organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1798-o1799

2′,3,4,4′-Tetra­meth­­oxy­chalcone

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
*Correspondence e-mail: Muller.theunis@gmail.com

(Received 17 May 2010; accepted 9 June 2010; online 26 June 2010)

In the title compound [systematic name: 1-(2,4-dimethoxyphenyl)-3-(3,4-dimethoxyphenyl)prop-2-en-1-one], C19H20O5, the dihedral angle between the benzene rings is 26.88 (5)°. One of the meth­oxy groups is twisted slightly away from the plane [C—O—C—C torsion angle = −12.8 (3)°] while the others are almost co-planer [C—O—C—C torsion angles = −3.2 (3), 2.6 (3) and −3.6 (3)°]. The crystal packing is stabilized by inter­molecular C—H⋯O inter­actions. A weak intra­molecular C—H⋯O inter­action occurs.

Related literature

For properties and uses of chalcones, see: Marais et al. (2005[Marais, J. P. J., Ferreira, D. & Slade, D. (2005). Phytochemistry, 66, 2145-2176.]); Fichou et al. (1988[Fichou, D., Watanabe, T., Takenda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn.J. Appl. Phys. 27, L429-L430.]); Uchida et al. (1998[Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abdureyim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 62, 135-140.]). For the biological activity of flavenoids, see: Pietta et al. (2003[Pietta, P., Gardana, C. & Pietta, A. (2003). Flavonoids in Health and Disease. 2nd ed. edited by C. A. Rice-Evans & L.Packer. New York: Marcel Dekker, Inc.]). For related structures, see: Patil et al. (2006a[Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006a). Acta Cryst. E62, o896-o898.],b[Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006b). Acta Cryst. E62, o1710-o1712.],c[Patil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2006c). Acta Cryst. E62, o4448-o4449.]); Teh et al. (2006a[Teh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006a). Acta Cryst. E62, o890-o892.],b[Teh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006b). Acta Cryst. E62, o2399-o2400.],c[Teh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006c). Acta Cryst. E62, o2991-o2992.]); Rosli et al. (2006[Rosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o4228-o4230.]). For the synthesis of the title compound, see: Kraus et al. (2008[Kraus, G. & Roy, S. (2008). J. Nat. Prod. 71, 1961-1962.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2 pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20O5

  • Mr = 328.35

  • Monoclinic, P 21 /c

  • a = 12.5839 (7) Å

  • b = 11.7204 (7) Å

  • c = 12.1339 (6) Å

  • β = 109.489 (2)°

  • V = 1687.07 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.49 × 0.22 × 0.07 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.994

  • 32681 measured reflections

  • 4205 independent reflections

  • 2539 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.188

  • S = 1.12

  • 4205 reflections

  • 225 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1 0.96 (2) 2.29 (2) 2.813 (3) 113.6 (15)
C18—H18B⋯O3i 0.96 2.46 3.253 (3) 140
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenberg & Putz, 2005[Brandenberg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WingGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Flavonoids are a prominent class of secondary plant metabolites known for their wide range of biological active compounds that exibit antibacterial, antifugal, antitumor and anti-inflammatory properties (Pietta et al., 2003). Chalcones are an important subclass of these compounds and are often utilized as intermediates in the synthesis of a variety of cyclic flavonoids (Marais et al., 2005). Furthermore, many chalcone derivatives are known to have excellent non-linear optical (NLO) properties (Fichou et al., 1988; Uchida et al., 1998; Patil et al., 2006a,b). We report here a new chalcone which we have successfully synthesized (the title compound, (I)). Bond distances in (I) have normal values (Allen et al., 1987) and bond angles and distances are comparable to those in related structures (Teh et al., 2006a,b,c; Patil et al., 2006a,b,c; Rosli et al. 2006). The least squares plane through the enone group (C7, C8, C9 and O3) exhibit dihedral angles of 29.2 (1)° and 4.5 (1)° with the C1—C6 and C10—C15 benzene rings, respectively. The dihedral angle between the two benzene rings is 26.88 (5)°. The methoxy group attached at C1 is slightly twisted away from the C1—C6 benzene ring plane, with a C16—O1—C1—C2 torsion angle of -12.8 (3)°. The methoxy groups at C3, C12 and C13 are almost co-planar with the C1—C6 and C10—C15 benzene rings with C17—O2—C3—C2, C18—O4—C12—C11 and C19—O5—C13—C14 torsion angels of -3.2 (3)°, 2.6 (3)° and -3.6 (3)°, respectively. An intramolecular C8—H8···O1 hydrogen bond is observed in the molecular structure of (I), while the molecules form chains through intermolecular C18—H18B···O3i hydrogen bonds (Table 1).

Related literature top

For properties and uses of chalcones, see: Marais et al. (2005); Fichou et al. (1988); Uchida et al. (1998). For the biological activity of flavenoids, see: Pietta et al. (2003). For related structures, see: Patil et al. (2006a,b,c); Teh et al. (2006a,b,c); Rosli et al. (2006). For the synthesis of the title compound, see: Kraus et al. (2008). For bond-length data, see: Allen et al. (1987);

Experimental top

The title compoud was synthesized according to the procedure by Kraus et al. (2008) Freshly ground KOH (1.55 g; 27.80 mmol; 5 eq.) was added to a cold (ice bath) stirring solution of 2',4'-dimethoxyacetophenone (1.00 g; 5.56 mmol) and 3,4-dimethoxybenzaldehyde (1.13 g; 7.12 mmol; 1.2 eq.) in EtOH (40 ml). The reaction mixture was allowed to heat to room temperature and stirred to completion (TLC). Ice was added to the reaction mixture prior to acidification with concentrated HCl (litmus). Extraction was performed with EtOAc (3 x 100 ml) and the organic fractions combined. The organic phase was neutralized with a saturated solution of NaHCO3 (litmus), washed with water, dried (Na2SO4) and evaporated in vacuo at ca 40 °C. Crystallization from EtOH afforded the desired chalcone (1.55 g; 84.7%) as yellow needles. Rf 0.16 (H:A; 8:2); Mp 88.3 °C; 1H NMR (600 MHz, CDCl3) δ 7.69 (1H, d, J = 8.61 Hz, H-6'), 7.58 (1H, d, J = 15.71 Hz, H-β), 7.33 (1H, d, J = 15.71 Hz, H-α), 7.14 (1H, dd, J = 1.92, 8.32 Hz, H-5), 7.08 (1H, d, J = 1.92 Hz, H-2), 6.84 (1H, d, J = 8.32 Hz, H-6), 6.52 (1H, dd, J = 2.25, 8.61 Hz, H-5'), 6.46 (1H, d, J = 2.25 Hz, H– 3'), 3.88 (3H, s, –OCH3), 3.87 (3H, s, –OCH3), 3.85 (3H, s, –OCH3), 3.82 (3H, s, –OCH3); 13C NMR (151 MHz, CDCl3) δ 190.58, 163.96, 160.21, 150.95, 149.11, 142.34 (C-β), 132.63 (C-6'), 128.39, 125.28 (C-α), 122.60 (C-5), 122.36, 111.13 (C-6), 110.24 (C-2), 105.14 (C-5'), 98.66 (C-3'), 55.94 (–OCH3), 55.86 (–OCH3), 55.71 (–OCH3), 55.50 (–OCH3).

Refinement top

The aromatic H atoms were placed in geometrically idealized positions and constrained to ride on its parent atoms with Uiso (H) = 1.2Ueq(C) and at a distance of 0.93 Å. The hydrogen atoms of the methine (H8 and H9) group were determined from a difference Fourier map and their positional parameters freely refined (C8—H8 = 0.96 (2)Å and C9—H9 = 1.01 (2) Å). The methyl H atoms were placed in geometrically idealized positions and constrained to ride on its parent atoms with Uiso(H) = 1.5Ueq(C) and at a distance of 0.96 Å.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg & Putz, 2005); software used to prepare material for publication: WingGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Representation of the title compound, showing the numbering scheme and displacement ellipsoids (50% probability).
1-(2,4-dimethoxyphenyl)-3-(3,4-dimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C19H20O5F(000) = 696
Mr = 328.35Dx = 1.293 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7154 reflections
a = 12.5839 (7) Åθ = 2.4–23.6°
b = 11.7204 (7) ŵ = 0.09 mm1
c = 12.1339 (6) ÅT = 100 K
β = 109.489 (2)°Plate, colourless
V = 1687.07 (16) Å30.49 × 0.22 × 0.07 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
2539 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
phi and ω scansθmax = 28.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1616
Tmin = 0.976, Tmax = 0.994k = 1515
32681 measured reflectionsl = 1116
4205 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0998P)2 + 0.0628P]
where P = (Fo2 + 2Fc2)/3
4205 reflections(Δ/σ)max = 0.001
225 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C19H20O5V = 1687.07 (16) Å3
Mr = 328.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5839 (7) ŵ = 0.09 mm1
b = 11.7204 (7) ÅT = 100 K
c = 12.1339 (6) Å0.49 × 0.22 × 0.07 mm
β = 109.489 (2)°
Data collection top
Bruker APEXII
diffractometer
4205 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2539 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.994Rint = 0.039
32681 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.188H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.21 e Å3
4205 reflectionsΔρmin = 0.20 e Å3
225 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.57536 (15)0.12721 (14)0.10767 (13)0.0572 (4)
C20.66866 (16)0.07753 (15)0.09002 (15)0.0635 (5)
H20.71380.0270.14490.076*
C30.69406 (17)0.10359 (16)0.00938 (16)0.0665 (5)
C40.62632 (18)0.17787 (18)0.09154 (16)0.0724 (5)
H40.64220.19410.15940.087*
C50.53595 (17)0.22720 (17)0.07222 (14)0.0654 (5)
H50.49180.27810.12740.079*
C60.50707 (15)0.20426 (14)0.02731 (13)0.0555 (4)
C70.40909 (15)0.26733 (15)0.04011 (13)0.0582 (4)
C80.33980 (16)0.21568 (16)0.10368 (15)0.0603 (5)
C90.25176 (15)0.26831 (16)0.11757 (14)0.0596 (5)
C100.18227 (14)0.22631 (15)0.18413 (14)0.0570 (4)
C110.20392 (14)0.12066 (15)0.24240 (14)0.0571 (4)
H110.26270.07560.23670.068*
C120.14066 (14)0.08267 (15)0.30728 (14)0.0574 (4)
C130.05259 (14)0.15026 (17)0.31711 (15)0.0614 (5)
C140.02979 (16)0.25345 (18)0.26000 (16)0.0692 (5)
H140.02920.29820.26560.083*
C150.09404 (16)0.29117 (17)0.19425 (16)0.0676 (5)
H150.07770.36120.15630.081*
C160.60374 (18)0.01862 (18)0.28377 (17)0.0782 (6)
H16A0.57620.01640.34860.117*
H16B0.68360.03180.3120.117*
H16C0.58820.05290.24290.117*
C170.86153 (19)0.0100 (2)0.0519 (2)0.0954 (7)
H17A0.92120.03350.02410.143*
H17B0.82240.07610.06530.143*
H17C0.89270.03150.12370.143*
C180.24973 (17)0.08614 (17)0.36379 (18)0.0710 (5)
H18A0.25280.15440.40850.107*
H18B0.31840.04390.39670.107*
H18C0.24050.10610.28440.107*
C190.09188 (18)0.1716 (2)0.4026 (2)0.0927 (7)
H19A0.12520.13020.4510.139*
H19B0.14840.18790.32860.139*
H19C0.06070.24180.44030.139*
O10.54938 (13)0.10796 (12)0.20672 (10)0.0780 (4)
O20.78452 (13)0.06147 (14)0.03354 (13)0.0874 (5)
O30.38578 (12)0.36122 (11)0.00560 (11)0.0767 (4)
O40.15725 (11)0.01826 (11)0.36644 (12)0.0717 (4)
O50.00515 (11)0.10484 (13)0.38441 (12)0.0785 (4)
H80.3591 (17)0.1401 (19)0.1332 (17)0.075 (6)*
H90.2294 (16)0.3460 (17)0.0808 (16)0.071 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0751 (11)0.0504 (9)0.0446 (8)0.0050 (8)0.0182 (8)0.0034 (7)
C20.0785 (12)0.0527 (10)0.0560 (9)0.0032 (9)0.0180 (9)0.0043 (8)
C30.0762 (12)0.0620 (12)0.0645 (10)0.0128 (9)0.0279 (9)0.0147 (9)
C40.0920 (14)0.0757 (13)0.0567 (10)0.0123 (11)0.0342 (10)0.0027 (9)
C50.0802 (13)0.0633 (11)0.0498 (9)0.0111 (9)0.0176 (8)0.0044 (8)
C60.0685 (10)0.0508 (9)0.0431 (8)0.0099 (8)0.0132 (7)0.0021 (7)
C70.0725 (11)0.0511 (10)0.0446 (8)0.0058 (8)0.0110 (7)0.0012 (7)
C80.0714 (12)0.0497 (10)0.0566 (9)0.0034 (9)0.0171 (8)0.0030 (8)
C90.0670 (11)0.0513 (10)0.0526 (9)0.0035 (9)0.0094 (8)0.0001 (8)
C100.0586 (10)0.0538 (10)0.0518 (8)0.0006 (8)0.0092 (7)0.0036 (7)
C110.0563 (9)0.0538 (10)0.0592 (9)0.0007 (8)0.0167 (8)0.0018 (8)
C120.0565 (10)0.0527 (10)0.0593 (9)0.0041 (8)0.0143 (8)0.0027 (8)
C130.0541 (9)0.0673 (12)0.0610 (9)0.0043 (8)0.0168 (8)0.0096 (9)
C140.0586 (11)0.0715 (13)0.0739 (11)0.0105 (9)0.0172 (9)0.0051 (10)
C150.0668 (11)0.0596 (11)0.0677 (11)0.0070 (9)0.0110 (9)0.0027 (9)
C160.0932 (14)0.0743 (13)0.0629 (10)0.0076 (11)0.0204 (10)0.0213 (10)
C170.0753 (14)0.1100 (19)0.0954 (16)0.0027 (13)0.0213 (12)0.0291 (14)
C180.0812 (13)0.0533 (11)0.0818 (12)0.0052 (9)0.0316 (10)0.0076 (9)
C190.0673 (12)0.125 (2)0.0908 (14)0.0056 (13)0.0336 (11)0.0140 (14)
O10.1039 (10)0.0834 (10)0.0517 (7)0.0266 (8)0.0326 (7)0.0199 (6)
O20.0914 (10)0.0909 (11)0.0904 (10)0.0003 (8)0.0444 (8)0.0111 (8)
O30.0972 (10)0.0607 (8)0.0724 (8)0.0086 (7)0.0284 (7)0.0193 (7)
O40.0769 (9)0.0598 (8)0.0869 (9)0.0028 (6)0.0385 (7)0.0107 (6)
O50.0707 (8)0.0858 (10)0.0877 (9)0.0012 (7)0.0378 (7)0.0051 (7)
Geometric parameters (Å, º) top
C1—O11.3654 (19)C12—C131.399 (2)
C1—C21.390 (3)C13—O51.369 (2)
C1—C61.395 (2)C13—C141.376 (3)
C2—C31.381 (3)C14—C151.384 (3)
C2—H20.93C14—H140.93
C3—O21.359 (2)C15—H150.93
C3—C41.382 (3)C16—O11.418 (2)
C4—C51.364 (3)C16—H16A0.96
C4—H40.93C16—H16B0.96
C5—C61.398 (2)C16—H16C0.96
C5—H50.93C17—O21.430 (3)
C6—C71.489 (3)C17—H17A0.96
C7—O31.223 (2)C17—H17B0.96
C7—C81.473 (3)C17—H17C0.96
C8—C91.327 (3)C18—O41.419 (2)
C8—H80.96 (2)C18—H18A0.96
C9—C101.460 (3)C18—H18B0.96
C9—H91.01 (2)C18—H18C0.96
C10—C151.384 (3)C19—O51.418 (3)
C10—C111.407 (2)C19—H19A0.96
C11—C121.367 (2)C19—H19B0.96
C11—H110.93C19—H19C0.96
C12—O41.363 (2)
O1—C1—C2121.95 (15)O5—C13—C12115.08 (17)
O1—C1—C6116.73 (16)C14—C13—C12119.51 (17)
C2—C1—C6121.24 (15)C13—C14—C15120.49 (17)
C3—C2—C1119.70 (17)C13—C14—H14119.8
C3—C2—H2120.1C15—C14—H14119.8
C1—C2—H2120.1C14—C15—C10121.04 (18)
O2—C3—C2124.22 (19)C14—C15—H15119.5
O2—C3—C4115.62 (17)C10—C15—H15119.5
C2—C3—C4120.16 (18)O1—C16—H16A109.5
C5—C4—C3119.46 (17)O1—C16—H16B109.5
C5—C4—H4120.3H16A—C16—H16B109.5
C3—C4—H4120.3O1—C16—H16C109.5
C4—C5—C6122.60 (18)H16A—C16—H16C109.5
C4—C5—H5118.7H16B—C16—H16C109.5
C6—C5—H5118.7O2—C17—H17A109.5
C1—C6—C5116.82 (17)O2—C17—H17B109.5
C1—C6—C7125.93 (15)H17A—C17—H17B109.5
C5—C6—C7117.21 (15)O2—C17—H17C109.5
O3—C7—C8120.85 (17)H17A—C17—H17C109.5
O3—C7—C6118.74 (16)H17B—C17—H17C109.5
C8—C7—C6120.39 (15)O4—C18—H18A109.5
C9—C8—C7122.73 (18)O4—C18—H18B109.5
C9—C8—H8120.1 (12)H18A—C18—H18B109.5
C7—C8—H8117.1 (12)O4—C18—H18C109.5
C8—C9—C10126.39 (18)H18A—C18—H18C109.5
C8—C9—H9118.9 (11)H18B—C18—H18C109.5
C10—C9—H9114.7 (11)O5—C19—H19A109.5
C15—C10—C11117.73 (17)O5—C19—H19B109.5
C15—C10—C9120.67 (17)H19A—C19—H19B109.5
C11—C10—C9121.57 (16)O5—C19—H19C109.5
C12—C11—C10121.57 (16)H19A—C19—H19C109.5
C12—C11—H11119.2H19B—C19—H19C109.5
C10—C11—H11119.2C1—O1—C16119.85 (15)
O4—C12—C11124.71 (16)C3—O2—C17118.05 (17)
O4—C12—C13115.65 (15)C12—O4—C18117.21 (14)
C11—C12—C13119.64 (17)C13—O5—C19117.86 (18)
O5—C13—C14125.41 (17)
O1—C1—C2—C3177.22 (16)C15—C10—C11—C120.2 (2)
C6—C1—C2—C30.7 (3)C9—C10—C11—C12178.26 (15)
C1—C2—C3—O2178.59 (16)C10—C11—C12—O4179.63 (15)
C1—C2—C3—C40.7 (3)C10—C11—C12—C130.4 (2)
O2—C3—C4—C5177.74 (17)O4—C12—C13—O50.4 (2)
C2—C3—C4—C51.6 (3)C11—C12—C13—O5179.68 (14)
C3—C4—C5—C61.2 (3)O4—C12—C13—C14179.86 (15)
O1—C1—C6—C5177.78 (15)C11—C12—C13—C140.9 (3)
C2—C1—C6—C51.1 (2)O5—C13—C14—C15179.90 (17)
O1—C1—C6—C70.2 (2)C12—C13—C14—C150.7 (3)
C2—C1—C6—C7176.47 (15)C13—C14—C15—C100.1 (3)
C4—C5—C6—C10.2 (3)C11—C10—C15—C140.3 (3)
C4—C5—C6—C7177.62 (16)C9—C10—C15—C14178.11 (16)
C1—C6—C7—O3150.16 (17)C2—C1—O1—C1612.8 (3)
C5—C6—C7—O327.4 (2)C6—C1—O1—C16170.51 (17)
C1—C6—C7—C831.7 (2)C2—C3—O2—C173.2 (3)
C5—C6—C7—C8150.79 (16)C4—C3—O2—C17176.09 (18)
O3—C7—C8—C91.9 (3)C11—C12—O4—C182.6 (2)
C6—C7—C8—C9179.96 (15)C13—C12—O4—C18176.60 (15)
C7—C8—C9—C10176.58 (15)C14—C13—O5—C193.6 (3)
C8—C9—C10—C15178.36 (17)C12—C13—O5—C19176.98 (16)
C8—C9—C10—C110.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O10.96 (2)2.29 (2)2.813 (3)113.6 (15)
C18—H18B···O3i0.962.463.253 (3)140
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H20O5
Mr328.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.5839 (7), 11.7204 (7), 12.1339 (6)
β (°) 109.489 (2)
V3)1687.07 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.49 × 0.22 × 0.07
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.976, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
32681, 4205, 2539
Rint0.039
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.188, 1.12
No. of reflections4205
No. of parameters225
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SAINT-Plus and XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenberg & Putz, 2005), WingGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O10.96 (2)2.29 (2)2.813 (3)113.6 (15)
C18—H18B···O3i0.962.463.253 (3)140.1
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The University of the Free State is gratefully acknowledged for financial support, Alice Brink for the data collection and Marietjie Schutte for her valueable input.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2 pp. S1–19.  Google Scholar
First citationBrandenberg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFichou, D., Watanabe, T., Takenda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn.J. Appl. Phys. 27, L429–L430.  CrossRef CAS Web of Science Google Scholar
First citationKraus, G. & Roy, S. (2008). J. Nat. Prod. 71, 1961–1962.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMarais, J. P. J., Ferreira, D. & Slade, D. (2005). Phytochemistry, 66, 2145–2176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPatil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2006c). Acta Cryst. E62, o4448–o4449.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006a). Acta Cryst. E62, o896–o898.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006b). Acta Cryst. E62, o1710–o1712.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPietta, P., Gardana, C. & Pietta, A. (2003). Flavonoids in Health and Disease. 2nd ed. edited by C. A. Rice-Evans & L.Packer. New York: Marcel Dekker, Inc.  Google Scholar
First citationRosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o4228–o4230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006a). Acta Cryst. E62, o890–o892.  CSD CrossRef IUCr Journals Google Scholar
First citationTeh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006b). Acta Cryst. E62, o2399–o2400.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTeh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006c). Acta Cryst. E62, o2991–o2992.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abdureyim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 62, 135–140.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1798-o1799
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds