metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m744-m745

catena-Poly[[bis­­(μ-3-amino­pyrazine-2-carboxyl­ato)-κ3N1,O:O;κ3O:N1,O)dilithium]-di-μ-aqua]

aInstitute of Nuclear Chemistry and Technology, ul.Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: j.leciejewicz@ichtj.waw.pl

(Received 21 May 2010; accepted 31 May 2010; online 5 June 2010)

The title compound, [Li(C5H4N3O2)(H2O)]n, is composed of centrosymmetric dinuclear units, in which the LiI ions are bridged by two carboxyl­ate O atoms donated by two ligands. The dinuclear unit is nearly planar [r.m.s. deviation = 0.0125 (2) Å]. The LiI ion is coordinated by an N,O-chelating ligand, a bridging carboxyl­ate O atom from another ligand and two bridging water O atoms in a distorted trigonal-bipyra­midal geometry. The water O atoms bridge the dinuclear units into a polymeric mol­ecular column along [010]. The columns are held together by O—H⋯O and N—H⋯N hydrogen bonds. An intra­molecular N—H⋯O inter­action also occurs.

Related literature

For the structures of metal (M) complexes with the 3-amino­pyrazine-2-carboxyl­ate ligand, see: Leciejewicz et al. (1997[Leciejewicz, J., Ptasiewicz-Bąk, H. & Paluchowska, B. (1997). Pol. J. Chem. 71, 1339-1364.] [M = Ca(II)], 1998[Leciejewicz,J., Ptasiewicz-Bąk, H. & Zachara, J. (1998). Pol. J. Chem. 72, 1994-1998.] [M = Sr(II)]); Ptasiewicz-Bąk & Leciejewicz (1997[Ptasiewicz-Bąk, H. & Leciejewicz, J. (1997). Pol. J. Chem. 71, 1350-1358.] [M = Mg(II)], 1999[Ptasiewicz-Bąk, H. & Leciejewicz, J. (1999). Pol. J. Chem. 73, 717-725.] [M = Ni(II)]); Tayebee et al. (2008[Tayebee, R., Amani, V. & Khavasi, H. P. (2008). Chin. J. Chem. 26, 500-504.]) [M = Na(I)]. For the structure of an Li(I) complex with pyrazine-2,3-dicarboxyl­ate and aqua ligands, see: Tombul et al. (2008[Tombul, M., Güven, K. & Büyükgüngör, O. (2008). Acta Cryst. E64, m491-m492.]).

[Scheme 1]

Experimental

Crystal data
  • [Li(C5H4N3O2)(H2O)]

  • Mr = 163.07

  • Monoclinic, P 21 /c

  • a = 14.279 (3) Å

  • b = 3.6000 (7) Å

  • c = 13.300 (3) Å

  • β = 106.43 (3)°

  • V = 655.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.26 × 0.21 × 0.04 mm

Data collection
  • Kuma KM-4 four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.980, Tmax = 0.994

  • 1997 measured reflections

  • 1913 independent reflections

  • 1297 reflections with I > 2σ(I)

  • Rint = 0.017

  • 3 standard reflections every 200 reflections intensity decay: 7.3%

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.147

  • S = 1.04

  • 1913 reflections

  • 115 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected bond lengths (Å)

Li1—N1 2.118 (3)
Li1—O1 1.999 (3)
Li1—O1i 1.995 (3)
Li1—O3 2.065 (3)
Li1—O3ii 2.201 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H31⋯O2iii 0.88 (1) 1.83 (1) 2.7028 (16) 175 (2)
O3—H32⋯O1iv 0.84 (2) 2.54 (2) 2.9083 (17) 108 (2)
N3—H1⋯O2 0.86 2.08 2.7229 (17) 131
N3—H2⋯N2v 0.86 2.30 3.1278 (19) 162
Symmetry codes: (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y+2, -z+1; (v) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Structural studies of divalent metal ion complexes with 3-aminopyrazine-2-carboxylate ligand have shown that the structures of Mg(II) and Ni(II) complexes consist of ML2(H2O)2 monomers. In the Mg(II) comoplex, the ligand adopts a cis configuration (Ptasiewicz-Bąk & Leciejewicz, 1997), while in the Ni(II) complex, a trans configuration (Ptasiewicz-Bąk & Leciejewicz, 1999). Catenated polymeric molecular patterns have been reported in the structures of a Ca(II) complex (Leciejewicz et al., 1997) and a Sr(II) complex (Leciejewicz et al., 1998), in which metal ions are bridged by ligand carboxylate groups acting as bidentate. On the other hand, the structure of a Na(I) complex with the title ligand (Tayebee et al.,2008) is three-dimensional polymeric with Na(I) ions linked by an extended bridging system formed mainly by coordinated water O atoms.

The title compound is composed of centrosymmetric dinuclear units, in which each of the two LiI ions is cheletated by a ligand via an N,O-bonding group. Its O atom acts as bidentate and bridges the other LiI ion (Fig. 1). The dinuclear unit is nearly planar with r.m.s. of 0.0125 (2) Å. The LiI ion is also coordinated by two water O atoms, which bridge the dinuclear units into molecular columns along two bridging pathways propagating in the b-axis direction (Fig. 2). The coordination geometry of the LiI ion is trigonal bipyramidal, with the equatorial plane formed by O1, O3, O3ii and with N1 and O1i at the axial positions [symmetry codes: (i) 1-x, 1-y, 1-z; (ii) x, y-1, z]. The Li—O and Li—N bond distances (Table 1) and bond angles are typical for Li(I) complexes with carboxylate ligands (see, for example, Tombul et al., 2008). The columns are linked by a network of hydrogen bonds, in which water O atoms are donors and the non-bonded carboxylate O atoms in adjacent columns act as acceptors. A weak hydrogen bond links an amino N atom with a hetero-ring N atom in the adjacent column. An intramolecular hydrogen bond which operates between the amino N3 atom and the non-bonding carboxylate O2 atom is also observed (Table 2).

Related literature top

For the structures of metal (M) complexes with the 3-aminopyrazine-2-carboxylate ligand, see: Leciejewicz et al. (1997 [M = Ca(II)], 1998 [M = Sr(II)]); Ptasiewicz-Bąk & Leciejewicz (1997 [M = Mg(II)], 1999 [M = Ni(II)]); Tayebee et al. (2008) [M = Na(I)]. For the structure of an Li(I) complex with pyrazine-2,3-dicarboxylate and aqua ligands, see: Tombul et al. (2008).

Experimental top

The title compound was synthesized by reacting 50 ml of boiling aqueous solutions, one containing 1 mmol of 3-aminopyrazine-2-carboxylic acid (Aldrich), the other containing 1 mmol of lithium hydroxide (Aldrich). The mixture was boiled under reflux for 3 h and after cooling to room temperature, filtered and left to crystallize. A few days later, colourless single crystals in the form of flat needles were found after evaporation to dryness. They were extracted, washed with cold ethanol and dried in air. A crystal used for X-ray data collection was cut to adopt the shape of a flat plate.

Refinement top

Water H atoms were found from difference Fourier maps and their coordinates were refined with Uiso(H) = 1.2Ueq(O). H atoms attached to C and N atoms were positioned geometrically and refined as riding, with C—H = 0.93 and N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The dinuclear unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1-x, 1-y, 1-z; (ii) x, -1+y, z; (iii) 1-x, 2-y, 1-z.]
[Figure 2] Fig. 2. Packing diagram of the title compound.
catena-Poly[[bis(µ-3-aminopyrazine-2-carboxylato)- κ3N1,O:O;κ3O: N1,O)dilithium]-di-µ-aqua] top
Crystal data top
[Li(C5H4N3O2)(H2O)]F(000) = 336
Mr = 163.07Dx = 1.652 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 14.279 (3) Åθ = 6–15°
b = 3.6000 (7) ŵ = 0.13 mm1
c = 13.300 (3) ÅT = 293 K
β = 106.43 (3)°Plate, colourless
V = 655.7 (2) Å30.26 × 0.21 × 0.04 mm
Z = 4
Data collection top
Kuma KM-4 four-circle
diffractometer
1297 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 30.1°, θmin = 1.5°
profile data from ω–2θ scansh = 1919
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
k = 50
Tmin = 0.980, Tmax = 0.994l = 018
1997 measured reflections3 standard reflections every 200 reflections
1913 independent reflections intensity decay: 7.3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.1051P)2 + 0.022P]
where P = (Fo2 + 2Fc2)/3
1913 reflections(Δ/σ)max < 0.001
115 parametersΔρmax = 0.51 e Å3
3 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Li(C5H4N3O2)(H2O)]V = 655.7 (2) Å3
Mr = 163.07Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.279 (3) ŵ = 0.13 mm1
b = 3.6000 (7) ÅT = 293 K
c = 13.300 (3) Å0.26 × 0.21 × 0.04 mm
β = 106.43 (3)°
Data collection top
Kuma KM-4 four-circle
diffractometer
1297 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
Rint = 0.017
Tmin = 0.980, Tmax = 0.9943 standard reflections every 200 reflections
1997 measured reflections intensity decay: 7.3%
1913 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0493 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.51 e Å3
1913 reflectionsΔρmin = 0.39 e Å3
115 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.25443 (8)0.4711 (3)0.39664 (9)0.0184 (3)
O20.32090 (8)0.2294 (4)0.26435 (8)0.0336 (3)
N10.27984 (8)0.6065 (3)0.49343 (8)0.0216 (3)
N20.08397 (8)0.5364 (4)0.38343 (10)0.0285 (3)
N30.12597 (9)0.2931 (4)0.24154 (10)0.0320 (3)
H20.06490.27450.20900.038*
H10.16900.22350.21150.038*
O10.42229 (7)0.4275 (4)0.41421 (8)0.0352 (3)
C70.33887 (9)0.3657 (4)0.35429 (10)0.0218 (3)
C30.15415 (9)0.4307 (4)0.33936 (10)0.0217 (3)
C60.20958 (10)0.7070 (4)0.53653 (11)0.0254 (3)
H60.22620.80100.60440.030*
C50.11268 (10)0.6720 (4)0.48077 (12)0.0284 (3)
H50.06530.74590.51230.034*
Li10.43334 (19)0.6091 (9)0.5591 (2)0.0370 (6)
O30.44058 (8)1.0866 (3)0.64699 (9)0.0338 (3)
H320.4986 (11)1.117 (6)0.6825 (15)0.041*
H310.4047 (13)1.146 (6)0.6882 (14)0.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0170 (5)0.0153 (5)0.0223 (6)0.0007 (4)0.0048 (4)0.0018 (4)
O20.0301 (5)0.0450 (7)0.0277 (5)0.0089 (5)0.0114 (4)0.0120 (5)
N10.0209 (5)0.0192 (5)0.0242 (5)0.0012 (4)0.0057 (4)0.0006 (4)
N20.0194 (5)0.0264 (6)0.0390 (6)0.0012 (4)0.0071 (4)0.0025 (5)
N30.0227 (5)0.0401 (7)0.0290 (6)0.0056 (5)0.0002 (4)0.0052 (5)
O10.0183 (5)0.0522 (7)0.0338 (5)0.0004 (5)0.0052 (4)0.0142 (5)
C70.0202 (6)0.0209 (6)0.0242 (5)0.0021 (4)0.0064 (4)0.0015 (5)
C30.0199 (5)0.0171 (5)0.0262 (6)0.0019 (4)0.0033 (4)0.0034 (5)
C60.0282 (6)0.0225 (7)0.0273 (6)0.0020 (5)0.0108 (5)0.0020 (5)
C50.0238 (6)0.0237 (7)0.0408 (8)0.0031 (5)0.0140 (5)0.0006 (6)
Li10.0256 (12)0.0484 (17)0.0355 (13)0.0016 (11)0.0060 (10)0.0120 (12)
O30.0256 (5)0.0411 (7)0.0352 (6)0.0012 (5)0.0092 (4)0.0069 (5)
Geometric parameters (Å, º) top
C2—N11.3274 (16)C6—C51.378 (2)
C2—C31.4263 (17)C6—H60.9300
C2—C71.5164 (17)C5—H50.9300
O2—C71.2505 (17)Li1—N12.118 (3)
N1—C61.3385 (17)Li1—O11.999 (3)
N2—C51.335 (2)Li1—O1i1.995 (3)
N2—C31.3510 (18)Li1—O32.065 (3)
N3—C31.3431 (18)Li1—O3ii2.201 (3)
N3—H20.8600Li1—Li1i2.900 (5)
N3—H10.8600O3—H320.837 (15)
O1—C71.2515 (17)O3—H310.875 (14)
N1—C2—C3120.87 (11)N2—C5—H5118.6
N1—C2—C7115.10 (11)C6—C5—H5118.6
C3—C2—C7124.03 (11)O1i—Li1—O186.88 (11)
C2—N1—C6118.83 (11)O1i—Li1—O394.05 (12)
C2—N1—Li1111.64 (11)O1—Li1—O3142.73 (18)
C6—N1—Li1129.48 (11)O1i—Li1—N1165.94 (15)
C5—N2—C3117.50 (11)O1—Li1—N179.08 (10)
C3—N3—H2120.0O3—Li1—N196.74 (12)
C3—N3—H1120.0O1i—Li1—O3ii87.61 (12)
H2—N3—H1120.0O1—Li1—O3ii102.21 (14)
C7—O1—Li1i148.32 (12)O3—Li1—O3ii115.07 (14)
C7—O1—Li1118.26 (11)N1—Li1—O3ii95.90 (13)
Li1i—O1—Li193.13 (11)O1i—Li1—Li1i43.49 (8)
O2—C7—O1125.43 (12)O1—Li1—Li1i43.38 (8)
O2—C7—C2118.94 (12)O3—Li1—Li1i126.66 (18)
O1—C7—C2115.63 (11)N1—Li1—Li1i122.46 (16)
N3—C3—N2117.93 (12)O3ii—Li1—Li1i96.72 (16)
N3—C3—C2122.37 (12)Li1—O3—Li1iii115.07 (14)
N2—C3—C2119.69 (12)Li1—O3—H32108.2 (15)
N1—C6—C5120.32 (12)Li1iii—O3—H3294.4 (16)
N1—C6—H6119.8Li1—O3—H31127.7 (15)
C5—C6—H6119.8Li1iii—O3—H31100.2 (15)
N2—C5—C6122.78 (13)H32—O3—H31106.0 (15)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···O2iv0.88 (1)1.83 (1)2.7028 (16)175 (2)
O3—H32···O1v0.84 (2)2.54 (2)2.9083 (17)108 (2)
N3—H1···O20.862.082.7229 (17)131
N3—H2···N2vi0.862.303.1278 (19)162
Symmetry codes: (iv) x, y+3/2, z+1/2; (v) x+1, y+2, z+1; (vi) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Li(C5H4N3O2)(H2O)]
Mr163.07
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.279 (3), 3.6000 (7), 13.300 (3)
β (°) 106.43 (3)
V3)655.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.26 × 0.21 × 0.04
Data collection
DiffractometerKuma KM-4 four-circle
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.980, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
1997, 1913, 1297
Rint0.017
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.147, 1.04
No. of reflections1913
No. of parameters115
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.39

Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Li1—N12.118 (3)Li1—O32.065 (3)
Li1—O11.999 (3)Li1—O3ii2.201 (3)
Li1—O1i1.995 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···O2iii0.875 (14)1.830 (14)2.7028 (16)175.1 (19)
O3—H32···O1iv0.837 (15)2.54 (2)2.9083 (17)108.1 (16)
N3—H1···O20.862.082.7229 (17)131
N3—H2···N2v0.862.303.1278 (19)162
Symmetry codes: (iii) x, y+3/2, z+1/2; (iv) x+1, y+2, z+1; (v) x, y1/2, z+1/2.
 

References

First citationKuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationLeciejewicz, J., Ptasiewicz-Bąk, H. & Paluchowska, B. (1997). Pol. J. Chem. 71, 1339–1364.  Google Scholar
First citationLeciejewicz,J., Ptasiewicz-Bąk, H. & Zachara, J. (1998). Pol. J. Chem. 72, 1994–1998.  CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPtasiewicz-Bąk, H. & Leciejewicz, J. (1997). Pol. J. Chem. 71, 1350–1358.  Google Scholar
First citationPtasiewicz-Bąk, H. & Leciejewicz, J. (1999). Pol. J. Chem. 73, 717–725.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTayebee, R., Amani, V. & Khavasi, H. P. (2008). Chin. J. Chem. 26, 500–504.  Web of Science CSD CrossRef CAS Google Scholar
First citationTombul, M., Güven, K. & Büyükgüngör, O. (2008). Acta Cryst. E64, m491–m492.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m744-m745
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds