metal-organic compounds
catena-Poly[[bis(μ-3-aminopyrazine-2-carboxylato)-κ3N1,O:O;κ3O:N1,O)dilithium]-di-μ-aqua]
aInstitute of Nuclear Chemistry and Technology, ul.Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: j.leciejewicz@ichtj.waw.pl
The title compound, [Li(C5H4N3O2)(H2O)]n, is composed of centrosymmetric dinuclear units, in which the LiI ions are bridged by two carboxylate O atoms donated by two ligands. The dinuclear unit is nearly planar [r.m.s. deviation = 0.0125 (2) Å]. The LiI ion is coordinated by an N,O-chelating ligand, a bridging carboxylate O atom from another ligand and two bridging water O atoms in a distorted trigonal-bipyramidal geometry. The water O atoms bridge the dinuclear units into a polymeric molecular column along [010]. The columns are held together by O—H⋯O and N—H⋯N hydrogen bonds. An intramolecular N—H⋯O interaction also occurs.
Related literature
For the structures of metal (M) complexes with the 3-aminopyrazine-2-carboxylate ligand, see: Leciejewicz et al. (1997 [M = Ca(II)], 1998 [M = Sr(II)]); Ptasiewicz-Bąk & Leciejewicz (1997 [M = Mg(II)], 1999 [M = Ni(II)]); Tayebee et al. (2008) [M = Na(I)]. For the structure of an Li(I) complex with pyrazine-2,3-dicarboxylate and aqua ligands, see: Tombul et al. (2008).
Experimental
Crystal data
|
Data collection
Refinement
|
|
Data collection: KM-4 Software (Kuma, 1996); cell KM-4 Software; data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536810020647/hy2312sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810020647/hy2312Isup2.hkl
The title compound was synthesized by reacting 50 ml of boiling aqueous solutions, one containing 1 mmol of 3-aminopyrazine-2-carboxylic acid (Aldrich), the other containing 1 mmol of lithium hydroxide (Aldrich). The mixture was boiled under reflux for 3 h and after cooling to room temperature, filtered and left to crystallize. A few days later, colourless single crystals in the form of flat needles were found after evaporation to dryness. They were extracted, washed with cold ethanol and dried in air. A crystal used for X-ray data collection was cut to adopt the shape of a flat plate.
Water H atoms were found from difference Fourier maps and their coordinates were refined with Uiso(H) = 1.2Ueq(O). H atoms attached to C and N atoms were positioned geometrically and refined as riding, with C—H = 0.93 and N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N).
Data collection: KM-4 Software (Kuma, 1996); cell
KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Li(C5H4N3O2)(H2O)] | F(000) = 336 |
Mr = 163.07 | Dx = 1.652 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 14.279 (3) Å | θ = 6–15° |
b = 3.6000 (7) Å | µ = 0.13 mm−1 |
c = 13.300 (3) Å | T = 293 K |
β = 106.43 (3)° | Plate, colourless |
V = 655.7 (2) Å3 | 0.26 × 0.21 × 0.04 mm |
Z = 4 |
Kuma KM-4 four-circle diffractometer | 1297 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.017 |
Graphite monochromator | θmax = 30.1°, θmin = 1.5° |
profile data from ω–2θ scans | h = −19→19 |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006) | k = −5→0 |
Tmin = 0.980, Tmax = 0.994 | l = 0→18 |
1997 measured reflections | 3 standard reflections every 200 reflections |
1913 independent reflections | intensity decay: 7.3% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.147 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.1051P)2 + 0.022P] where P = (Fo2 + 2Fc2)/3 |
1913 reflections | (Δ/σ)max < 0.001 |
115 parameters | Δρmax = 0.51 e Å−3 |
3 restraints | Δρmin = −0.39 e Å−3 |
[Li(C5H4N3O2)(H2O)] | V = 655.7 (2) Å3 |
Mr = 163.07 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 14.279 (3) Å | µ = 0.13 mm−1 |
b = 3.6000 (7) Å | T = 293 K |
c = 13.300 (3) Å | 0.26 × 0.21 × 0.04 mm |
β = 106.43 (3)° |
Kuma KM-4 four-circle diffractometer | 1297 reflections with I > 2σ(I) |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006) | Rint = 0.017 |
Tmin = 0.980, Tmax = 0.994 | 3 standard reflections every 200 reflections |
1997 measured reflections | intensity decay: 7.3% |
1913 independent reflections |
R[F2 > 2σ(F2)] = 0.049 | 3 restraints |
wR(F2) = 0.147 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.51 e Å−3 |
1913 reflections | Δρmin = −0.39 e Å−3 |
115 parameters |
x | y | z | Uiso*/Ueq | ||
C2 | 0.25443 (8) | 0.4711 (3) | 0.39664 (9) | 0.0184 (3) | |
O2 | 0.32090 (8) | 0.2294 (4) | 0.26435 (8) | 0.0336 (3) | |
N1 | 0.27984 (8) | 0.6065 (3) | 0.49343 (8) | 0.0216 (3) | |
N2 | 0.08397 (8) | 0.5364 (4) | 0.38343 (10) | 0.0285 (3) | |
N3 | 0.12597 (9) | 0.2931 (4) | 0.24154 (10) | 0.0320 (3) | |
H2 | 0.0649 | 0.2745 | 0.2090 | 0.038* | |
H1 | 0.1690 | 0.2235 | 0.2115 | 0.038* | |
O1 | 0.42229 (7) | 0.4275 (4) | 0.41421 (8) | 0.0352 (3) | |
C7 | 0.33887 (9) | 0.3657 (4) | 0.35429 (10) | 0.0218 (3) | |
C3 | 0.15415 (9) | 0.4307 (4) | 0.33936 (10) | 0.0217 (3) | |
C6 | 0.20958 (10) | 0.7070 (4) | 0.53653 (11) | 0.0254 (3) | |
H6 | 0.2262 | 0.8010 | 0.6044 | 0.030* | |
C5 | 0.11268 (10) | 0.6720 (4) | 0.48077 (12) | 0.0284 (3) | |
H5 | 0.0653 | 0.7459 | 0.5123 | 0.034* | |
Li1 | 0.43334 (19) | 0.6091 (9) | 0.5591 (2) | 0.0370 (6) | |
O3 | 0.44058 (8) | 1.0866 (3) | 0.64699 (9) | 0.0338 (3) | |
H32 | 0.4986 (11) | 1.117 (6) | 0.6825 (15) | 0.041* | |
H31 | 0.4047 (13) | 1.146 (6) | 0.6882 (14) | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.0170 (5) | 0.0153 (5) | 0.0223 (6) | −0.0007 (4) | 0.0048 (4) | 0.0018 (4) |
O2 | 0.0301 (5) | 0.0450 (7) | 0.0277 (5) | −0.0089 (5) | 0.0114 (4) | −0.0120 (5) |
N1 | 0.0209 (5) | 0.0192 (5) | 0.0242 (5) | 0.0012 (4) | 0.0057 (4) | −0.0006 (4) |
N2 | 0.0194 (5) | 0.0264 (6) | 0.0390 (6) | 0.0012 (4) | 0.0071 (4) | 0.0025 (5) |
N3 | 0.0227 (5) | 0.0401 (7) | 0.0290 (6) | −0.0056 (5) | 0.0002 (4) | −0.0052 (5) |
O1 | 0.0183 (5) | 0.0522 (7) | 0.0338 (5) | 0.0004 (5) | 0.0052 (4) | −0.0142 (5) |
C7 | 0.0202 (6) | 0.0209 (6) | 0.0242 (5) | −0.0021 (4) | 0.0064 (4) | −0.0015 (5) |
C3 | 0.0199 (5) | 0.0171 (5) | 0.0262 (6) | −0.0019 (4) | 0.0033 (4) | 0.0034 (5) |
C6 | 0.0282 (6) | 0.0225 (7) | 0.0273 (6) | 0.0020 (5) | 0.0108 (5) | −0.0020 (5) |
C5 | 0.0238 (6) | 0.0237 (7) | 0.0408 (8) | 0.0031 (5) | 0.0140 (5) | 0.0006 (6) |
Li1 | 0.0256 (12) | 0.0484 (17) | 0.0355 (13) | 0.0016 (11) | 0.0060 (10) | −0.0120 (12) |
O3 | 0.0256 (5) | 0.0411 (7) | 0.0352 (6) | −0.0012 (5) | 0.0092 (4) | −0.0069 (5) |
C2—N1 | 1.3274 (16) | C6—C5 | 1.378 (2) |
C2—C3 | 1.4263 (17) | C6—H6 | 0.9300 |
C2—C7 | 1.5164 (17) | C5—H5 | 0.9300 |
O2—C7 | 1.2505 (17) | Li1—N1 | 2.118 (3) |
N1—C6 | 1.3385 (17) | Li1—O1 | 1.999 (3) |
N2—C5 | 1.335 (2) | Li1—O1i | 1.995 (3) |
N2—C3 | 1.3510 (18) | Li1—O3 | 2.065 (3) |
N3—C3 | 1.3431 (18) | Li1—O3ii | 2.201 (3) |
N3—H2 | 0.8600 | Li1—Li1i | 2.900 (5) |
N3—H1 | 0.8600 | O3—H32 | 0.837 (15) |
O1—C7 | 1.2515 (17) | O3—H31 | 0.875 (14) |
N1—C2—C3 | 120.87 (11) | N2—C5—H5 | 118.6 |
N1—C2—C7 | 115.10 (11) | C6—C5—H5 | 118.6 |
C3—C2—C7 | 124.03 (11) | O1i—Li1—O1 | 86.88 (11) |
C2—N1—C6 | 118.83 (11) | O1i—Li1—O3 | 94.05 (12) |
C2—N1—Li1 | 111.64 (11) | O1—Li1—O3 | 142.73 (18) |
C6—N1—Li1 | 129.48 (11) | O1i—Li1—N1 | 165.94 (15) |
C5—N2—C3 | 117.50 (11) | O1—Li1—N1 | 79.08 (10) |
C3—N3—H2 | 120.0 | O3—Li1—N1 | 96.74 (12) |
C3—N3—H1 | 120.0 | O1i—Li1—O3ii | 87.61 (12) |
H2—N3—H1 | 120.0 | O1—Li1—O3ii | 102.21 (14) |
C7—O1—Li1i | 148.32 (12) | O3—Li1—O3ii | 115.07 (14) |
C7—O1—Li1 | 118.26 (11) | N1—Li1—O3ii | 95.90 (13) |
Li1i—O1—Li1 | 93.13 (11) | O1i—Li1—Li1i | 43.49 (8) |
O2—C7—O1 | 125.43 (12) | O1—Li1—Li1i | 43.38 (8) |
O2—C7—C2 | 118.94 (12) | O3—Li1—Li1i | 126.66 (18) |
O1—C7—C2 | 115.63 (11) | N1—Li1—Li1i | 122.46 (16) |
N3—C3—N2 | 117.93 (12) | O3ii—Li1—Li1i | 96.72 (16) |
N3—C3—C2 | 122.37 (12) | Li1—O3—Li1iii | 115.07 (14) |
N2—C3—C2 | 119.69 (12) | Li1—O3—H32 | 108.2 (15) |
N1—C6—C5 | 120.32 (12) | Li1iii—O3—H32 | 94.4 (16) |
N1—C6—H6 | 119.8 | Li1—O3—H31 | 127.7 (15) |
C5—C6—H6 | 119.8 | Li1iii—O3—H31 | 100.2 (15) |
N2—C5—C6 | 122.78 (13) | H32—O3—H31 | 106.0 (15) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y−1, z; (iii) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H31···O2iv | 0.88 (1) | 1.83 (1) | 2.7028 (16) | 175 (2) |
O3—H32···O1v | 0.84 (2) | 2.54 (2) | 2.9083 (17) | 108 (2) |
N3—H1···O2 | 0.86 | 2.08 | 2.7229 (17) | 131 |
N3—H2···N2vi | 0.86 | 2.30 | 3.1278 (19) | 162 |
Symmetry codes: (iv) x, −y+3/2, z+1/2; (v) −x+1, −y+2, −z+1; (vi) −x, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Li(C5H4N3O2)(H2O)] |
Mr | 163.07 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 14.279 (3), 3.6000 (7), 13.300 (3) |
β (°) | 106.43 (3) |
V (Å3) | 655.7 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.26 × 0.21 × 0.04 |
Data collection | |
Diffractometer | Kuma KM-4 four-circle diffractometer |
Absorption correction | Analytical (CrysAlis RED; Oxford Diffraction, 2006) |
Tmin, Tmax | 0.980, 0.994 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1997, 1913, 1297 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.705 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.147, 1.04 |
No. of reflections | 1913 |
No. of parameters | 115 |
No. of restraints | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.51, −0.39 |
Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Li1—N1 | 2.118 (3) | Li1—O3 | 2.065 (3) |
Li1—O1 | 1.999 (3) | Li1—O3ii | 2.201 (3) |
Li1—O1i | 1.995 (3) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H31···O2iii | 0.875 (14) | 1.830 (14) | 2.7028 (16) | 175.1 (19) |
O3—H32···O1iv | 0.837 (15) | 2.54 (2) | 2.9083 (17) | 108.1 (16) |
N3—H1···O2 | 0.86 | 2.08 | 2.7229 (17) | 131 |
N3—H2···N2v | 0.86 | 2.30 | 3.1278 (19) | 162 |
Symmetry codes: (iii) x, −y+3/2, z+1/2; (iv) −x+1, −y+2, −z+1; (v) −x, y−1/2, −z+1/2. |
References
Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland. Google Scholar
Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland. Google Scholar
Leciejewicz, J., Ptasiewicz-Bąk, H. & Paluchowska, B. (1997). Pol. J. Chem. 71, 1339–1364. Google Scholar
Leciejewicz,J., Ptasiewicz-Bąk, H. & Zachara, J. (1998). Pol. J. Chem. 72, 1994–1998. CAS Google Scholar
Oxford Diffraction (2006). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Ptasiewicz-Bąk, H. & Leciejewicz, J. (1997). Pol. J. Chem. 71, 1350–1358. Google Scholar
Ptasiewicz-Bąk, H. & Leciejewicz, J. (1999). Pol. J. Chem. 73, 717–725. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tayebee, R., Amani, V. & Khavasi, H. P. (2008). Chin. J. Chem. 26, 500–504. Web of Science CSD CrossRef CAS Google Scholar
Tombul, M., Güven, K. & Büyükgüngör, O. (2008). Acta Cryst. E64, m491–m492. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Structural studies of divalent metal ion complexes with 3-aminopyrazine-2-carboxylate ligand have shown that the structures of Mg(II) and Ni(II) complexes consist of ML2(H2O)2 monomers. In the Mg(II) comoplex, the ligand adopts a cis configuration (Ptasiewicz-Bąk & Leciejewicz, 1997), while in the Ni(II) complex, a trans configuration (Ptasiewicz-Bąk & Leciejewicz, 1999). Catenated polymeric molecular patterns have been reported in the structures of a Ca(II) complex (Leciejewicz et al., 1997) and a Sr(II) complex (Leciejewicz et al., 1998), in which metal ions are bridged by ligand carboxylate groups acting as bidentate. On the other hand, the structure of a Na(I) complex with the title ligand (Tayebee et al.,2008) is three-dimensional polymeric with Na(I) ions linked by an extended bridging system formed mainly by coordinated water O atoms.
The title compound is composed of centrosymmetric dinuclear units, in which each of the two LiI ions is cheletated by a ligand via an N,O-bonding group. Its O atom acts as bidentate and bridges the other LiI ion (Fig. 1). The dinuclear unit is nearly planar with r.m.s. of 0.0125 (2) Å. The LiI ion is also coordinated by two water O atoms, which bridge the dinuclear units into molecular columns along two bridging pathways propagating in the b-axis direction (Fig. 2). The coordination geometry of the LiI ion is trigonal bipyramidal, with the equatorial plane formed by O1, O3, O3ii and with N1 and O1i at the axial positions [symmetry codes: (i) 1-x, 1-y, 1-z; (ii) x, y-1, z]. The Li—O and Li—N bond distances (Table 1) and bond angles are typical for Li(I) complexes with carboxylate ligands (see, for example, Tombul et al., 2008). The columns are linked by a network of hydrogen bonds, in which water O atoms are donors and the non-bonded carboxylate O atoms in adjacent columns act as acceptors. A weak hydrogen bond links an amino N atom with a hetero-ring N atom in the adjacent column. An intramolecular hydrogen bond which operates between the amino N3 atom and the non-bonding carboxylate O2 atom is also observed (Table 2).