metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m724-m725

μ3-Oxido-tris­­{di­chlorido[1,3-bis­­(1,3,5-tri­methyl­phen­yl)imidazol-2-yl­­idene]gold(III)} bis­­(tri­fluoro­methane­sulfon­yl)imide–[bis­­(tri­fluoro­methane­sulfon­yl)imide]­silver(I) (1/2)

aCaRLa – Catalysis Research Laboratory, Universität Heidelberg, Im Neuenheimer Feld 584, D-69120 Heidelberg, Germany, and bOrganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
*Correspondence e-mail: michael.limbach@basf.com

(Received 20 May 2010; accepted 26 May 2010; online 5 June 2010)

The unusual trinuclear AuIII oxide title complex, [Au3Cl6O(C21H24N2)3](C2F6NO4S2)·2[Ag(C2F6NO4S2)], is the side product of the reaction of [1,3-bis­(1,3,5-trimethyl­phen­yl)imidazol-2-yl­idene]dichloridophenyl­gold(III) with silver bis­(trifluoro­methane­sulfon­yl)imide in the presence of traces of water. In contrast to corresponding AuI complexes, the core structure of the title compound is planar. Two silver(I) bis­(trifluoro­methane­sulfon­yl)imide units are loosely bound to the complex cation. Here the silver atoms, disordered over two positions in a 0.870 (2):0.130 (2) ratio, inter­act either with the lone pairs of three chlorine ligands or two chlorine ligands and one edge of the mesityl π-system. The crystal under investigation was a partial racemic twin.

Related literature

Tris[(phosphane)gold(I)]oxonium ions are a convenient source for (phosphane)gold cations see: Nesmeyanov et al. (1980[Nesmeyanov, A. N., Perevalova, E. G., Struchkov, Y. T., Antipin, M. Y., Grandberg, K. I. & Dyadchenko, V. P. (1980). J. Organomet. Chem. 201, 343-351.]). For the trigonal-pyramidal structure of these trinuclear complexes, see, for example: Yang et al. (1993[Yang, Y., Ramamoorthy, V. & Sharp, P. R. (1993). Inorg. Chem. 32, 1946-1951.]); Schmidbaur et al. (1993[Schmidbaur, H., Kolb, A., Zeller, E., Schier, A. & Beruda, H. (1993). Z. Anorg. Allg. Chem. 619, 1575-1581.]); Angermaier & Schmidbaur (1994[Angermaier, K. & Schmidbaur, H. (1994). Inorg. Chem. 33, 2069-2070.], 1995[Angermaier, K. & Schmidbaur, H. (1995). Acta Cryst. C51, 1793-1795.]). For the silver coordination of the bis­(trifluoro­methane­sulfon­yl)imide anion via oxygen, see: Nockemann et al. (2008[Nockemann, P., Thijs, B., Van Hecke, K., Van Meervelt, L. & Binnemans, K. (2008). Cryst. Growth Des. 8, 1353-1363.]). For details of the preparation, see: Pažický et al. (2010[Pažický, M., Loos, A., Ferreira, M. J., Rominger, F., Jäkel, C., Hashmi, A. S. K. & Limbach, M. (2010). Personal communication.]).

[Scheme 1]

Experimental

Crystal data
  • [Au3Cl6O(C21H24N2)3](C2F6NO4S2)·2[Ag(C2F6NO4S2)]

  • Mr = 2789.06

  • Tetragonal, P 43 21 2

  • a = 13.9472 (9) Å

  • c = 45.724 (3) Å

  • V = 8894.5 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.79 mm−1

  • T = 200 K

  • 0.25 × 0.17 × 0.11 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.326, Tmax = 0.569

  • 93947 measured reflections

  • 11087 independent reflections

  • 10564 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.094

  • S = 1.27

  • 11087 reflections

  • 581 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 1.65 e Å−3

  • Δρmin = −1.45 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4737 Friedel pairs

  • Flack parameter: 0.396 (7)

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structure of the title compound consists of a trinuclear complex cation around a central oxygen atom with a trigonal planar AuIII environment. Loosley bound to this cation are two silver bis(trifluoromethanesulfonyl)imide moieties with a twofold disordered silver position. Finally there is another free bis(trifluoromethanesulfonyl)imide anion to compensate the charge of the cation. Although tris[(phosphane)gold(I)]oxonium ions are a well known source for LAu+ as shown by Nesmeyanov et al. (1980), to the best of our knowledge there have been no reports on trimeric [Au3O]+ complexes with N-heterocyclic carbenes or generally [AuIIIO]+ complexes in the literature before.

Both, the trinuclear cation and the free imide anion reside at a special position on a crystallographic twofold axis. The non-crystallographic symmetry of the cation is D3. Thus, in contrast to corresponding [(LAuI)3O]+ complexes with pyramidal geometry (e.g. Yang et al., 1993; Schmidbaur et al., 1993; Angermaier & Schmidbaur, 1994, 1995), the structure of the AuIII3O core of the title compound is flat. Therefore the Au···Au distances are with 3.4655 (5) and 3.5688 (6) Å necessarily much longer than in the AuI complexes and we assume no aurophilic interactions. The Au—O distances amount to 2.046 (7) and 2.010 (3) Å, the Au—CNHC distances to 2.018 (12) and 1.982 (7) Å. The Cl—Au—Cl axes are inclined with respect to the Au3O plane by about 37.0° and 42.0°, which leads to a octahedral chlorine environment for the central oxygen atom with Cl···O distances between 2.986 (5) and 2.996 (5) Å, which is clearly below the van der Waals distance (3.27 Å). As already mentioned two Ag[N(SO2CF3)2] units are loosley bound to this cation. Remarkably there are two alternative positions for the silver center which are occupied by 87% and 13% resp. At the main position the silver is in contact with three chlorine atoms of the cation (Ag···Cl between 2.644 (2) and 2.769 (3) Å), at the alternative position among two chlorine atoms (Ag···Cl 2.302 (8) and 2.754 (8) Å) the silver contacts one edge of the mesityl π-system (Ag···C 2.544 (12) and 2.587 (13) Å). The distorted tetrahedral environment of the silver centers is completed in both cases remarkably with an oxygen atom of the bis(trifluoromethanesulfonyl)imide anion (Ag···O 2.340 (7) and 2.342 (10) Å) rather than the nitrogen. This unexpected coordination mode of the bis(trifluoromethanesulfonyl)imide anion has been observed before by Nockemann et al. (2008).

Related literature top

Tris[(phosphane)gold(I)]oxonium ions are a convenient source for LAu+ [define L], see: as Nesmeyanov et al. (1980). For the trigonal pyramidal structure of these trinuclear complexes, see, for example: Yang et al. (1993); Schmidbaur et al. (1993); Angermaier & Schmidbaur (1994, 1995). For the silver coordination of the bis(trifluoromethanesulfonyl)imide anion via oxygen, see: Nockemann et al. (2008). For details of the preparation, see: Pažický et al. (2010).

Experimental top

To a solution of phenyldichloro-1,3-bis(1,3,5-trimethylphenyl)imidazol-2-ylidene gold(III) (20 mg, 30.8 µmol) in dry d2-dichloromethane, as described by Pažický et al. (2010), silver bis(trifluoromethanesulfonyl)imide (12 mg, 30.8 µmol) was added at room temperature. The solution was stirred for five minutes and filtered over celite. Yellow crystals of the title compound besides white crystals of dichloro-1,3-bis(1,3,5-trimethylphenyl)imidazol-2-ylidene gold(III) bis(trifluoromethanesulfonyl)imide were obtained by slow diffusion of the concentrated filtrate of the crude product into pentane at 8 °C.

Refinement top

Rigid bond restraints were applied to the Uij values of the nitrogen atom N2 and its surrounding carbon atoms C1, C3, and C11 as well as an isotropic restraint (ISOR) to N2. These prevents atom N2 from going non positive definite. The rest of the adps of the structure was not restrained, as these looked rather reasonable. We can give no convincing explanation for the unsatisfying behavior of N2 and its environment. But in return there is also no plausible possibilty for misinterpretation or atom misassignment here. Obviously the data just results in unrealistic adps in this part of the structure for some reason.

Hydrogen atoms were placed in calculated positions (C–H 0.95– 0.98 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5 Ueq(C). A model with staggered conformation with respect to the closest substituent was used for the phenyl-bound methyl groups, which may lead to some ambiguity.

The nature of the disordered silver atom was not clear at first. There were several reasons that led us to the present interpretation. First of all silver bis(trifluoromethanesulfonyl)imide was present in the solution as the only species with an electrophilic atom besides of gold. Furthermore the coordination behaviour to the aromatic π-system and/or to the chlorine ligands as well as to the anion fits fine to the well known geometry of other silver complexes. And finally the refinement of a model with two alternative and partially occupied silver positions converged very well with completely reasonable occupation and displacement parameters.

The refinement of the Flack parameter (Flack, 1983) resulted in a value of 0.396 (7), indicating partial racemic twinning of the crystal.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008b); program(s) used to refine structure: SHELXTL (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid representation of the trinuclear oxo cation of the title compound. Displacement ellipsoids were plotted at 50% probability level. Hydrogen atoms, the anion and the silver moiety are omitted for the sake of clarity.
[Figure 2] Fig. 2. Both alternative silver positions (87% Ag3:13% Ag3B) and their coordination modes to the trinuclear oxo cation in a simple ball and stick representation. From the bis(trifluoromethanesulfonyl)imide anion coordinated to the silver only the coordinating oxygen atom (O11) is shown for clarity. Due to the 2-fold symmetry the same pattern is found at the reverse side of the cation, which is omitted for the sake of clarity as well.
µ3-Oxido-tris{dichlorido[1,3-bis(1,3,5-trimethylphenyl)imidazol-2-ylidene]gold(III)} bis(trifluoromethanesulfonyl)imide–[bis(trifluoromethanesulfonyl)imide]silver(I) (1/2) top
Crystal data top
[Au3Cl6O(C21H24N2)3](C2F6NO4S2)·[Ag(C2F6NO4S2)]2Dx = 2.083 Mg m3
Mr = 2789.06Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212Cell parameters from 7947 reflections
Hall symbol: P 4nw 2abwθ = 2.3–26.5°
a = 13.9472 (9) ŵ = 5.79 mm1
c = 45.724 (3) ÅT = 200 K
V = 8894.5 (10) Å3Polyhedron, orange
Z = 40.25 × 0.17 × 0.11 mm
F(000) = 5376
Data collection top
Bruker SMART APEX
diffractometer
11087 independent reflections
Radiation source: fine-focus sealed tube10564 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1818
Tmin = 0.326, Tmax = 0.569k = 1818
93947 measured reflectionsl = 6159
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0179P)2 + 57.4255P]
where P = (Fo2 + 2Fc2)/3
S = 1.27(Δ/σ)max = 0.001
11087 reflectionsΔρmax = 1.65 e Å3
581 parametersΔρmin = 1.45 e Å3
12 restraintsAbsolute structure: Flack (1983), 4737 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.396 (7)
Crystal data top
[Au3Cl6O(C21H24N2)3](C2F6NO4S2)·[Ag(C2F6NO4S2)]2Z = 4
Mr = 2789.06Mo Kα radiation
Tetragonal, P43212µ = 5.79 mm1
a = 13.9472 (9) ÅT = 200 K
c = 45.724 (3) Å0.25 × 0.17 × 0.11 mm
V = 8894.5 (10) Å3
Data collection top
Bruker SMART APEX
diffractometer
11087 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
10564 reflections with I > 2σ(I)
Tmin = 0.326, Tmax = 0.569Rint = 0.068
93947 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0179P)2 + 57.4255P]
where P = (Fo2 + 2Fc2)/3
S = 1.27Δρmax = 1.65 e Å3
11087 reflectionsΔρmin = 1.45 e Å3
581 parametersAbsolute structure: Flack (1983), 4737 Friedel pairs
12 restraintsAbsolute structure parameter: 0.396 (7)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Au10.47994 (2)0.47994 (2)0.00000.01855 (9)
Cl10.49234 (17)0.47738 (18)0.04966 (4)0.0362 (5)
Au20.56741 (2)0.69371 (2)0.027945 (7)0.01900 (7)
Cl20.41769 (15)0.71618 (17)0.00937 (5)0.0337 (5)
Cl30.71719 (17)0.6628 (2)0.04497 (7)0.0477 (7)
O10.5837 (3)0.5837 (3)0.00000.0284 (19)
Ag30.46707 (8)0.68405 (8)0.04559 (2)0.0536 (3)0.870 (2)
Ag3B0.5271 (5)0.8028 (6)0.03324 (15)0.058 (2)0.130 (2)
C10.3776 (6)0.3776 (6)0.00000.037 (3)
N20.3920 (5)0.2874 (5)0.00768 (19)0.037 (2)
C30.3046 (7)0.2407 (7)0.0040 (3)0.062 (4)
H30.29330.17410.00670.074*
C60.5503 (6)0.8017 (6)0.05561 (17)0.0222 (16)
N70.5764 (6)0.8943 (5)0.05029 (17)0.0308 (17)
C80.5536 (8)0.9498 (7)0.0742 (2)0.044 (3)
H80.56451.01660.07630.053*
C90.5128 (9)0.8909 (7)0.0937 (2)0.047 (3)
H90.48930.90890.11240.056*
N100.5109 (6)0.8000 (5)0.08202 (15)0.0286 (16)
C110.4835 (7)0.2484 (6)0.0171 (2)0.0332 (19)
C120.4957 (11)0.2391 (7)0.0473 (2)0.058 (4)
C130.5888 (12)0.2127 (7)0.0558 (2)0.062 (4)
H130.60210.20460.07600.075*
C140.6622 (9)0.1978 (7)0.0358 (2)0.045 (3)
C150.6394 (8)0.1980 (7)0.0071 (2)0.037 (2)
H150.68620.17730.00660.045*
C160.5505 (7)0.2271 (6)0.0033 (2)0.033 (2)
C170.4194 (14)0.2516 (10)0.0696 (3)0.101 (7)
H17A0.35900.26860.05990.152*
H17B0.43770.30290.08320.152*
H17C0.41100.19170.08050.152*
C180.7632 (11)0.1742 (9)0.0464 (3)0.074 (5)
H18A0.80610.16740.02960.112*
H18B0.76200.11400.05750.112*
H18C0.78640.22600.05910.112*
C190.5314 (7)0.2320 (7)0.0354 (2)0.037 (2)
H19A0.58890.21210.04610.056*
H19B0.51470.29780.04090.056*
H19C0.47810.18910.04040.056*
C210.6180 (6)0.9258 (6)0.02272 (19)0.0237 (17)
C220.7164 (7)0.9273 (6)0.0204 (2)0.032 (2)
C230.7551 (6)0.9507 (7)0.0071 (2)0.035 (2)
H230.82280.95370.00940.042*
C240.6973 (7)0.9695 (7)0.0308 (2)0.036 (2)
C250.5982 (7)0.9694 (6)0.0267 (2)0.037 (2)
H250.55790.98350.04290.044*
C260.5560 (6)0.9495 (6)0.0003 (2)0.0314 (19)
C270.7821 (7)0.9102 (8)0.0458 (2)0.043 (2)
H27A0.84880.91610.03940.064*
H27B0.77120.84560.05360.064*
H27C0.76910.95770.06110.064*
C280.7370 (8)0.9888 (8)0.0611 (2)0.049 (3)
H28A0.68401.00190.07460.073*
H28B0.77270.93250.06790.073*
H28C0.77991.04440.06040.073*
C290.4533 (8)0.9624 (8)0.0046 (3)0.052 (3)
H29A0.42270.97620.01430.078*
H29B0.44231.01600.01800.078*
H29C0.42580.90370.01290.078*
C310.4692 (7)0.7163 (6)0.09582 (18)0.0275 (18)
C320.3718 (7)0.6983 (8)0.0923 (2)0.036 (2)
C330.3346 (8)0.6165 (8)0.1046 (2)0.044 (3)
H330.26830.60290.10230.053*
C340.3913 (8)0.5534 (8)0.1202 (2)0.044 (3)
C350.4871 (8)0.5756 (7)0.1245 (2)0.040 (2)
H350.52540.53420.13620.049*
C360.5283 (8)0.6565 (7)0.11232 (18)0.037 (2)
C370.3100 (8)0.7712 (9)0.0770 (3)0.054 (3)
H37A0.35000.82450.07020.082*
H37B0.26150.79540.09060.082*
H37C0.27830.74120.06020.082*
C380.3493 (11)0.4622 (9)0.1320 (3)0.064 (4)
H38A0.39860.42710.14290.096*
H38B0.32640.42260.11570.096*
H38C0.29560.47730.14500.096*
C390.6317 (8)0.6810 (10)0.1185 (2)0.058 (3)
H39A0.66060.63040.13050.087*
H39B0.63500.74210.12900.087*
H39C0.66680.68650.10000.087*
N110.3867 (6)0.9291 (7)0.11355 (19)0.041 (2)
S10.44103 (18)0.84305 (18)0.09968 (5)0.0356 (5)
O110.4141 (6)0.8202 (6)0.07076 (16)0.054 (2)
O120.5421 (5)0.8391 (6)0.10565 (19)0.056 (2)
C410.3857 (10)0.7501 (9)0.1216 (3)0.050 (3)
F10.4146 (7)0.6650 (5)0.11142 (19)0.086 (3)
F20.2925 (6)0.7518 (5)0.12012 (18)0.070 (2)
F30.4097 (7)0.7548 (6)0.14891 (17)0.085 (3)
S20.40339 (16)1.03734 (17)0.10456 (5)0.0305 (5)
O210.4876 (5)1.0540 (6)0.08791 (16)0.0469 (18)
O220.3869 (6)1.0968 (5)0.12919 (14)0.0466 (19)
C420.3037 (8)1.0632 (9)0.0801 (2)0.046 (3)
F40.3092 (6)1.0118 (6)0.05641 (14)0.085 (3)
F50.2218 (5)1.0482 (6)0.09288 (16)0.067 (2)
F60.3077 (6)1.1556 (6)0.07284 (16)0.072 (2)
N310.0200 (6)0.0200 (6)0.00000.036 (2)
S30.07670 (17)0.04173 (16)0.02944 (5)0.0366 (5)
O310.1221 (6)0.1333 (5)0.03190 (16)0.0480 (18)
O320.0217 (6)0.0065 (6)0.05325 (16)0.059 (2)
C430.1783 (9)0.0397 (9)0.0274 (3)0.060 (3)
F70.2316 (7)0.0298 (7)0.0511 (2)0.107 (3)
F80.2302 (5)0.0250 (6)0.00419 (18)0.078 (2)
F90.1494 (6)0.1304 (5)0.0266 (2)0.078 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01652 (12)0.01652 (12)0.02262 (19)0.00444 (16)0.00103 (12)0.00103 (12)
Cl10.0411 (13)0.0417 (12)0.0257 (9)0.0049 (10)0.0032 (9)0.0017 (9)
Au20.01676 (14)0.01689 (14)0.02334 (13)0.00161 (11)0.00300 (12)0.00450 (12)
Cl20.0203 (10)0.0392 (13)0.0416 (12)0.0038 (8)0.0038 (9)0.0035 (9)
Cl30.0249 (12)0.0474 (15)0.0707 (18)0.0065 (10)0.0177 (12)0.0156 (13)
O10.022 (3)0.022 (3)0.042 (5)0.015 (3)0.019 (3)0.019 (3)
Ag30.0658 (7)0.0547 (6)0.0404 (5)0.0226 (5)0.0012 (5)0.0145 (5)
Ag3B0.045 (4)0.078 (5)0.051 (4)0.016 (4)0.004 (3)0.012 (4)
C10.023 (3)0.023 (3)0.064 (9)0.009 (4)0.007 (4)0.007 (4)
N20.026 (3)0.022 (4)0.065 (5)0.021 (3)0.014 (3)0.002 (3)
C30.013 (4)0.032 (5)0.141 (12)0.013 (4)0.020 (6)0.013 (7)
C60.026 (4)0.015 (4)0.026 (4)0.004 (3)0.001 (3)0.010 (3)
N70.044 (5)0.012 (3)0.036 (4)0.008 (3)0.008 (4)0.006 (3)
C80.058 (7)0.023 (5)0.052 (6)0.002 (4)0.018 (5)0.016 (4)
C90.070 (8)0.027 (5)0.044 (6)0.005 (5)0.023 (6)0.024 (4)
N100.040 (4)0.019 (3)0.027 (3)0.004 (3)0.006 (3)0.008 (3)
C110.045 (5)0.012 (4)0.042 (5)0.003 (3)0.024 (4)0.000 (3)
C120.112 (11)0.021 (5)0.043 (6)0.019 (6)0.044 (7)0.012 (4)
C130.137 (13)0.014 (5)0.036 (6)0.018 (6)0.005 (7)0.011 (4)
C140.072 (8)0.015 (4)0.048 (6)0.011 (5)0.009 (5)0.001 (4)
C150.053 (6)0.025 (5)0.033 (5)0.010 (5)0.003 (4)0.007 (4)
C160.047 (6)0.015 (4)0.037 (5)0.007 (4)0.010 (4)0.001 (4)
C170.167 (17)0.055 (9)0.081 (10)0.026 (10)0.090 (11)0.022 (7)
C180.108 (12)0.050 (8)0.065 (8)0.033 (8)0.039 (8)0.005 (6)
C190.035 (5)0.027 (5)0.050 (6)0.001 (4)0.007 (4)0.009 (4)
C210.018 (4)0.018 (4)0.035 (5)0.005 (3)0.002 (3)0.001 (4)
C220.039 (5)0.016 (4)0.042 (5)0.001 (4)0.003 (4)0.006 (4)
C230.019 (4)0.036 (5)0.050 (6)0.003 (4)0.003 (4)0.008 (4)
C240.040 (5)0.029 (5)0.039 (5)0.005 (4)0.002 (4)0.007 (4)
C250.044 (6)0.020 (4)0.045 (5)0.004 (4)0.009 (5)0.002 (4)
C260.026 (4)0.021 (4)0.047 (5)0.006 (3)0.010 (4)0.001 (4)
C270.034 (6)0.048 (7)0.046 (6)0.012 (4)0.010 (5)0.001 (5)
C280.052 (7)0.046 (7)0.048 (6)0.001 (5)0.005 (5)0.019 (5)
C290.043 (6)0.052 (7)0.062 (7)0.019 (5)0.004 (5)0.014 (6)
C310.036 (5)0.025 (4)0.022 (4)0.003 (4)0.007 (4)0.004 (3)
C320.030 (5)0.048 (6)0.029 (5)0.014 (4)0.002 (4)0.006 (4)
C330.035 (6)0.066 (8)0.030 (5)0.004 (5)0.014 (4)0.004 (5)
C340.052 (7)0.051 (7)0.029 (5)0.001 (5)0.006 (4)0.000 (4)
C350.054 (6)0.040 (5)0.027 (5)0.015 (5)0.006 (4)0.002 (4)
C360.049 (6)0.046 (6)0.017 (4)0.002 (5)0.001 (4)0.003 (4)
C370.042 (6)0.062 (8)0.060 (7)0.022 (6)0.017 (6)0.007 (6)
C380.102 (11)0.042 (7)0.047 (7)0.006 (7)0.019 (7)0.006 (5)
C390.053 (7)0.083 (10)0.039 (6)0.012 (7)0.018 (5)0.004 (6)
N110.045 (5)0.035 (5)0.044 (5)0.008 (4)0.012 (4)0.000 (4)
S10.0315 (12)0.0343 (12)0.0409 (13)0.0072 (10)0.0020 (10)0.0067 (10)
O110.061 (5)0.056 (5)0.045 (4)0.016 (4)0.000 (4)0.016 (4)
O120.033 (4)0.058 (5)0.077 (6)0.018 (4)0.009 (4)0.019 (4)
C410.059 (8)0.043 (7)0.048 (7)0.008 (6)0.012 (6)0.001 (5)
F10.116 (7)0.032 (4)0.109 (6)0.016 (4)0.023 (6)0.002 (4)
F20.062 (5)0.058 (5)0.091 (6)0.010 (4)0.016 (4)0.006 (4)
F30.115 (8)0.086 (6)0.055 (5)0.019 (5)0.004 (5)0.017 (4)
S20.0290 (11)0.0361 (13)0.0264 (11)0.0080 (9)0.0001 (9)0.0017 (9)
O210.034 (4)0.055 (5)0.052 (4)0.007 (4)0.014 (3)0.002 (4)
O220.064 (5)0.049 (5)0.027 (4)0.007 (4)0.003 (3)0.005 (3)
C420.042 (6)0.064 (7)0.031 (5)0.014 (6)0.004 (5)0.001 (5)
F40.096 (6)0.115 (7)0.044 (4)0.052 (5)0.033 (4)0.033 (4)
F50.033 (4)0.086 (6)0.083 (5)0.008 (3)0.008 (3)0.003 (4)
F60.071 (5)0.069 (5)0.075 (5)0.017 (4)0.012 (4)0.025 (4)
N310.027 (3)0.027 (3)0.055 (7)0.001 (5)0.006 (4)0.006 (4)
S30.0335 (12)0.0326 (12)0.0437 (12)0.0024 (9)0.0002 (11)0.0019 (10)
O310.058 (5)0.033 (4)0.054 (4)0.012 (3)0.001 (4)0.012 (3)
O320.064 (5)0.063 (6)0.050 (4)0.011 (4)0.021 (4)0.005 (4)
C430.056 (8)0.053 (8)0.070 (8)0.004 (6)0.017 (7)0.005 (7)
F70.101 (7)0.098 (7)0.121 (7)0.028 (6)0.078 (6)0.002 (6)
F80.037 (4)0.105 (6)0.091 (6)0.025 (4)0.019 (4)0.019 (5)
F90.072 (5)0.036 (4)0.124 (7)0.016 (3)0.017 (5)0.002 (4)
Geometric parameters (Å, º) top
Au1—C12.018 (12)C22—C271.500 (13)
Au1—O12.046 (7)C23—C241.376 (13)
Au1—Cl1i2.277 (2)C23—H230.9500
Au1—Cl12.278 (2)C24—C251.394 (14)
Cl1—Ag3i2.684 (3)C24—C281.516 (13)
Au2—C61.982 (7)C25—C261.394 (14)
Au2—O12.010 (3)C25—H250.9500
Au2—Cl32.271 (2)C26—C291.457 (14)
Au2—Cl22.276 (2)C27—H27A0.9800
Au2—Ag3B3.234 (7)C27—H27B0.9800
Cl2—Ag32.644 (2)C27—H27C0.9800
Cl2—Ag3B2.754 (8)C28—H28A0.9800
Cl3—Ag3Bi2.302 (8)C28—H28B0.9800
Cl3—Ag3i2.769 (3)C28—H28C0.9800
O1—Au2i2.010 (3)C29—H29A0.9800
Ag3—O112.340 (7)C29—H29B0.9800
Ag3—Cl1i2.684 (3)C29—H29C0.9800
Ag3—Cl3i2.769 (3)C31—C321.390 (13)
Ag3B—Cl3i2.302 (8)C31—C361.395 (13)
Ag3B—O112.342 (10)C32—C331.374 (15)
Ag3B—C252.544 (12)C32—C371.504 (14)
Ag3B—C262.587 (13)C33—C341.382 (15)
C1—N21.322 (10)C33—H330.9500
C1—N2i1.322 (10)C34—C351.385 (15)
N2—C31.392 (11)C34—C381.500 (15)
N2—C111.452 (13)C35—C361.385 (14)
C3—C3i1.31 (2)C35—H350.9500
C3—H30.9500C36—C391.508 (15)
C6—N101.327 (10)C37—H37A0.9800
C6—N71.364 (10)C37—H37B0.9800
N7—C81.375 (11)C37—H37C0.9800
N7—C211.455 (11)C38—H38A0.9800
C8—C91.340 (14)C38—H38B0.9800
C8—H80.9500C38—H38C0.9800
C9—N101.376 (11)C39—H39A0.9800
C9—H90.9500C39—H39B0.9800
N10—C311.450 (11)C39—H39C0.9800
C11—C161.352 (12)N11—S11.555 (9)
C11—C121.400 (14)N11—S21.582 (9)
C12—C131.40 (2)S1—O111.411 (8)
C12—C171.484 (16)S1—O121.437 (8)
C13—C141.390 (17)S1—C411.812 (13)
C13—H130.9500C41—F31.294 (14)
C14—C151.349 (14)C41—F21.303 (14)
C14—C181.526 (17)C41—F11.338 (13)
C15—C161.389 (14)S2—O221.418 (7)
C15—H150.9500S2—O211.419 (7)
C16—C191.495 (13)S2—C421.821 (10)
C17—H17A0.9800C42—F41.301 (12)
C17—H17B0.9800C42—F51.301 (13)
C17—H17C0.9800C42—F61.332 (14)
C18—H18A0.9800N31—S3i1.590 (6)
C18—H18B0.9800N31—S31.590 (6)
C18—H18C0.9800S3—O321.420 (7)
C19—H19A0.9800S3—O311.431 (7)
C19—H19B0.9800S3—C431.818 (12)
C19—H19C0.9800C43—F81.302 (15)
C21—C221.376 (12)C43—F71.318 (14)
C21—C261.383 (12)C43—F91.328 (14)
C22—C231.406 (13)
C1—Au1—O1180.0 (3)C24—C23—C22121.5 (9)
C1—Au1—Cl1i92.44 (6)C24—C23—H23119.2
O1—Au1—Cl1i87.56 (6)C22—C23—H23119.2
C1—Au1—Cl192.44 (6)C23—C24—C25118.3 (9)
O1—Au1—Cl187.56 (6)C23—C24—C28122.6 (9)
Cl1i—Au1—Cl1175.12 (12)C25—C24—C28119.0 (9)
Au1—Cl1—Ag3i90.42 (7)C24—C25—C26122.5 (9)
C6—Au2—O1179.5 (3)C24—C25—Ag3B111.8 (6)
C6—Au2—Cl392.1 (2)C26—C25—Ag3B76.0 (5)
O1—Au2—Cl388.25 (13)C24—C25—H25118.7
C6—Au2—Cl291.3 (2)C26—C25—H25118.7
O1—Au2—Cl288.36 (12)Ag3B—C25—H2582.3
Cl3—Au2—Cl2176.55 (9)C21—C26—C25116.1 (8)
C6—Au2—Ag3B100.0 (3)C21—C26—C29122.9 (10)
O1—Au2—Ag3B80.16 (16)C25—C26—C29120.7 (9)
Cl3—Au2—Ag3B123.08 (16)C21—C26—Ag3B110.3 (6)
Cl2—Au2—Ag3B56.83 (15)C25—C26—Ag3B72.5 (5)
Au2—Cl2—Ag395.30 (8)C29—C26—Ag3B91.4 (7)
Au2—Cl2—Ag3B79.40 (16)C22—C27—H27A109.5
Ag3—Cl2—Ag3B42.07 (18)C22—C27—H27B109.5
Au2—Cl3—Ag3Bi123.6 (2)H27A—C27—H27B109.5
Au2—Cl3—Ag3i92.12 (9)C22—C27—H27C109.5
Ag3Bi—Cl3—Ag3i43.8 (2)H27A—C27—H27C109.5
Au2—O1—Au2i125.2 (3)H27B—C27—H27C109.5
Au2—O1—Au1117.41 (17)C24—C28—H28A109.5
Au2i—O1—Au1117.41 (17)C24—C28—H28B109.5
O11—Ag3—Cl2104.3 (2)H28A—C28—H28B109.5
O11—Ag3—Cl1i142.3 (2)C24—C28—H28C109.5
Cl2—Ag3—Cl1i104.40 (8)H28A—C28—H28C109.5
O11—Ag3—Cl3i100.4 (2)H28B—C28—H28C109.5
Cl2—Ag3—Cl3i102.64 (9)C26—C29—H29A109.5
Cl1i—Ag3—Cl3i96.55 (8)C26—C29—H29B109.5
Cl3i—Ag3B—O11115.9 (4)H29A—C29—H29B109.5
Cl3i—Ag3B—C25100.4 (4)C26—C29—H29C109.5
O11—Ag3B—C25104.7 (4)H29A—C29—H29C109.5
Cl3i—Ag3B—C26114.8 (4)H29B—C29—H29C109.5
O11—Ag3B—C26117.2 (4)C32—C31—C36122.2 (9)
C25—Ag3B—C2631.5 (3)C32—C31—N10119.1 (8)
Cl3i—Ag3B—Cl2113.1 (3)C36—C31—N10118.7 (8)
O11—Ag3B—Cl2101.0 (3)C33—C32—C31118.1 (9)
C25—Ag3B—Cl2122.3 (4)C33—C32—C37122.3 (10)
C26—Ag3B—Cl290.8 (3)C31—C32—C37119.5 (10)
Cl3i—Ag3B—Au279.3 (2)C32—C33—C34121.6 (10)
O11—Ag3B—Au2143.1 (4)C32—C33—H33119.2
C25—Ag3B—Au2105.1 (3)C34—C33—H33119.2
C26—Ag3B—Au280.4 (3)C33—C34—C35118.9 (10)
Cl2—Ag3B—Au243.77 (11)C33—C34—C38120.2 (11)
N2—C1—N2i111.0 (11)C35—C34—C38120.9 (11)
N2—C1—Au1124.5 (5)C36—C35—C34121.7 (9)
N2i—C1—Au1124.5 (5)C36—C35—H35119.2
C1—N2—C3106.3 (9)C34—C35—H35119.2
C1—N2—C11124.7 (7)C35—C36—C31117.4 (10)
C3—N2—C11129.0 (8)C35—C36—C39120.5 (10)
C3i—C3—N2108.1 (6)C31—C36—C39122.1 (10)
C3i—C3—H3126.0C32—C37—H37A109.5
N2—C3—H3126.0C32—C37—H37B109.5
N10—C6—N7106.8 (7)H37A—C37—H37B109.5
N10—C6—Au2128.1 (6)C32—C37—H37C109.5
N7—C6—Au2125.0 (6)H37A—C37—H37C109.5
C6—N7—C8109.2 (7)H37B—C37—H37C109.5
C6—N7—C21123.1 (7)C34—C38—H38A109.5
C8—N7—C21127.6 (7)C34—C38—H38B109.5
C9—C8—N7106.5 (8)H38A—C38—H38B109.5
C9—C8—H8126.8C34—C38—H38C109.5
N7—C8—H8126.8H38A—C38—H38C109.5
C8—C9—N10108.3 (8)H38B—C38—H38C109.5
C8—C9—H9125.9C36—C39—H39A109.5
N10—C9—H9125.9C36—C39—H39B109.5
C6—N10—C9109.2 (8)H39A—C39—H39B109.5
C6—N10—C31125.2 (7)C36—C39—H39C109.5
C9—N10—C31125.5 (7)H39A—C39—H39C109.5
C16—C11—C12125.2 (11)H39B—C39—H39C109.5
C16—C11—N2119.0 (9)S1—N11—S2124.0 (6)
C12—C11—N2115.7 (9)O11—S1—O12115.5 (5)
C11—C12—C13114.1 (10)O11—S1—N11115.3 (5)
C11—C12—C17125.5 (14)O12—S1—N11115.5 (5)
C13—C12—C17120.3 (12)O11—S1—C41104.1 (6)
C14—C13—C12122.6 (10)O12—S1—C41106.5 (6)
C14—C13—H13118.7N11—S1—C4196.8 (5)
C12—C13—H13118.7S1—O11—Ag3124.1 (5)
C15—C14—C13117.8 (11)S1—O11—Ag3B122.1 (5)
C15—C14—C18121.9 (11)Ag3—O11—Ag3B49.0 (3)
C13—C14—C18120.1 (11)F3—C41—F2108.0 (10)
C14—C15—C16123.0 (10)F3—C41—F1107.7 (10)
C14—C15—H15118.5F2—C41—F1107.4 (11)
C16—C15—H15118.5F3—C41—S1112.8 (10)
C11—C16—C15116.4 (9)F2—C41—S1112.5 (8)
C11—C16—C19123.0 (10)F1—C41—S1108.3 (8)
C15—C16—C19120.6 (9)O22—S2—O21117.7 (5)
C12—C17—H17A109.5O22—S2—N11109.2 (5)
C12—C17—H17B109.5O21—S2—N11114.7 (5)
H17A—C17—H17B109.5O22—S2—C42104.4 (5)
C12—C17—H17C109.5O21—S2—C42105.7 (5)
H17A—C17—H17C109.5N11—S2—C42103.7 (5)
H17B—C17—H17C109.5F4—C42—F5109.7 (11)
C14—C18—H18A109.5F4—C42—F6108.9 (9)
C14—C18—H18B109.5F5—C42—F6107.7 (10)
H18A—C18—H18B109.5F4—C42—S2111.0 (8)
C14—C18—H18C109.5F5—C42—S2111.3 (7)
H18A—C18—H18C109.5F6—C42—S2108.2 (8)
H18B—C18—H18C109.5S3i—N31—S3121.8 (7)
C16—C19—H19A109.5O32—S3—O31119.2 (5)
C16—C19—H19B109.5O32—S3—N31108.3 (5)
H19A—C19—H19B109.5O31—S3—N31117.2 (5)
C16—C19—H19C109.5O32—S3—C43104.1 (6)
H19A—C19—H19C109.5O31—S3—C43102.5 (6)
H19B—C19—H19C109.5N31—S3—C43103.0 (4)
C22—C21—C26124.1 (8)F8—C43—F7109.8 (11)
C22—C21—N7118.1 (8)F8—C43—F9107.2 (11)
C26—C21—N7117.8 (8)F7—C43—F9107.1 (11)
C21—C22—C23117.2 (8)F8—C43—S3112.1 (9)
C21—C22—C27123.0 (9)F7—C43—S3109.4 (9)
C23—C22—C27119.7 (9)F9—C43—S3111.1 (9)
C1—Au1—Cl1—Ag3i131.82 (6)N7—C21—C22—C23175.2 (8)
O1—Au1—Cl1—Ag3i48.18 (6)C26—C21—C22—C27174.1 (9)
Cl1i—Au1—Cl1—Ag3i48.18 (6)N7—C21—C22—C277.9 (13)
C6—Au2—Cl2—Ag3140.2 (2)C21—C22—C23—C241.3 (14)
O1—Au2—Cl2—Ag340.19 (15)C27—C22—C23—C24178.3 (9)
Cl3—Au2—Cl2—Ag350.6 (18)C22—C23—C24—C253.1 (14)
Ag3B—Au2—Cl2—Ag339.12 (19)C22—C23—C24—C28176.1 (9)
C6—Au2—Cl2—Ag3B101.1 (3)C23—C24—C25—C261.2 (14)
O1—Au2—Cl2—Ag3B79.3 (2)C28—C24—C25—C26178.1 (9)
Cl3—Au2—Cl2—Ag3B89.7 (18)C23—C24—C25—Ag3B88.0 (10)
C6—Au2—Cl3—Ag3Bi168.8 (4)C28—C24—C25—Ag3B91.2 (10)
O1—Au2—Cl3—Ag3Bi10.8 (3)Cl3i—Ag3B—C25—C241.4 (8)
Cl2—Au2—Cl3—Ag3Bi0.4 (19)O11—Ag3B—C25—C24121.8 (7)
Ag3B—Au2—Cl3—Ag3Bi87.8 (2)C26—Ag3B—C25—C24119.8 (10)
C6—Au2—Cl3—Ag3i136.3 (2)Cl2—Ag3B—C25—C24124.7 (7)
O1—Au2—Cl3—Ag3i43.33 (16)Au2—Ag3B—C25—C2480.2 (8)
Cl2—Au2—Cl3—Ag3i32.9 (18)Cl3i—Ag3B—C25—C26121.2 (6)
Ag3B—Au2—Cl3—Ag3i120.4 (2)O11—Ag3B—C25—C26118.4 (6)
C6—Au2—O1—Au2i179 (100)Cl2—Ag3B—C25—C264.9 (7)
Cl3—Au2—O1—Au2i53.29 (8)Au2—Ag3B—C25—C2639.5 (6)
Cl2—Au2—O1—Au2i127.34 (6)C22—C21—C26—C254.6 (13)
Ag3B—Au2—O1—Au2i70.74 (14)N7—C21—C26—C25173.4 (7)
C6—Au2—O1—Au11 (30)C22—C21—C26—C29169.7 (9)
Cl3—Au2—O1—Au1126.71 (8)N7—C21—C26—C2912.3 (13)
Cl2—Au2—O1—Au152.66 (6)C22—C21—C26—Ag3B84.5 (10)
Ag3B—Au2—O1—Au1109.26 (14)N7—C21—C26—Ag3B93.5 (8)
C1—Au1—O1—Au245.730 (10)C24—C25—C26—C212.5 (13)
Cl1i—Au1—O1—Au2132.01 (6)Ag3B—C25—C26—C21104.6 (8)
Cl1—Au1—O1—Au247.99 (6)C24—C25—C26—C29171.9 (9)
C1—Au1—O1—Au2i134.270 (10)Ag3B—C25—C26—C2981.0 (9)
Cl1i—Au1—O1—Au2i47.99 (6)C24—C25—C26—Ag3B107.1 (9)
Cl1—Au1—O1—Au2i132.01 (6)Cl3i—Ag3B—C26—C2144.0 (8)
Au2—Cl2—Ag3—O11125.6 (2)O11—Ag3B—C26—C21174.9 (6)
Ag3B—Cl2—Ag3—O1157.9 (3)C25—Ag3B—C26—C21112.1 (9)
Au2—Cl2—Ag3—Cl1i79.04 (10)Cl2—Ag3B—C26—C2172.0 (6)
Ag3B—Cl2—Ag3—Cl1i146.8 (2)Au2—Ag3B—C26—C2129.4 (6)
Au2—Cl2—Ag3—Cl3i21.24 (9)Cl3i—Ag3B—C26—C2568.0 (6)
Ag3B—Cl2—Ag3—Cl3i46.5 (2)O11—Ag3B—C26—C2573.1 (7)
Au2—Cl2—Ag3B—Cl3i42.5 (3)Cl2—Ag3B—C26—C25175.9 (6)
Ag3—Cl2—Ag3B—Cl3i67.9 (3)Au2—Ag3B—C26—C25141.4 (6)
Au2—Cl2—Ag3B—O11167.0 (3)Cl3i—Ag3B—C26—C29170.1 (6)
Ag3—Cl2—Ag3B—O1156.6 (3)O11—Ag3B—C26—C2948.8 (8)
Au2—Cl2—Ag3B—C2577.7 (4)C25—Ag3B—C26—C29121.8 (9)
Ag3—Cl2—Ag3B—C25172.0 (5)Cl2—Ag3B—C26—C2954.1 (6)
Au2—Cl2—Ag3B—C2675.1 (3)Au2—Ag3B—C26—C2996.8 (6)
Ag3—Cl2—Ag3B—C26174.5 (4)C6—N10—C31—C3291.8 (11)
Ag3—Cl2—Ag3B—Au2110.34 (19)C9—N10—C31—C3285.8 (12)
C6—Au2—Ag3B—Cl3i134.2 (3)C6—N10—C31—C3688.5 (11)
O1—Au2—Ag3B—Cl3i46.3 (3)C9—N10—C31—C3694.0 (12)
Cl3—Au2—Ag3B—Cl3i35.1 (3)C36—C31—C32—C332.8 (14)
Cl2—Au2—Ag3B—Cl3i140.8 (3)N10—C31—C32—C33177.5 (8)
C6—Au2—Ag3B—O11106.6 (7)C36—C31—C32—C37173.3 (9)
O1—Au2—Ag3B—O1172.9 (6)N10—C31—C32—C376.5 (13)
Cl3—Au2—Ag3B—O11154.3 (5)C31—C32—C33—C340.4 (15)
Cl2—Au2—Ag3B—O1121.6 (5)C37—C32—C33—C34175.6 (10)
C6—Au2—Ag3B—C2536.2 (4)C32—C33—C34—C352.6 (15)
O1—Au2—Ag3B—C25144.3 (4)C32—C33—C34—C38176.7 (10)
Cl3—Au2—Ag3B—C2562.9 (4)C33—C34—C35—C363.4 (15)
Cl2—Au2—Ag3B—C25121.2 (4)C38—C34—C35—C36175.9 (9)
C6—Au2—Ag3B—C2616.4 (3)C34—C35—C36—C311.1 (14)
O1—Au2—Ag3B—C26164.1 (3)C34—C35—C36—C39177.3 (10)
Cl3—Au2—Ag3B—C2682.7 (3)C32—C31—C36—C352.0 (13)
Cl2—Au2—Ag3B—C26101.4 (3)N10—C31—C36—C35178.2 (8)
C6—Au2—Ag3B—Cl285.0 (3)C32—C31—C36—C39174.1 (9)
O1—Au2—Ag3B—Cl294.5 (2)N10—C31—C36—C395.7 (13)
Cl3—Au2—Ag3B—Cl2175.88 (11)S2—N11—S1—O1172.3 (8)
O1—Au1—C1—N2161.2 (4)S2—N11—S1—O1266.5 (8)
Cl1i—Au1—C1—N2112.5 (5)S2—N11—S1—C41178.5 (7)
Cl1—Au1—C1—N267.5 (5)O12—S1—O11—Ag349.2 (8)
O1—Au1—C1—N2i18.8 (4)N11—S1—O11—Ag3172.0 (5)
Cl1i—Au1—C1—N2i67.5 (5)C41—S1—O11—Ag367.2 (7)
Cl1—Au1—C1—N2i112.5 (5)O12—S1—O11—Ag3B10.0 (8)
N2i—C1—N2—C31.4 (7)N11—S1—O11—Ag3B128.8 (6)
Au1—C1—N2—C3178.7 (7)C41—S1—O11—Ag3B126.5 (6)
N2i—C1—N2—C11179.6 (10)Cl2—Ag3—O11—S1167.3 (5)
Au1—C1—N2—C110.4 (10)Cl1i—Ag3—O11—S154.0 (8)
C1—N2—C3—C3i3.7 (19)Cl3i—Ag3—O11—S161.3 (6)
C11—N2—C3—C3i178.1 (13)Cl2—Ag3—O11—Ag3B62.2 (3)
O1—Au2—C6—N1035 (31)Cl1i—Ag3—O11—Ag3B159.2 (3)
Cl3—Au2—C6—N1093.2 (8)Cl3i—Ag3—O11—Ag3B43.9 (3)
Cl2—Au2—C6—N1086.2 (8)Cl3i—Ag3B—O11—S143.7 (8)
Ag3B—Au2—C6—N10142.7 (7)C25—Ag3B—O11—S165.9 (7)
O1—Au2—C6—N7144 (30)C26—Ag3B—O11—S197.0 (6)
Cl3—Au2—C6—N788.2 (7)Cl2—Ag3B—O11—S1166.3 (5)
Cl2—Au2—C6—N792.4 (7)Au2—Ag3B—O11—S1151.2 (5)
Ag3B—Au2—C6—N735.9 (8)Cl3i—Ag3B—O11—Ag365.7 (4)
N10—C6—N7—C80.9 (11)C25—Ag3B—O11—Ag3175.2 (4)
Au2—C6—N7—C8179.7 (7)C26—Ag3B—O11—Ag3153.6 (5)
N10—C6—N7—C21176.8 (8)Cl2—Ag3B—O11—Ag356.9 (2)
Au2—C6—N7—C212.0 (12)Au2—Ag3B—O11—Ag341.9 (5)
C6—N7—C8—C90.6 (13)O11—S1—C41—F3174.4 (8)
C21—N7—C8—C9176.9 (10)O12—S1—C41—F351.9 (10)
N7—C8—C9—N100.2 (14)N11—S1—C41—F367.3 (9)
N7—C6—N10—C90.8 (11)O11—S1—C41—F263.2 (10)
Au2—C6—N10—C9179.6 (7)O12—S1—C41—F2174.3 (8)
N7—C6—N10—C31177.1 (8)N11—S1—C41—F255.1 (10)
Au2—C6—N10—C311.7 (13)O11—S1—C41—F155.3 (10)
C8—C9—N10—C60.4 (13)O12—S1—C41—F167.2 (10)
C8—C9—N10—C31177.5 (9)N11—S1—C41—F1173.6 (9)
C1—N2—C11—C1678.3 (11)S1—N11—S2—O22149.0 (7)
C3—N2—C11—C1699.6 (13)S1—N11—S2—O2114.5 (9)
C1—N2—C11—C1299.5 (10)S1—N11—S2—C42100.2 (7)
C3—N2—C11—C1282.6 (14)O22—S2—C42—F4179.2 (9)
C16—C11—C12—C135.3 (15)O21—S2—C42—F456.1 (10)
N2—C11—C12—C13172.4 (8)N11—S2—C42—F464.9 (10)
C16—C11—C12—C17172.7 (11)O22—S2—C42—F556.7 (10)
N2—C11—C12—C179.7 (16)O21—S2—C42—F5178.6 (8)
C11—C12—C13—C140.4 (16)N11—S2—C42—F557.6 (9)
C17—C12—C13—C14178.5 (11)O22—S2—C42—F661.5 (8)
C12—C13—C14—C158.0 (16)O21—S2—C42—F663.3 (8)
C12—C13—C14—C18176.9 (10)N11—S2—C42—F6175.7 (7)
C13—C14—C15—C1610.6 (15)S3i—N31—S3—O32160.1 (4)
C18—C14—C15—C16174.3 (10)S3i—N31—S3—O3121.6 (4)
C12—C11—C16—C153.0 (14)S3i—N31—S3—C4390.0 (5)
N2—C11—C16—C15174.5 (7)O32—S3—C43—F8171.7 (9)
C12—C11—C16—C19175.6 (9)O31—S3—C43—F863.4 (10)
N2—C11—C16—C196.8 (13)N31—S3—C43—F858.7 (10)
C14—C15—C16—C115.3 (14)O32—S3—C43—F766.3 (11)
C14—C15—C16—C19175.9 (9)O31—S3—C43—F758.6 (11)
C6—N7—C21—C2293.0 (11)N31—S3—C43—F7179.3 (10)
C8—N7—C21—C2289.8 (12)O32—S3—C43—F951.8 (11)
C6—N7—C21—C2685.2 (11)O31—S3—C43—F9176.6 (9)
C8—N7—C21—C2692.1 (12)N31—S3—C43—F961.2 (11)
C26—C21—C22—C232.8 (14)
Symmetry code: (i) y, x, z.

Experimental details

Crystal data
Chemical formula[Au3Cl6O(C21H24N2)3](C2F6NO4S2)·[Ag(C2F6NO4S2)]2
Mr2789.06
Crystal system, space groupTetragonal, P43212
Temperature (K)200
a, c (Å)13.9472 (9), 45.724 (3)
V3)8894.5 (10)
Z4
Radiation typeMo Kα
µ (mm1)5.79
Crystal size (mm)0.25 × 0.17 × 0.11
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.326, 0.569
No. of measured, independent and
observed [I > 2σ(I)] reflections
93947, 11087, 10564
Rint0.068
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.094, 1.27
No. of reflections11087
No. of parameters581
No. of restraints12
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0179P)2 + 57.4255P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.65, 1.45
Absolute structureFlack (1983), 4737 Friedel pairs
Absolute structure parameter0.396 (7)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008b).

 

Acknowledgements

MP and ML work at CaRLa of Heidelberg University, being co-financed by the University of Heidelberg, the state of Baden-Württemberg and the BASF SE. Support of these institutions is greatly acknowledged. The authors are indebted to Kenneth G. Caulton, Indiana University, Bloomington, for careful proofreading of the final manuscript.

References

First citationAngermaier, K. & Schmidbaur, H. (1994). Inorg. Chem. 33, 2069–2070.  CSD CrossRef CAS Web of Science Google Scholar
First citationAngermaier, K. & Schmidbaur, H. (1995). Acta Cryst. C51, 1793–1795.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNesmeyanov, A. N., Perevalova, E. G., Struchkov, Y. T., Antipin, M. Y., Grandberg, K. I. & Dyadchenko, V. P. (1980). J. Organomet. Chem. 201, 343–351.  CSD CrossRef CAS Web of Science Google Scholar
First citationNockemann, P., Thijs, B., Van Hecke, K., Van Meervelt, L. & Binnemans, K. (2008). Cryst. Growth Des. 8, 1353–1363.  Web of Science CSD CrossRef CAS Google Scholar
First citationPažický, M., Loos, A., Ferreira, M. J., Rominger, F., Jäkel, C., Hashmi, A. S. K. & Limbach, M. (2010). Personal communication.  Google Scholar
First citationSchmidbaur, H., Kolb, A., Zeller, E., Schier, A. & Beruda, H. (1993). Z. Anorg. Allg. Chem. 619, 1575–1581.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Y., Ramamoorthy, V. & Sharp, P. R. (1993). Inorg. Chem. 32, 1946–1951.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m724-m725
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds