metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(nitrato-κO)(5,7,12,14-tetra­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane-6,13-diaminium-κ4N1,N4,N8,N11)copper(II) dinitrate tetra­hydrate

aDepartment of Chemistry and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467044, People's Republic of China, and bDepartment of Environment and Chemical Engineering, Yellow River Conservancy Technical Institute, Kaifeng 475004, People's Republic of China
*Correspondence e-mail: tianlin1288@163.com

(Received 27 May 2010; accepted 16 June 2010; online 23 June 2010)

In the title compound, [Cu(NO3)2(C14H36N6)](NO3)2·4H2O, the CuII atom, lying on an inversion center, is six-coordinated in a distorted octa­hedral environment by four N atoms from a centrosymmetric 14-membered tetra­aza­cyclo­tetra­decane macrocyclic ligand and two O atoms from two nitrate anions. The supra­molecular network is consolidated by extensive O—H⋯O and N—H⋯O hydrogen-bonding inter­actions.

Related literature

For Cu(II) complexes of related macrocyclic ligands, see: Bernhardt (1999[Bernhardt, P. V. (1999). Inorg. Chem. 38, 3481-3483.]); Bernhardt & Sharpe (1998[Bernhardt, P. V. & Sharpe, P. C. (1998). Inorg. Chem. 37, 1629-1236.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NO3)2(C14H36N6)](NO3)2·4H2O

  • Mr = 672.14

  • Monoclinic, P 21 /n

  • a = 9.201 (2) Å

  • b = 16.576 (4) Å

  • c = 9.278 (2) Å

  • β = 98.788 (4)°

  • V = 1398.4 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 123 K

  • 0.37 × 0.34 × 0.31 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.739, Tmax = 0.774

  • 6071 measured reflections

  • 3021 independent reflections

  • 2269 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.133

  • S = 1.03

  • 3021 reflections

  • 202 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.24 e Å−3

  • Δρmin = −0.81 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O3 0.93 2.43 3.155 (4) 134
N1—H1C⋯O2Wi 0.93 2.28 3.096 (4) 146
N2—H2A⋯O3 0.93 2.52 3.244 (4) 135
N2—H2A⋯O4ii 0.93 2.47 3.249 (4) 141
N3—H3D⋯O4 0.91 2.08 2.924 (4) 155
N3—H3E⋯O1Wiii 0.91 1.86 2.748 (4) 164
N3—H3F⋯O2i 0.91 2.06 2.902 (4) 154
N3—H3F⋯O3i 0.91 2.32 3.108 (4) 145
O1W—H1WA⋯O2i 0.84 (4) 2.01 (3) 2.823 (4) 160 (5)
O1W—H1WB⋯O5iv 0.84 (2) 1.97 (2) 2.795 (4) 168 (5)
O2W—H2WA⋯O6ii 0.93 (5) 2.00 (5) 2.913 (5) 166 (5)
O2W—H2WB⋯O6v 0.92 (2) 2.18 (2) 3.084 (5) 167 (5)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x-1, y, z; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past, much attention has been given to the copper complexes of macrocyclic trans-5(R),7(R),12(R), 14(R)-tetramethyl-6, 13-dinitro-1,4,8,11-tetraazacyclotetradecane and related ligands (Bernhardt, 1999; Bernhardt & Sharpe, 1998). Recently, we have synthesized a Cu(II) complex based on 5,7,12,14-tetramethyl-6,13- diamino-1,4,8,11-tetraazacyclotetradecane and its structure is reported here.

The asymmetric unit of the title compound (Fig. 1) contains one CuII ion lying on an inversion center, one half of a 14-membered tetraazacyclotetradecane macrocyclic ligand, one coordinated nitrate anion, one uncoordinated nitrate anion and two solvent water molecules. The CuII ion has a slightly distorted octahedral coordination geometry, with two O atoms from two nitrate anions in the axial positions. The equatorial positions are occupied by four N atoms from the centrosymmetric 14-membered tetraazacyclotetradecane macrocyclic ligand [Cu1—N1 2.025 (2) and Cu1—N2 2.020 (2) Å]. The two uncoordinated nitrate anions are located above and below the 14-membered tetraazacyclotetradecane macrocycle and linked to the macrocycle via N—H···O hydrogen bonds (Table 1).

Related literature top

For Cu(II) complexes of related macrocyclic ligands, see: Bernhardt (1999); Bernhardt & Sharpe (1998).

Experimental top

An aqueous solution of 5,7,12,14-tetramethyl-6,13-diamino-1,4,8,11-tetraazacyclotetradecane (0.27 g, 1.0 mmol), Cu(NO3)2 (0.10 g, 0.5 mmol) and Na2CO3 (0.05 g, 0.5 mmol) was heated to reflux for 24 h. The reaction mixture was cooled to room temperature and red crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement top

H atoms bound to C and N atoms were placed at calculated positions and were treated as riding on the parent atoms, with C—H = 1.00 (CH), 0.99 (CH2) and 0.98 (CH3) Å and N—H = 0.93 (NH) and 0.91 (NH3) Å and with Uiso(H) = 1.2–1.5 Ueq(C, N). H atoms attached to water molecules were located in a difference Fourier map and refined with Uiso(H) = 1.2Ueq(O). The highest residual electron density was found 0.91 Å from O3 the deepest hole 0.52 Å from H2WA.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are shown at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) 2-x, -y, 1-z.]
Bis(nitrato-κO)(5,7,12,14-tetramethyl-1,4,8,11- tetraazacyclotetradecane-6,13-diaminium- κ4N1,N4,N8,N11)copper(II) dinitrate tetrahydrate top
Crystal data top
[Cu(NO3)2(C14H36N6)](NO3)2·4H2OF(000) = 710
Mr = 672.14Dx = 1.596 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2543 reflections
a = 9.201 (2) Åθ = 2.5–27.0°
b = 16.576 (4) ŵ = 0.87 mm1
c = 9.278 (2) ÅT = 123 K
β = 98.788 (4)°Block, red
V = 1398.4 (5) Å30.37 × 0.34 × 0.31 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD
diffractometer
3021 independent reflections
Radiation source: fine-focus sealed tube2269 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 27.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.739, Tmax = 0.774k = 2117
6071 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0649P)2 + 2.4391P]
where P = (Fo2 + 2Fc2)/3
3021 reflections(Δ/σ)max = 0.036
202 parametersΔρmax = 1.24 e Å3
6 restraintsΔρmin = 0.81 e Å3
Crystal data top
[Cu(NO3)2(C14H36N6)](NO3)2·4H2OV = 1398.4 (5) Å3
Mr = 672.14Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.201 (2) ŵ = 0.87 mm1
b = 16.576 (4) ÅT = 123 K
c = 9.278 (2) Å0.37 × 0.34 × 0.31 mm
β = 98.788 (4)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3021 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2269 reflections with I > 2σ(I)
Tmin = 0.739, Tmax = 0.774Rint = 0.027
6071 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0466 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.24 e Å3
3021 reflectionsΔρmin = 0.81 e Å3
202 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8753 (4)0.0883 (2)0.2521 (3)0.0169 (7)
H1A0.94130.13560.26950.020*
H1B0.78860.10390.18070.020*
C20.7676 (3)0.13149 (18)0.4684 (3)0.0136 (6)
H20.84770.17220.49300.016*
C30.6400 (4)0.1717 (2)0.3687 (3)0.0234 (8)
H3A0.67490.19210.28090.035*
H3B0.60190.21670.42050.035*
H3C0.56160.13220.34080.035*
C40.7205 (3)0.10160 (19)0.6114 (3)0.0129 (6)
H40.65740.05270.58880.016*
C50.8448 (3)0.08013 (19)0.7366 (3)0.0137 (6)
H50.79730.06420.82240.016*
C60.9474 (3)0.15076 (19)0.7843 (3)0.0167 (7)
H6A1.00860.13780.87740.025*
H6B0.88890.19910.79600.025*
H6C1.01050.16080.71020.025*
C71.0453 (3)0.0192 (2)0.8066 (3)0.0170 (7)
H7A1.00500.03660.89470.020*
H7B1.11440.02590.83420.020*
Cu11.00000.00000.50000.01124 (16)
N10.8274 (3)0.06223 (16)0.3922 (2)0.0120 (5)
H1C0.75090.02560.36830.014*
N20.9236 (3)0.00785 (15)0.6924 (3)0.0128 (5)
H2A0.85450.03340.68820.015*
N30.6297 (3)0.16570 (17)0.6691 (3)0.0173 (6)
H3D0.67220.21470.66110.026*
H3E0.62410.15550.76450.026*
H3F0.53760.16570.61670.026*
N50.7860 (3)0.36290 (18)0.6169 (3)0.0214 (6)
O40.6922 (3)0.33861 (18)0.6897 (3)0.0377 (7)
O50.8513 (3)0.31313 (17)0.5511 (3)0.0399 (7)
O60.8117 (3)0.43623 (16)0.6061 (4)0.0402 (7)
O1W0.1266 (3)0.33514 (16)0.4647 (3)0.0236 (5)
O2W0.4173 (4)0.0272 (3)0.8131 (4)0.0592 (10)
H1WA0.168 (5)0.291 (2)0.489 (6)0.071*
H1WB0.039 (3)0.334 (3)0.481 (6)0.071*
H2WA0.494 (5)0.008 (3)0.846 (6)0.071*
H2WB0.396 (6)0.045 (3)0.901 (3)0.071*
N40.7300 (3)0.14301 (18)0.4733 (3)0.0233 (6)
O10.8658 (2)0.13506 (15)0.4843 (2)0.0226 (5)
O20.6711 (3)0.21048 (15)0.4441 (3)0.0252 (6)
O30.6522 (3)0.08487 (18)0.4963 (4)0.0520 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0194 (16)0.0188 (17)0.0124 (14)0.0044 (13)0.0023 (11)0.0043 (12)
C20.0175 (15)0.0104 (15)0.0122 (14)0.0038 (12)0.0004 (11)0.0000 (11)
C30.0233 (18)0.032 (2)0.0150 (15)0.0136 (15)0.0039 (13)0.0031 (14)
C40.0113 (14)0.0153 (16)0.0120 (13)0.0026 (12)0.0014 (11)0.0013 (11)
C50.0141 (15)0.0155 (16)0.0117 (13)0.0025 (12)0.0021 (11)0.0011 (11)
C60.0171 (15)0.0130 (16)0.0192 (15)0.0000 (12)0.0003 (12)0.0031 (12)
C70.0175 (15)0.0232 (18)0.0094 (13)0.0068 (13)0.0009 (11)0.0019 (11)
Cu10.0120 (3)0.0135 (3)0.0079 (2)0.0030 (2)0.00051 (17)0.0002 (2)
N10.0121 (12)0.0128 (13)0.0112 (11)0.0008 (10)0.0022 (9)0.0003 (10)
N20.0123 (12)0.0143 (14)0.0113 (11)0.0017 (10)0.0001 (9)0.0009 (10)
N30.0161 (13)0.0226 (16)0.0134 (12)0.0050 (11)0.0030 (10)0.0006 (11)
N50.0167 (14)0.0227 (16)0.0244 (14)0.0033 (12)0.0021 (11)0.0008 (12)
O40.0357 (16)0.0389 (17)0.0442 (16)0.0024 (13)0.0241 (13)0.0093 (13)
O50.0442 (17)0.0260 (15)0.0558 (18)0.0001 (13)0.0282 (14)0.0111 (13)
O60.0382 (16)0.0149 (14)0.071 (2)0.0009 (12)0.0184 (14)0.0028 (13)
O1W0.0252 (13)0.0268 (14)0.0192 (12)0.0001 (11)0.0047 (10)0.0005 (10)
O2W0.051 (2)0.068 (3)0.056 (2)0.0019 (19)0.0006 (17)0.0158 (19)
N40.0187 (14)0.0206 (16)0.0305 (16)0.0036 (12)0.0031 (12)0.0016 (12)
O10.0153 (11)0.0264 (14)0.0268 (12)0.0057 (10)0.0053 (9)0.0017 (10)
O20.0212 (12)0.0197 (13)0.0327 (13)0.0060 (10)0.0022 (10)0.0022 (10)
O30.0230 (15)0.0230 (16)0.111 (3)0.0001 (12)0.0151 (16)0.0074 (17)
Geometric parameters (Å, º) top
C1—N11.499 (4)C7—C1i1.505 (4)
C1—C7i1.505 (4)C7—H7A0.9900
C1—H1A0.9900C7—H7B0.9900
C1—H1B0.9900Cu1—N22.020 (2)
C2—N11.496 (4)Cu1—N12.025 (2)
C2—C31.532 (4)Cu1—O12.550 (2)
C2—C41.539 (4)N1—H1C0.9300
C2—H21.0000N2—H2A0.9300
C3—H3A0.9800N3—H3D0.9100
C3—H3B0.9800N3—H3E0.9100
C3—H3C0.9800N3—H3F0.9100
C4—N31.500 (4)N5—O51.235 (4)
C4—C51.542 (4)N5—O41.241 (4)
C4—H41.0000N5—O61.245 (4)
C5—N21.491 (4)O1W—H1WA0.84 (4)
C5—C61.526 (4)O1W—H1WB0.84 (2)
C5—H51.0000O2W—H2WA0.93 (5)
C6—H6A0.9800O2W—H2WB0.91 (2)
C6—H6B0.9800N4—O31.239 (4)
C6—H6C0.9800N4—O11.245 (4)
C7—N21.488 (3)N4—O21.254 (4)
N1—C1—C7i108.5 (2)N2—C7—H7A109.9
N1—C1—H1A110.0C1i—C7—H7A109.9
C7i—C1—H1A110.0N2—C7—H7B109.9
N1—C1—H1B110.0C1i—C7—H7B109.9
C7i—C1—H1B110.0H7A—C7—H7B108.3
H1A—C1—H1B108.4N2i—Cu1—N187.06 (10)
N1—C2—C3110.6 (2)N2—Cu1—N192.94 (10)
N1—C2—C4109.4 (2)O1—Cu1—N194.74 (9)
C3—C2—C4111.7 (3)O1—Cu1—N282.89 (8)
N1—C2—H2108.3O1—Cu1—N1i85.26 (9)
C3—C2—H2108.3O1—Cu1—N2i97.11 (8)
C4—C2—H2108.3C2—N1—C1111.5 (2)
C2—C3—H3A109.5C2—N1—Cu1118.36 (17)
C2—C3—H3B109.5C1—N1—Cu1105.27 (18)
H3A—C3—H3B109.5C2—N1—H1C107.1
C2—C3—H3C109.5C1—N1—H1C107.1
H3A—C3—H3C109.5Cu1—N1—H1C107.1
H3B—C3—H3C109.5C7—N2—C5113.0 (2)
N3—C4—C2109.0 (2)C7—N2—Cu1106.55 (18)
N3—C4—C5106.5 (2)C5—N2—Cu1123.02 (18)
C2—C4—C5116.8 (3)C7—N2—H2A104.1
N3—C4—H4108.1C5—N2—H2A104.1
C2—C4—H4108.1Cu1—N2—H2A104.1
C5—C4—H4108.1C4—N3—H3D109.5
N2—C5—C6113.0 (2)C4—N3—H3E109.5
N2—C5—C4108.3 (2)H3D—N3—H3E109.5
C6—C5—C4113.3 (3)C4—N3—H3F109.5
N2—C5—H5107.3H3D—N3—H3F109.5
C6—C5—H5107.3H3E—N3—H3F109.5
C4—C5—H5107.3O5—N5—O4118.9 (3)
C5—C6—H6A109.5O5—N5—O6120.0 (3)
C5—C6—H6B109.5O4—N5—O6121.1 (3)
H6A—C6—H6B109.5H1WA—O1W—H1WB109 (4)
C5—C6—H6C109.5H2WA—O2W—H2WB99 (4)
H6A—C6—H6C109.5O3—N4—O1120.2 (3)
H6B—C6—H6C109.5O3—N4—O2119.3 (3)
N2—C7—C1i109.0 (2)O1—N4—O2120.5 (3)
N1—C2—C4—N3167.0 (2)N2i—Cu1—N1—C2142.1 (2)
C3—C2—C4—N344.1 (3)N2—Cu1—N1—C237.9 (2)
N1—C2—C4—C572.4 (3)N2i—Cu1—N1—C116.78 (19)
C3—C2—C4—C5164.7 (3)N2—Cu1—N1—C1163.22 (19)
N3—C4—C5—N2171.2 (2)C1i—C7—N2—C5175.9 (3)
C2—C4—C5—N266.9 (3)C1i—C7—N2—Cu137.9 (3)
N3—C4—C5—C662.6 (3)C6—C5—N2—C754.5 (3)
C2—C4—C5—C659.3 (3)C4—C5—N2—C7179.2 (2)
C3—C2—N1—C156.7 (3)C6—C5—N2—Cu175.7 (3)
C4—C2—N1—C1179.9 (2)C4—C5—N2—Cu150.7 (3)
C3—C2—N1—Cu1178.9 (2)N1i—Cu1—N2—C711.4 (2)
C4—C2—N1—Cu157.6 (3)N1—Cu1—N2—C7168.6 (2)
C7i—C1—N1—C2171.5 (2)N1i—Cu1—N2—C5144.2 (2)
C7i—C1—N1—Cu142.0 (3)N1—Cu1—N2—C535.8 (2)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O30.932.433.155 (4)134
N1—H1C···O2Wii0.932.283.096 (4)146
N2—H2A···O30.932.523.244 (4)135
N2—H2A···O4iii0.932.473.249 (4)141
N3—H3D···O40.912.082.924 (4)155
N3—H3E···O1Wiv0.911.862.748 (4)164
N3—H3F···O2ii0.912.062.902 (4)154
N3—H3F···O3ii0.912.323.108 (4)145
O1W—H1WA···O2ii0.84 (4)2.01 (3)2.823 (4)160 (5)
O1W—H1WB···O5v0.84 (2)1.97 (2)2.795 (4)168 (5)
O2W—H2WA···O6iii0.93 (5)2.00 (5)2.913 (5)166 (5)
O2W—H2WB···O6vi0.92 (2)2.18 (2)3.084 (5)167 (5)
Symmetry codes: (ii) x+1, y, z+1; (iii) x+3/2, y1/2, z+3/2; (iv) x+1/2, y+1/2, z+1/2; (v) x1, y, z; (vi) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(NO3)2(C14H36N6)](NO3)2·4H2O
Mr672.14
Crystal system, space groupMonoclinic, P21/n
Temperature (K)123
a, b, c (Å)9.201 (2), 16.576 (4), 9.278 (2)
β (°) 98.788 (4)
V3)1398.4 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.37 × 0.34 × 0.31
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.739, 0.774
No. of measured, independent and
observed [I > 2σ(I)] reflections
6071, 3021, 2269
Rint0.027
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.133, 1.03
No. of reflections3021
No. of parameters202
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.24, 0.81

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O30.932.433.155 (4)134.4
N1—H1C···O2Wi0.932.283.096 (4)146.1
N2—H2A···O30.932.523.244 (4)134.8
N2—H2A···O4ii0.932.473.249 (4)140.9
N3—H3D···O40.912.082.924 (4)154.7
N3—H3E···O1Wiii0.911.862.748 (4)164.1
N3—H3F···O2i0.912.062.902 (4)154.3
N3—H3F···O3i0.912.323.108 (4)144.7
O1W—H1WA···O2i0.84 (4)2.01 (3)2.823 (4)160 (5)
O1W—H1WB···O5iv0.84 (2)1.97 (2)2.795 (4)168 (5)
O2W—H2WA···O6ii0.93 (5)2.00 (5)2.913 (5)166 (5)
O2W—H2WB···O6v0.92 (2)2.18 (2)3.084 (5)167 (5)
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x1, y, z; (v) x1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge Henan University of Urban Construction for supporting this work.

References

First citationBernhardt, P. V. (1999). Inorg. Chem. 38, 3481–3483.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBernhardt, P. V. & Sharpe, P. C. (1998). Inorg. Chem. 37, 1629–1236.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds