metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[bis­­(μ-4,4′-bi­pyridyl-κ2N:N′)bis­­(thio­cyanato-κN)manganese(II)] di­ethyl ether disolvate]

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24098 Kiel, Germany
*Correspondence e-mail: mwriedt@ac.uni-kiel.de

(Received 25 May 2010; accepted 7 June 2010; online 16 June 2010)

In the title compound, {[Mn(NCS)2(C10H8N2)2]·2C4H10O}n, the MnII ion is coordinated by four N-bonded 4,4′-bipyridine (bipy) ligands and two N-bonded thio­cyanate anions in a distorted octa­hedral coordination geometry. The asymmetric unit consists of one MnII ion and two bipy ligands each located on a twofold rotation axis, as well as one thio­cyanate anion and one diethyl ether mol­ecule in general positions. In the crystal structure, the metal centers with terminally bonded thicyanate anions are bridged by the bipy ligands into layers parallel to (001). The diethyl ether solvent mol­ecules occupy the voids of the structure.

Related literature

For general background to thermal decomposition reactions as an alternative tool for the discovery and preparation of new ligand-deficient coordination polymers with defined magnetic properties, see: Wriedt & Näther (2009a[Wriedt, M. & Näther, C. (2009a). Dalton Trans. pp. 10192-10198.],b[Wriedt, M. & Näther, C. (2009b). Z. Anorg. Allg. Chem. 636, 569-575.]); Wriedt et al. (2009a[Wriedt, M., Sellmer, S. & Näther, C. (2009a). Dalton Trans. pp. 7975-7984.],b[Wriedt, M., Sellmer, S. & Näther, C. (2009b). Inorg. Chem. 48, 6896-6903.]). For the isotypic cobalt(II) structure, see: Lu et al. (1997[Lu, J., Paliwala, T., Lim, S. C., Yu, C., Niu, T. & Jacobson, A. J. (1997). Inorg. Chem. 36, 923-929.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(NCS)2(C10H8N2)2]·2C4H10O

  • Mr = 631.71

  • Monoclinic, P 2/c

  • a = 11.702 (2) Å

  • b = 11.6391 (18) Å

  • c = 13.424 (2) Å

  • β = 106.75 (2)°

  • V = 1750.8 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 230 K

  • 0.22 × 0.14 × 0.07 mm

Data collection
  • Stoe IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.912, Tmax = 0.968

  • 11086 measured reflections

  • 2954 independent reflections

  • 2446 reflections with I > 2σ(I)

  • Rint = 0.134

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.206

  • S = 1.07

  • 2954 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −1.37 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—N21 2.181 (4)
Mn1—N12i 2.277 (4)
Mn1—N11 2.300 (4)
Mn1—N1 2.312 (3)
Symmetry code: (i) x, y-1, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, we are interested in thermal decomposition reactions as an alternative tool for the discovering and preparation of new ligand-deficient coordination polymers with defined magnetic properties (Wriedt & Näther, 2009a,b; Wriedt et al., 2009a,b). In our ongoing investigation on the synthesis, structures and properties of such compounds we have reacted manganese(II) chloride, potassium thiocyanate and 4,4-bipyridine (bipy). In this reaction single crystals of the title compound were grown.

The title compound (Fig. 1) represents a two-dimensional layered coordination polymer, in which the MnII atom is coordinated by four bipy ligands and two thiocyanate anions in an octahedral coordination mode. The crystal structure is isotypic to its cobalt(II) analogue (Lu et al., 1997). In the crystal structure the metal atoms are bridged by the bipy ligands into layers with terminally N-bonded thicyanate anions. The layers are stacked perpendicular to the crystallographic c axis in order that the metal atoms in one layer sit above or below the squares formed by the metal atoms of the adjacent layers. By this arrangement voids are formed in which the diethyl ether molecules are located (Fig. 2). The MnN6 octahedron is markedly distorted with four long Mn—Nbipy distances in the range of 2.277 (4) to 2.312 (4) Å and two short Mn—NCS distances of 2.181 (4) Å (Table 1). The angles arround the metal atoms range between 88.27 (8) to 91.73 (8) and 176.54 (16) to 180°. The pyridyl rings of the bipy ligands form dihedral angles of 51.2 (1) and 52.6 (1)°, respectively. The shortest intra- and interlayer Mn···Mn distances amount to 11.6391 (6) and 8.3198 (11) Å, respectively.

Related literature top

For general background to thermal decomposition reactions as an alternative tool for the discovery and preparation of new ligand-deficient coordination polymers with defined magnetic properties, see: Wriedt & Näther (2009a,b); Wriedt et al. (2009a,b). For the isotypic cobalt(II) structure, see: Lu et al. (1997).

Experimental top

MnCl2 (117.0 mg, 0.93 mmol) and KNCS (180.8 mg, 1.86 mmol) obtained from Alfa Aesar were dissolved in a mixture of 10 ml water and 15 ml ethanol. This mixture was layered with a solution of 4,4-bipyridine (306.3 mg, 2 mmol) in 10 ml diethyl ether. After one day colourless block-shaped single crystals of the title compound were grown at the phase interface.

Refinement top

The H atoms were located in a difference Fourier map but were positioned with idealized geometry and refined using a riding model, with C—H = 0.94 (aromatic), 0.98 (methylene) and 0.97 (methyl) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of the title compound with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) -x+1, y, -z+3/2; (ii) x, y-1, z; (iii) -x, y, -z+3/2.]
[Figure 2] Fig. 2. A single layer in the title compound with view approximately along the crystallographic c axis.
Poly[[bis(µ-4,4'-bipyridyl-κ2N:N')bis(thiocyanato- κN)manganese(II)] diethyl ether disolvate] top
Crystal data top
[Mn(NCS)2(C10H8N2)2]·2C4H10OF(000) = 662
Mr = 631.71Dx = 1.198 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 11086 reflections
a = 11.702 (2) Åθ = 2.4–25.0°
b = 11.6391 (18) ŵ = 0.53 mm1
c = 13.424 (2) ÅT = 230 K
β = 106.75 (2)°Block, colourless
V = 1750.8 (5) Å30.22 × 0.14 × 0.07 mm
Z = 2
Data collection top
Stoe IPDS-1
diffractometer
2954 independent reflections
Radiation source: fine-focus sealed tube2446 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.134
ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2002)
h = 1313
Tmin = 0.912, Tmax = 0.968k = 1313
11086 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073H-atom parameters constrained
wR(F2) = 0.206 w = 1/[σ2(Fo2) + (0.1115P)2 + 1.3719P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2954 reflectionsΔρmax = 0.72 e Å3
191 parametersΔρmin = 1.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.034 (7)
Crystal data top
[Mn(NCS)2(C10H8N2)2]·2C4H10OV = 1750.8 (5) Å3
Mr = 631.71Z = 2
Monoclinic, P2/cMo Kα radiation
a = 11.702 (2) ŵ = 0.53 mm1
b = 11.6391 (18) ÅT = 230 K
c = 13.424 (2) Å0.22 × 0.14 × 0.07 mm
β = 106.75 (2)°
Data collection top
Stoe IPDS-1
diffractometer
2954 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2002)
2446 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.968Rint = 0.134
11086 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.206H-atom parameters constrained
S = 1.07Δρmax = 0.72 e Å3
2954 reflectionsΔρmin = 1.37 e Å3
191 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.71119 (6)0.75000.0284 (3)
N10.3018 (2)0.7070 (3)0.7479 (3)0.0385 (8)
C10.2710 (3)0.6632 (5)0.8264 (4)0.0557 (13)
H10.33170.63400.88290.067*
C20.1544 (4)0.6575 (5)0.8310 (4)0.0617 (15)
H20.13730.62490.88920.074*
C30.0633 (3)0.7003 (4)0.7491 (4)0.0408 (10)
C40.0940 (3)0.7447 (5)0.6646 (4)0.0577 (13)
H40.03520.77250.60610.069*
C50.2141 (3)0.7470 (5)0.6684 (4)0.0559 (13)
H50.23460.77880.61150.067*
N110.50000.9088 (4)0.75000.0367 (11)
N120.50001.5156 (3)0.75000.0354 (11)
C110.4781 (4)0.9689 (3)0.8272 (4)0.0448 (10)
H110.46240.92850.88240.054*
C120.4775 (4)1.0865 (4)0.8300 (4)0.0498 (11)
H120.46191.12490.88620.060*
C130.50001.1484 (4)0.75000.0384 (13)
C160.4344 (4)1.4556 (4)0.6684 (4)0.0488 (11)
H160.38801.49630.61040.059*
C150.4314 (4)1.3368 (4)0.6652 (4)0.0509 (11)
H170.38371.29820.60630.061*
C140.50001.2758 (4)0.75000.0390 (13)
N210.5534 (3)0.7169 (3)0.9196 (3)0.0386 (8)
C210.6253 (3)0.6927 (3)0.9963 (4)0.0412 (10)
S210.72754 (14)0.65840 (19)1.10210 (13)0.0900 (6)
C310.0822 (10)0.3656 (13)0.6206 (10)0.170 (6)
H31A0.14790.40180.60200.255*
H31B0.07560.39810.68530.255*
H31C0.00860.37870.56590.255*
C320.1059 (12)0.2324 (15)0.6347 (9)0.172 (6)
H32A0.16790.21770.70020.206*
H32B0.03290.19300.63750.206*
O310.1431 (5)0.1896 (8)0.5502 (5)0.138 (3)
C330.1686 (9)0.0670 (10)0.5534 (11)0.146 (5)
H33A0.09740.02380.55540.175*
H33B0.23280.04890.61660.175*
C340.2049 (11)0.0329 (12)0.4606 (12)0.167 (5)
H34A0.13680.03830.39910.251*
H34B0.23410.04560.46880.251*
H34C0.26760.08370.45300.251*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0147 (4)0.0265 (5)0.0448 (6)0.0000.0100 (3)0.000
N10.0135 (13)0.0482 (19)0.057 (2)0.0019 (12)0.0146 (14)0.0072 (15)
C10.0196 (17)0.087 (3)0.060 (3)0.0062 (19)0.0109 (18)0.025 (3)
C20.0233 (18)0.101 (4)0.064 (3)0.005 (2)0.0176 (19)0.032 (3)
C30.0130 (17)0.060 (2)0.051 (3)0.0018 (15)0.0119 (15)0.0015 (19)
C40.0209 (17)0.103 (4)0.050 (3)0.012 (2)0.0110 (17)0.011 (3)
C50.0220 (18)0.095 (4)0.054 (3)0.011 (2)0.0174 (18)0.019 (3)
N110.034 (2)0.026 (2)0.054 (3)0.0000.018 (2)0.000
N120.0246 (19)0.025 (2)0.055 (3)0.0000.0101 (19)0.000
C110.057 (2)0.032 (2)0.055 (3)0.0032 (18)0.030 (2)0.0031 (18)
C120.065 (3)0.036 (2)0.058 (3)0.004 (2)0.032 (2)0.0027 (19)
C130.034 (2)0.028 (3)0.054 (4)0.0000.013 (2)0.000
C160.050 (2)0.032 (2)0.055 (3)0.0014 (18)0.0004 (19)0.0048 (18)
C150.056 (2)0.034 (2)0.054 (3)0.0069 (19)0.002 (2)0.0031 (19)
C140.036 (3)0.028 (3)0.056 (4)0.0000.018 (3)0.000
N210.0276 (15)0.0389 (18)0.049 (2)0.0025 (12)0.0111 (15)0.0026 (14)
C210.034 (2)0.044 (2)0.049 (3)0.0014 (16)0.0167 (19)0.0025 (18)
S210.0624 (9)0.1362 (16)0.0578 (12)0.0265 (9)0.0047 (7)0.0143 (9)
C310.111 (8)0.246 (16)0.144 (11)0.028 (9)0.022 (7)0.056 (11)
C320.136 (9)0.308 (19)0.079 (8)0.067 (11)0.041 (7)0.028 (10)
O310.078 (3)0.235 (9)0.093 (5)0.005 (4)0.010 (3)0.028 (5)
C330.089 (6)0.131 (8)0.204 (14)0.015 (6)0.020 (7)0.061 (8)
C340.134 (9)0.179 (11)0.198 (13)0.057 (8)0.062 (9)0.020 (10)
Geometric parameters (Å, º) top
Mn1—N212.181 (4)C13—C12iii1.380 (5)
Mn1—N12i2.277 (4)C13—C141.483 (7)
Mn1—N112.300 (4)C16—C151.383 (6)
Mn1—N12.312 (3)C16—H160.9400
N1—C11.311 (6)C15—C141.385 (5)
N1—C51.333 (6)C15—H170.9400
C1—C21.385 (5)C14—C15iii1.385 (5)
C1—H10.9400N21—C211.161 (6)
C2—C31.386 (6)C21—S211.621 (5)
C2—H20.9400C31—C321.577 (18)
C3—C41.384 (7)C31—H31A0.9700
C3—C3ii1.488 (6)C31—H31B0.9700
C4—C51.392 (5)C31—H31C0.9700
C4—H40.9400C32—O311.418 (13)
C5—H50.9400C32—H32A0.9800
N11—C111.334 (5)C32—H32B0.9800
N11—C11iii1.334 (5)O31—C331.455 (12)
N12—C161.338 (5)C33—C341.482 (16)
N12—C16iii1.338 (5)C33—H33A0.9800
N12—Mn1iv2.277 (4)C33—H33B0.9800
C11—C121.370 (6)C34—H34A0.9700
C11—H110.9400C34—H34B0.9700
C12—C131.380 (5)C34—H34C0.9700
C12—H120.9400
N21—Mn1—N21iii176.54 (16)C11—C12—C13119.8 (4)
N21—Mn1—N12i91.73 (8)C11—C12—H12120.1
N21iii—Mn1—N12i91.73 (8)C13—C12—H12120.1
N21—Mn1—N1188.27 (8)C12—C13—C12iii117.0 (5)
N21iii—Mn1—N1188.27 (8)C12—C13—C14121.5 (3)
N12i—Mn1—N11180.0C12iii—C13—C14121.5 (3)
N21—Mn1—N189.88 (12)N12—C16—C15123.4 (4)
N21iii—Mn1—N190.19 (12)N12—C16—H16118.3
N12i—Mn1—N188.79 (8)C15—C16—H16118.3
N11—Mn1—N191.21 (8)C16—C15—C14118.9 (4)
N21—Mn1—N1iii90.19 (12)C16—C15—H17120.6
N21iii—Mn1—N1iii89.88 (12)C14—C15—H17120.6
N12i—Mn1—N1iii88.79 (8)C15iii—C14—C15118.3 (5)
N11—Mn1—N1iii91.21 (8)C15iii—C14—C13120.8 (3)
N1—Mn1—N1iii177.58 (16)C15—C14—C13120.8 (3)
C1—N1—C5116.9 (3)C21—N21—Mn1146.6 (3)
C1—N1—Mn1120.3 (3)N21—C21—S21178.9 (4)
C5—N1—Mn1122.7 (3)C32—C31—H31A109.5
N1—C1—C2123.8 (4)C32—C31—H31B109.5
N1—C1—H1118.1H31A—C31—H31B109.5
C2—C1—H1118.1C32—C31—H31C109.5
C1—C2—C3119.4 (4)H31A—C31—H31C109.5
C1—C2—H2120.3H31B—C31—H31C109.5
C3—C2—H2120.3O31—C32—C31109.5 (10)
C4—C3—C2117.5 (3)O31—C32—H32A109.8
C4—C3—C3ii120.5 (4)C31—C32—H32A109.8
C2—C3—C3ii122.0 (5)O31—C32—H32B109.8
C3—C4—C5118.4 (4)C31—C32—H32B109.8
C3—C4—H4120.8H32A—C32—H32B108.2
C5—C4—H4120.8C32—O31—C33115.3 (10)
N1—C5—C4124.0 (4)O31—C33—C34110.1 (10)
N1—C5—H5118.0O31—C33—H33A109.6
C4—C5—H5118.0C34—C33—H33A109.6
C11—N11—C11iii116.8 (5)O31—C33—H33B109.6
C11—N11—Mn1121.6 (2)C34—C33—H33B109.6
C11iii—N11—Mn1121.6 (2)H33A—C33—H33B108.2
C16—N12—C16iii117.1 (5)C33—C34—H34A109.5
C16—N12—Mn1iv121.4 (2)C33—C34—H34B109.5
C16iii—N12—Mn1iv121.4 (2)H34A—C34—H34B109.5
N11—C11—C12123.3 (4)C33—C34—H34C109.5
N11—C11—H11118.4H34A—C34—H34C109.5
C12—C11—H11118.4H34B—C34—H34C109.5
Symmetry codes: (i) x, y1, z; (ii) x, y, z+3/2; (iii) x+1, y, z+3/2; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Mn(NCS)2(C10H8N2)2]·2C4H10O
Mr631.71
Crystal system, space groupMonoclinic, P2/c
Temperature (K)230
a, b, c (Å)11.702 (2), 11.6391 (18), 13.424 (2)
β (°) 106.75 (2)
V3)1750.8 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.22 × 0.14 × 0.07
Data collection
DiffractometerStoe IPDS1
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.912, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
11086, 2954, 2446
Rint0.134
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.206, 1.07
No. of reflections2954
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 1.37

Computer programs: X-AREA (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn1—N212.181 (4)Mn1—N112.300 (4)
Mn1—N12i2.277 (4)Mn1—N12.312 (3)
Symmetry code: (i) x, y1, z.
 

Acknowledgements

MW thanks the Stiftung Stipendien-Fonds des Verbandes der Chemischen Industrie and the Studienstiftung des deutschen Volkes for a PhD scholarship. We gratefully acknowledge financial support by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (Project 720/3-1). We thank Professor Dr Wolfgang Bensch for the opportunity to use his experimental facilities.

References

First citationLu, J., Paliwala, T., Lim, S. C., Yu, C., Niu, T. & Jacobson, A. J. (1997). Inorg. Chem. 36, 923–929.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWriedt, M. & Näther, C. (2009a). Dalton Trans. pp. 10192–10198.  Web of Science CSD CrossRef Google Scholar
First citationWriedt, M. & Näther, C. (2009b). Z. Anorg. Allg. Chem. 636, 569–575.  Web of Science CSD CrossRef Google Scholar
First citationWriedt, M., Sellmer, S. & Näther, C. (2009a). Dalton Trans. pp. 7975–7984.  Web of Science CSD CrossRef Google Scholar
First citationWriedt, M., Sellmer, S. & Näther, C. (2009b). Inorg. Chem. 48, 6896–6903.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds