. M., Grange, K. E. & Simpson, S. E. (2002a). Chem. Eur. J. 8, 3254-3259.],b[Beatty, A. M., Schneider, C. L., Simpson, A. E. & Zaher, J. L. (2002b). CrystEngComm, 4, 282-287.]). For other amines that do not exhibit inter­molecular hydrogen bonding due to the bulky ortho phenyl groups, see: Cherian et al. (2005[Cherian, A. E., Domski, G. J., Rose, J. M., Lobkovsky, E. B. & Coates, G. W. (2005). Org. Lett. 7, 5135-5137.]); Lonkin & Marshal (2004[Lonkin, A. S. & Marshal, W. J. (2004). Organometallics, 23, 3276-3283.]). For the preparation of 2,4,6-triphenyl­aniline, see: Basu et al. (2003[Basu, B., Das, P., Bhuiyan, M. M. H. & Jha, S. (2003). Tetrahedron Lett. 44, 3817-3820.]); Paul & Clark (2003[Paul, S. & Clark, J. H. (2003). Green Chem. 5, 635-638.]).

[Scheme 1]

Experimental

Crystal data
  • C24H19N

  • Mr = 321.40

  • Monoclinic, P 21 /c

  • a = 10.735 (2) Å

  • b = 14.792 (3) Å

  • c = 11.911 (2) Å

  • β = 113.02 (3)°

  • V = 1740.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.50 × 0.50 × 0.25 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.966, Tmax = 0.983

  • 44061 measured reflections

  • 6695 independent reflections

  • 5813 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.125

  • S = 1.02

  • 6695 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The reactions of equimolar amounts of pyrazole-3,5-dicarboxylic acid (HPzDCA) and primary amines have yielded ammonium carboxylate salts that adopt layered architectures (Ugono et al., 2009; Beatty et al., 2002a,b). The level of structural fidelity for these organic salts allows, from a crystal engineering point of view, for the tuning of material properties by changing the identity of the organic group for the amines employed in the reaction. The reaction of pyrazole-3,5-dicarboxylic acid and 2,4,6-triphenylaniline (TPA) does not produce appreciable amounts of the desired ammonium carboxylate salt. However, large colorless single crystals of the aniline were obtained and structurally characterized.

The title compound packs in the monoclinic space group P 21/c, with one molecule in the asymmetric unit. TPA does not self aggregate via intermolecular hydrogen bonds in the solid state. This lack of significant intermolecular hydrogen bonds appears to be due to the bulky ortho phenyl groups. These groups ensure that the distance requirements for hydrogen bond interactions are not satisfied, as potential participating hydrogen bonding donors and acceptors can not approach each other. This is not uncommon, as other amines, namely 2,6-bis(Benzofuran-2-yl)phenylamine (Lonkin et al., 2004) and (R,R)-2,6-bis(1-Phenylethyl)4-methylaniline (Cherian et al., 2005) among others, exhibit this characteristic for identical reasons.

Related literature top

The reaction of equimolar amounts of pyrazole-3,5-dicarboxylic acid (HPzDCA) and primary amines have yielded ammonium carboxylate salts that adopt layered architectures, see: Ugono et al. (2009); Beatty et al. (2002a,b). For other amines which do not exhibit intermolecular hydrogen bonding due to the bulky ortho phenyl groups, see: Cherian et al. (2005); Lonkin & Marshal (2004). For the preparation of 2,4,6-triphenylaniline, see: Basu et al. (2003); Paul & Clark (2003).

Experimental top

Into a 20 ml scintillation vial was placed 65 mg (37 mmol s) of pyrazole-3,5-dicarboxylic acid, 120 mg (37 mmol s) of 2,4,6-triphenylaniline (Basu et al., 2003; Paul & Clark, 2003) and 5 ml of a 3:2 ethanol:water mixture. The mixture was warmed gently until the solution became clear and then filtered. The filtrate was placed in another scintillation vial, and colorless single crystals of the title compound were obtained in 48 h.

Refinement top

All non hydrogen atoms were refined anisotropically. Phenyl hydrogen atoms were placed in calculated positions and treated with a riding model C–H= 0.95 Å, Uiso(Haryl)= 1.2Ueq(C) for aromatic carbons. Amine hydrogen atoms were also placed in calulated positions and treated with a riding model N–H= 0.88 Å, Uiso(Hamine)= 1.2Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of 2,4,6-triphenylaniline at 50% probability.
2,4,6-Triphenylaniline top
Crystal data top
C24H19NF(000) = 680
Mr = 321.40Dx = 1.226 Mg m3
Monoclinic, P21/cMelting point = 395–398 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.735 (2) ÅCell parameters from 6695 reflections
b = 14.792 (3) Åθ = 2.1–33.9°
c = 11.911 (2) ŵ = 0.07 mm1
β = 113.02 (3)°T = 100 K
V = 1740.7 (6) Å3Prism, colorless
Z = 40.50 × 0.50 × 0.25 mm
Data collection top
Bruker SMART APEXII
diffractometer
6695 independent reflections
Radiation source: fine-focus sealed tube5813 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 33.9°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.966, Tmax = 0.983k = 2323
44061 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0697P)2 + 0.5511P]
where P = (Fo2 + 2Fc2)/3
6695 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C24H19NV = 1740.7 (6) Å3
Mr = 321.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.735 (2) ŵ = 0.07 mm1
b = 14.792 (3) ÅT = 100 K
c = 11.911 (2) Å0.50 × 0.50 × 0.25 mm
β = 113.02 (3)°
Data collection top
Bruker SMART APEXII
diffractometer
6695 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5813 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.983Rint = 0.027
44061 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.02Δρmax = 0.48 e Å3
6695 reflectionsΔρmin = 0.23 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2. Conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.03946 (8)0.31892 (6)0.10628 (7)0.02312 (15)
H1A0.03090.35320.16930.028*
H1B0.10860.28170.07600.028*
C10.05584 (7)0.32362 (5)0.05479 (6)0.01365 (13)
C20.16729 (8)0.38320 (5)0.10276 (7)0.01385 (13)
C30.26324 (8)0.38694 (5)0.05077 (7)0.01493 (13)
H30.33760.42720.08420.018*
C40.25338 (7)0.33322 (5)0.04924 (7)0.01409 (13)
C50.14616 (7)0.27160 (5)0.09177 (7)0.01405 (13)
H50.13990.23220.15670.017*
C60.04796 (7)0.26577 (5)0.04244 (6)0.01310 (13)
C70.18451 (8)0.44422 (5)0.20775 (7)0.01407 (13)
C80.29191 (8)0.43079 (5)0.32071 (7)0.01645 (14)
H80.35170.38120.33140.020*
C90.31156 (8)0.48981 (6)0.41751 (7)0.01874 (15)
H90.38370.47960.49410.022*
C100.22601 (9)0.56362 (6)0.40238 (7)0.01889 (15)
H100.24040.60420.46810.023*
C110.11933 (9)0.57760 (6)0.29049 (7)0.01905 (15)
H110.06090.62800.27970.023*
C120.09793 (9)0.51788 (5)0.19407 (7)0.01751 (14)
H120.02390.52730.11840.021*
C130.34837 (8)0.34425 (5)0.11131 (7)0.01444 (13)
C140.48238 (8)0.37311 (6)0.04755 (7)0.01809 (14)
H140.51460.38290.03800.022*
C150.56863 (8)0.38749 (6)0.10796 (8)0.02019 (15)
H150.65890.40710.06330.024*
C160.52351 (9)0.37333 (6)0.23338 (8)0.02020 (15)
H160.58190.38420.27470.024*
C170.39142 (9)0.34296 (6)0.29744 (8)0.01904 (15)
H170.36030.33180.38260.023*
C180.30489 (8)0.32897 (5)0.23725 (7)0.01613 (14)
H180.21500.30880.28210.019*
C190.06390 (7)0.19929 (5)0.09729 (6)0.01294 (12)
C200.19933 (8)0.22763 (5)0.14897 (7)0.01598 (14)
H200.22060.28940.14330.019*
C210.30318 (8)0.16641 (5)0.20861 (7)0.01793 (14)
H210.39440.18660.24310.022*
C220.27334 (8)0.07567 (5)0.21765 (7)0.01761 (14)
H220.34380.03390.25870.021*
C230.13918 (8)0.04676 (5)0.16595 (7)0.01747 (14)
H230.11840.01510.17150.021*
C240.03506 (8)0.10781 (5)0.10612 (7)0.01537 (13)
H240.05590.08720.07120.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0255 (3)0.0285 (4)0.0204 (3)0.0110 (3)0.0144 (3)0.0100 (3)
C10.0160 (3)0.0130 (3)0.0116 (3)0.0006 (2)0.0051 (2)0.0004 (2)
C20.0169 (3)0.0120 (3)0.0117 (3)0.0010 (2)0.0047 (2)0.0007 (2)
C30.0165 (3)0.0133 (3)0.0141 (3)0.0019 (2)0.0050 (2)0.0016 (2)
C40.0147 (3)0.0134 (3)0.0139 (3)0.0009 (2)0.0053 (2)0.0010 (2)
C50.0153 (3)0.0124 (3)0.0139 (3)0.0006 (2)0.0052 (2)0.0015 (2)
C60.0146 (3)0.0112 (3)0.0123 (3)0.0006 (2)0.0040 (2)0.0001 (2)
C70.0177 (3)0.0130 (3)0.0113 (3)0.0022 (2)0.0054 (2)0.0006 (2)
C80.0166 (3)0.0180 (3)0.0134 (3)0.0012 (2)0.0045 (2)0.0003 (2)
C90.0196 (3)0.0231 (4)0.0123 (3)0.0046 (3)0.0049 (3)0.0016 (3)
C100.0253 (4)0.0192 (3)0.0140 (3)0.0058 (3)0.0095 (3)0.0039 (3)
C110.0268 (4)0.0151 (3)0.0165 (3)0.0002 (3)0.0098 (3)0.0012 (2)
C120.0229 (3)0.0148 (3)0.0132 (3)0.0011 (3)0.0052 (3)0.0004 (2)
C130.0153 (3)0.0125 (3)0.0155 (3)0.0007 (2)0.0060 (2)0.0011 (2)
C140.0154 (3)0.0195 (3)0.0182 (3)0.0013 (2)0.0054 (3)0.0018 (3)
C150.0159 (3)0.0192 (3)0.0262 (4)0.0002 (3)0.0090 (3)0.0002 (3)
C160.0214 (4)0.0173 (3)0.0264 (4)0.0023 (3)0.0142 (3)0.0026 (3)
C170.0245 (4)0.0166 (3)0.0186 (3)0.0012 (3)0.0112 (3)0.0001 (3)
C180.0181 (3)0.0144 (3)0.0158 (3)0.0012 (2)0.0065 (3)0.0017 (2)
C190.0153 (3)0.0117 (3)0.0117 (3)0.0009 (2)0.0052 (2)0.0001 (2)
C200.0162 (3)0.0129 (3)0.0166 (3)0.0004 (2)0.0041 (2)0.0001 (2)
C210.0162 (3)0.0162 (3)0.0178 (3)0.0010 (2)0.0028 (3)0.0006 (2)
C220.0189 (3)0.0152 (3)0.0167 (3)0.0041 (2)0.0048 (3)0.0012 (2)
C230.0204 (3)0.0123 (3)0.0204 (3)0.0017 (2)0.0088 (3)0.0018 (2)
C240.0168 (3)0.0124 (3)0.0176 (3)0.0007 (2)0.0075 (3)0.0006 (2)
Geometric parameters (Å, º) top
N1—C11.3850 (11)C12—H120.9500
N1—H1A0.8800C13—C181.4040 (11)
N1—H1B0.8800C13—C141.4050 (11)
C1—C21.4142 (11)C14—C151.3933 (12)
C1—C61.4156 (10)C14—H140.9500
C2—C31.3951 (11)C15—C161.3944 (13)
C2—C71.4939 (11)C15—H150.9500
C3—C41.4010 (11)C16—C171.3960 (13)
C3—H30.9500C16—H160.9500
C4—C51.3987 (10)C17—C181.3930 (12)
C4—C131.4841 (11)C17—H170.9500
C5—C61.3959 (11)C18—H180.9500
C5—H50.9500C19—C241.4012 (11)
C6—C191.4907 (10)C19—C201.4030 (11)
C7—C121.3997 (11)C20—C211.3958 (11)
C7—C81.4020 (12)C20—H200.9500
C8—C91.3950 (11)C21—C221.3939 (12)
C8—H80.9500C21—H210.9500
C9—C101.3923 (13)C22—C231.3938 (12)
C9—H90.9500C22—H220.9500
C10—C111.3916 (13)C23—C241.3962 (11)
C10—H100.9500C23—H230.9500
C11—C121.3949 (11)C24—H240.9500
C11—H110.9500
C1—N1—H1A120.0C7—C12—H12119.7
C1—N1—H1B120.0C18—C13—C14117.95 (8)
H1A—N1—H1B120.0C18—C13—C4120.56 (7)
N1—C1—C2120.47 (7)C14—C13—C4121.46 (7)
N1—C1—C6120.92 (7)C15—C14—C13120.93 (8)
C2—C1—C6118.53 (7)C15—C14—H14119.5
C3—C2—C1120.01 (7)C13—C14—H14119.5
C3—C2—C7118.45 (7)C14—C15—C16120.51 (8)
C1—C2—C7121.53 (7)C14—C15—H15119.7
C2—C3—C4122.11 (7)C16—C15—H15119.7
C2—C3—H3118.9C15—C16—C17119.14 (8)
C4—C3—H3118.9C15—C16—H16120.4
C5—C4—C3117.09 (7)C17—C16—H16120.4
C5—C4—C13121.31 (7)C18—C17—C16120.38 (8)
C3—C4—C13121.54 (7)C18—C17—H17119.8
C6—C5—C4122.53 (7)C16—C17—H17119.8
C6—C5—H5118.7C17—C18—C13121.06 (8)
C4—C5—H5118.7C17—C18—H18119.5
C5—C6—C1119.59 (7)C13—C18—H18119.5
C5—C6—C19117.89 (6)C24—C19—C20118.49 (7)
C1—C6—C19122.51 (7)C24—C19—C6120.41 (7)
C12—C7—C8118.77 (7)C20—C19—C6120.94 (7)
C12—C7—C2120.91 (7)C21—C20—C19120.92 (7)
C8—C7—C2120.26 (7)C21—C20—H20119.5
C9—C8—C7120.42 (8)C19—C20—H20119.5
C9—C8—H8119.8C22—C21—C20120.14 (7)
C7—C8—H8119.8C22—C21—H21119.9
C10—C9—C8120.33 (8)C20—C21—H21119.9
C10—C9—H9119.8C23—C22—C21119.36 (7)
C8—C9—H9119.8C23—C22—H22120.3
C11—C10—C9119.64 (7)C21—C22—H22120.3
C11—C10—H10120.2C22—C23—C24120.65 (7)
C9—C10—H10120.2C22—C23—H23119.7
C10—C11—C12120.22 (8)C24—C23—H23119.7
C10—C11—H11119.9C23—C24—C19120.44 (7)
C12—C11—H11119.9C23—C24—H24119.8
C11—C12—C7120.61 (8)C19—C24—H24119.8
C11—C12—H12119.7

Experimental details

Crystal data
Chemical formulaC24H19N
Mr321.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.735 (2), 14.792 (3), 11.911 (2)
β (°) 113.02 (3)
V3)1740.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.50 × 0.50 × 0.25
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.966, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
44061, 6695, 5813
Rint0.027
(sin θ/λ)max1)0.784
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.125, 1.02
No. of reflections6695
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.23

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors are grateful to the Center for Nanoscience at the University of Missouri-St Louis for access to the single-crystal X-ray facility.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBasu, B., Das, P., Bhuiyan, M. M. H. & Jha, S. (2003). Tetrahedron Lett. 44, 3817–3820.  Web of Science CrossRef CAS Google Scholar
First citationBeatty, A. M., Grange, K. E. & Simpson, S. E. (2002a). Chem. Eur. J. 8, 3254–3259.  CrossRef PubMed CAS Google Scholar
First citationBeatty, A. M., Schneider, C. L., Simpson, A. E. & Zaher, J. L. (2002b). CrystEngComm, 4, 282–287.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCherian, A. E., Domski, G. J., Rose, J. M., Lobkovsky, E. B. & Coates, G. W. (2005). Org. Lett. 7, 5135–5137.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLonkin, A. S. & Marshal, W. J. (2004). Organometallics, 23, 3276–3283.  Google Scholar
First citationPaul, S. & Clark, J. H. (2003). Green Chem. 5, 635–638.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUgono, O., Rath, N. P. & Beatty, A. M. (2009). Cryst. Growth Des. 9, 4595–4598.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds