metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­­(pyridine-κN)nickel(II) dinitrate

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24098 Kiel, Germany
*Correspondence e-mail: mwriedt@ac.uni-kiel.de

(Received 25 May 2010; accepted 7 June 2010; online 16 June 2010)

In the title compound, [Ni(C5H5N)2(H2O)4](NO3)2, the NiII ion is coordinated by two N-bonded pyridine ligands and four water mol­ecules in an octa­hedral coordination mode. The asymmetric unit consists of one NiII ion located on an inversion center, as well as one pyridine ligand, one nitrate anion and two water mol­ecules in general positions. In the crystal structure, the discrete complex cations and nitrate anions are connected by O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For general background to thermal decomposition reactions as an alternative tool for the discovery and preparation of new ligand-deficient coordination polymers with defined magnetic properties, see: Wriedt & Näther (2009a[Wriedt, M. & Näther, C. (2009a). Dalton Trans. pp. 10192-10198.],b[Wriedt, M. & Näther, C. (2009b). Z. Anorg. Allg. Chem. 636, 569-575.]); Wriedt et al. (2009a[Wriedt, M., Sellmer, S. & Näther, C. (2009a). Dalton Trans. pp. 7975-7984.],b[Wriedt, M., Sellmer, S. & Näther, C. (2009b). Inorg. Chem. 48, 6896-6903.]). For a related structure, see: Halut-Desportes (1981[Halut-Desportes, S. (1981). Rev. Chim. Miner. 18, 199.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C5H5N)2(H2O)4](NO3)2

  • Mr = 412.99

  • Monoclinic, P 21 /n

  • a = 7.3245 (4) Å

  • b = 11.3179 (6) Å

  • c = 10.9347 (5) Å

  • β = 96.436 (4)°

  • V = 900.75 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 293 K

  • 0.28 × 0.16 × 0.07 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.801, Tmax = 0.927

  • 12828 measured reflections

  • 2427 independent reflections

  • 2087 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.129

  • S = 1.15

  • 2427 reflections

  • 115 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O4 2.113 (2)
Ni1—O5 2.128 (2)
Ni1—N1 2.140 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1O4⋯O2i 0.82 2.39 3.209 (4) 174
O4—H2O4⋯O1ii 0.82 2.26 3.077 (4) 179
O4—H3O4⋯O1 0.82 2.32 3.087 (3) 157
O5—H1O5⋯O3iii 0.82 2.28 3.091 (4) 169
O5—H2O5⋯O1 0.82 2.43 3.191 (4) 155
C2—H2⋯O1iv 0.93 2.50 3.310 (4) 145
C4—H4⋯O2v 0.93 2.54 3.461 (4) 170
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, we have shown that thermal decomposition reactions are an elegant route for the discovery and preparation of new ligand-deficient coordination polymers with defined magnetic properties (Wriedt & Näther, 2009a,b; Wriedt et al., 2009a,b). In our ongoing investigation on the synthesis, structures and properties of such compounds based on paramagnetic transition metal pseudo-halides and N-donor ligands, we have reacted nickel(II) dinitrate hexahydrate, sodium dicyanamide and pyridine. In this reaction single crystals of the title compound were grown.

The title compound (Fig. 1) represents a discrete complex cation, in which the NiII atom, lying on an inversion center, is coordinated by two pyridine ligands and four water molecules in an octahedral coordination mode. The nitrate anions are not coordinated to the metal atoms (Fig. 2). The NiN2O4 octahedron is slightly distorted with Ni—Npyridine distances of 2.140 (2) Å and Ni—Owater distances of 2.113 (2) and 2.128 (2) Å (Table 1). The angles arround the metal atoms range between 85.71 (10) to 94.29 (10) and 180°. A similar coordination is found in a related structure (Halut-Desportes, 1981). The opposite pyridyl rings are coplanar due to symmetry. The shortest intermolecular Ni···Ni distance amounts to 7.3245 (4) Å.

Related literature top

For general background to thermal decomposition reactions as an elegant route for the discovery and preparation of new ligand-deficient coordination polymers with defined magnetic properties, see: Wriedt & Näther (2009a,b); Wriedt et al. (2009a,b). For a related structure, see: Halut-Desportes (1981).

Experimental top

Ni(NO3)2.6H2O (72.7 mg, 0.25 mmol), sodium dicyanamide (44.5 mg, 0.5 mmol) and pyridine (0.5 ml) obtained from Alfa Aesar were reacted in a closed test-tube at 120°C for 3 d. On cooling light green block-shaped single crystals of the title compound were grown in a mixture with unknown phases.

Refinement top

All H atoms were located in a difference Fourier map. H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). The water H atoms were disordered over three positions for each water molecule and were refined as riding, with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O), using a split model with SOF = 0.6667 for each H atom.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Disordering of the H atoms is shown with full and open bonds. [Symmetry code: (i) -x+1, -y+1, -z+1.]
[Figure 2] Fig. 2. Packing arrangement of the title compound with view along the a axis.
Tetraaquabis(pyridine-κN)nickel(II) dinitrate top
Crystal data top
[Ni(C5H5N)2(H2O)4](NO3)2F(000) = 428
Mr = 412.99Dx = 1.523 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 12828 reflections
a = 7.3245 (4) Åθ = 2.6–29.2°
b = 11.3179 (6) ŵ = 1.13 mm1
c = 10.9347 (5) ÅT = 293 K
β = 96.436 (4)°Block, light green
V = 900.75 (8) Å30.28 × 0.16 × 0.07 mm
Z = 2
Data collection top
Stoe IPDS-2
diffractometer
2427 independent reflections
Radiation source: fine-focus sealed tube2087 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 29.2°, θmin = 2.6°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2002)
h = 109
Tmin = 0.801, Tmax = 0.927k = 1515
12828 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.6589P]
where P = (Fo2 + 2Fc2)/3
2427 reflections(Δ/σ)max < 0.001
115 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Ni(C5H5N)2(H2O)4](NO3)2V = 900.75 (8) Å3
Mr = 412.99Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.3245 (4) ŵ = 1.13 mm1
b = 11.3179 (6) ÅT = 293 K
c = 10.9347 (5) Å0.28 × 0.16 × 0.07 mm
β = 96.436 (4)°
Data collection top
Stoe IPDS-2
diffractometer
2427 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2002)
2087 reflections with I > 2σ(I)
Tmin = 0.801, Tmax = 0.927Rint = 0.040
12828 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.15Δρmax = 0.32 e Å3
2427 reflectionsΔρmin = 0.47 e Å3
115 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.50000.50000.50000.03618 (15)
N10.6201 (3)0.32862 (19)0.4879 (2)0.0421 (5)
C10.5276 (4)0.2407 (3)0.4281 (3)0.0526 (7)
H10.40950.25550.39080.063*
C20.5994 (6)0.1285 (3)0.4191 (4)0.0678 (9)
H20.53050.06930.37700.081*
C30.7731 (6)0.1062 (3)0.4729 (4)0.0735 (10)
H30.82500.03170.46760.088*
C40.8695 (4)0.1951 (3)0.5348 (4)0.0629 (8)
H40.98810.18190.57220.076*
C50.7896 (4)0.3040 (3)0.5412 (3)0.0486 (6)
H50.85600.36360.58440.058*
N21.0498 (3)0.6620 (2)0.7423 (2)0.0501 (5)
O11.0070 (3)0.5655 (2)0.6942 (2)0.0635 (6)
O21.1995 (4)0.6760 (3)0.8009 (3)0.0956 (10)
O30.9347 (5)0.7424 (3)0.7281 (3)0.0905 (9)
O40.7425 (3)0.5820 (2)0.4544 (2)0.0624 (6)
H1O40.72240.64350.41540.094*0.667
H2O40.80880.54310.41410.094*0.667
H3O40.81040.59930.51660.094*0.667
O50.5815 (4)0.5041 (2)0.6930 (2)0.0670 (6)
H1O50.58300.43800.72390.101*0.667
H2O50.68490.52950.71470.101*0.667
H3O50.51480.54570.73040.101*0.667
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0330 (2)0.0335 (2)0.0415 (2)0.00085 (16)0.00174 (15)0.00095 (18)
N10.0411 (10)0.0356 (10)0.0498 (11)0.0028 (8)0.0065 (9)0.0007 (9)
C10.0526 (15)0.0430 (14)0.0613 (17)0.0008 (12)0.0017 (13)0.0071 (12)
C20.083 (2)0.0423 (16)0.079 (2)0.0013 (15)0.0110 (18)0.0126 (15)
C30.080 (2)0.0451 (17)0.099 (3)0.0188 (16)0.025 (2)0.0026 (18)
C40.0477 (16)0.0579 (18)0.085 (2)0.0131 (14)0.0137 (15)0.0159 (17)
C50.0403 (13)0.0465 (14)0.0595 (16)0.0008 (11)0.0069 (11)0.0062 (12)
N20.0541 (13)0.0526 (14)0.0443 (11)0.0080 (11)0.0088 (10)0.0055 (10)
O10.0690 (14)0.0510 (13)0.0687 (14)0.0078 (10)0.0002 (11)0.0095 (11)
O20.0725 (18)0.123 (3)0.0858 (19)0.0316 (17)0.0137 (15)0.0169 (18)
O30.104 (2)0.0689 (17)0.102 (2)0.0254 (16)0.0278 (18)0.0123 (15)
O40.0518 (12)0.0568 (13)0.0788 (15)0.0035 (10)0.0088 (10)0.0059 (11)
O50.0763 (16)0.0655 (15)0.0575 (13)0.0031 (11)0.0000 (11)0.0016 (11)
Geometric parameters (Å, º) top
Ni1—O42.113 (2)C4—H40.9300
Ni1—O52.128 (2)C5—H50.9300
Ni1—N12.140 (2)N2—O21.216 (4)
N1—C11.333 (4)N2—O11.238 (3)
N1—C51.340 (3)N2—O31.238 (4)
C1—C21.381 (4)O4—H1O40.8200
C1—H10.9300O4—H2O40.8200
C2—C31.365 (5)O4—H3O40.8200
C2—H20.9300O5—H1O50.8200
C3—C41.364 (5)O5—H2O50.8200
C3—H30.9300O5—H3O50.8200
C4—C51.369 (4)
O4—Ni1—O4i180.00 (11)C4—C3—C2118.9 (3)
O4—Ni1—O5i85.71 (10)C4—C3—H3120.6
O4i—Ni1—O5i94.29 (10)C2—C3—H3120.6
O4—Ni1—O594.29 (10)C3—C4—C5119.3 (3)
O4i—Ni1—O585.71 (10)C3—C4—H4120.4
O5i—Ni1—O5180.000 (1)C5—C4—H4120.4
O4—Ni1—N191.23 (9)N1—C5—C4123.1 (3)
O4i—Ni1—N188.77 (9)N1—C5—H5118.5
O5i—Ni1—N189.46 (9)C4—C5—H5118.5
O5—Ni1—N190.54 (9)O2—N2—O1120.5 (3)
O4—Ni1—N1i88.77 (9)O2—N2—O3122.1 (3)
O4i—Ni1—N1i91.23 (9)O1—N2—O3117.3 (3)
O5i—Ni1—N1i90.54 (9)Ni1—O4—H1O4112.9
O5—Ni1—N1i89.46 (9)Ni1—O4—H2O4117.0
N1—Ni1—N1i180.000 (1)H1O4—O4—H2O4105.0
C1—N1—C5116.9 (2)Ni1—O4—H3O4110.9
C1—N1—Ni1121.15 (19)H1O4—O4—H3O4106.6
C5—N1—Ni1121.94 (19)H2O4—O4—H3O4103.5
N1—C1—C2123.0 (3)Ni1—O5—H1O5112.2
N1—C1—H1118.5Ni1—O5—H2O5116.2
C2—C1—H1118.5H1O5—O5—H2O5103.3
C3—C2—C1118.9 (3)Ni1—O5—H3O5113.0
C3—C2—H2120.6H1O5—O5—H3O5107.4
C1—C2—H2120.6H2O5—O5—H3O5103.7
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O2ii0.822.393.209 (4)174
O4—H2O4···O1iii0.822.263.077 (4)179
O4—H3O4···O10.822.323.087 (3)157
O5—H1O5···O3iv0.822.283.091 (4)169
O5—H2O5···O10.822.433.191 (4)155
C2—H2···O1v0.932.503.310 (4)145
C4—H4···O2vi0.932.543.461 (4)170
Symmetry codes: (ii) x1/2, y+3/2, z1/2; (iii) x+2, y+1, z+1; (iv) x+3/2, y1/2, z+3/2; (v) x1/2, y+1/2, z1/2; (vi) x+5/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ni(C5H5N)2(H2O)4](NO3)2
Mr412.99
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.3245 (4), 11.3179 (6), 10.9347 (5)
β (°) 96.436 (4)
V3)900.75 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.28 × 0.16 × 0.07
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.801, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
12828, 2427, 2087
Rint0.040
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.129, 1.15
No. of reflections2427
No. of parameters115
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.47

Computer programs: X-AREA (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—O42.113 (2)Ni1—N12.140 (2)
Ni1—O52.128 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O2i0.822.393.209 (4)174
O4—H2O4···O1ii0.822.263.077 (4)179
O4—H3O4···O10.822.323.087 (3)157
O5—H1O5···O3iii0.822.283.091 (4)169
O5—H2O5···O10.822.433.191 (4)155
C2—H2···O1iv0.932.503.310 (4)145
C4—H4···O2v0.932.543.461 (4)170
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+2, y+1, z+1; (iii) x+3/2, y1/2, z+3/2; (iv) x1/2, y+1/2, z1/2; (v) x+5/2, y1/2, z+3/2.
 

Acknowledgements

MW thanks the Stiftung Stipendien-Fonds des Verbandes der Chemischen Industrie and the Studienstiftung des deutschen Volkes for a PhD scholarship. We gratefully acknowledge financial support by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (Project 720/3-1). We thank Professor Dr Wolfgang Bensch for the opportunity to use his experimental facilities.

References

First citationHalut-Desportes, S. (1981). Rev. Chim. Miner. 18, 199.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWriedt, M. & Näther, C. (2009a). Dalton Trans. pp. 10192–10198.  Web of Science CSD CrossRef Google Scholar
First citationWriedt, M. & Näther, C. (2009b). Z. Anorg. Allg. Chem. 636, 569–575.  Web of Science CSD CrossRef Google Scholar
First citationWriedt, M., Sellmer, S. & Näther, C. (2009a). Dalton Trans. pp. 7975–7984.  Web of Science CSD CrossRef Google Scholar
First citationWriedt, M., Sellmer, S. & Näther, C. (2009b). Inorg. Chem. 48, 6896–6903.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds