metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-[(2-benzoyl­hydrazin-1-yl­­idene)meth­yl]-6-meth­­oxy­phenolato}iron(III) chloride monohydrate

aSchool of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
*Correspondence e-mail: liyh@cust.edu.cn

(Received 9 June 2010; accepted 16 June 2010; online 23 June 2010)

In the title mononuclear iron(III) complex, [Fe(C15H13N2O3)2]Cl·H2O, the FeIII atom has a distorted octa­hedral geometry and is six-coordinated by four O atoms and two N atoms from two ligands. In the crystal structure, the complex cations, Cl anions and water mol­ecules are connected into a chain along [100] through N—H⋯O, O—H⋯Cl and N—H⋯Cl hydrogen bonds. Two adjacent chains are linked by O—H⋯O hydrogen bonds.

Related literature

For the applications of metal–Schiff base compounds, see: Dilworth (1976[Dilworth, J.-R. (1976). Coord. Chem. Rev. 21, 29-62.]); Merchant & Clothia (1970[Merchant, J. R. & Clothia, D. S. (1970). J. Med. Chem. 13, 335-336.]); Pickart et al. (1983[Pickart, L., Goodwin, W. H., Burgua, W., Murphy, T. B. & Johnson, D. K. (1983). Biochem. Pharmacol. 32, 3868-3871.]). For the ligand synthesis, see: Pouralimardan et al. (2007[Pouralimardan, O., Chamayou, A. C., Janiak, C. & Monfared, H. H. (2007). Inorg. Chim. Acta, 360, 1599-1608.]); Sacconi (1954[Sacconi, L. (1954). Z. Anorg. Allg. Chem. 275, 249-256.]). For related structures, see: Gao et al. (1998[Gao, S., Weng, Z.-Q. & Liu, S.-X. (1998). Polyhedron, 17, 3595-3606.]); Monfared et al. (2007[Monfared, H. H., Sadighian, S., Kamyabi, M. A. & Mayer, P. (2007). J. Mol. Catal. A, 304, 139-146.]); Yu et al. (2010[Yu, G.-M., Li, Y.-H., Zou, L.-F., Zhu, J.-W. & Liu, X.-Q. (2010). Acta Cryst. E66, m693-m694.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C15H13N2O3)2]Cl·H2O

  • Mr = 647.86

  • Monoclinic, P 21 /c

  • a = 12.7778 (10) Å

  • b = 22.7113 (18) Å

  • c = 10.0604 (7) Å

  • β = 94.542 (1)°

  • V = 2910.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 296 K

  • 0.24 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.857, Tmax = 0.907

  • 14540 measured reflections

  • 5098 independent reflections

  • 3508 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.153

  • S = 0.98

  • 5098 reflections

  • 390 parameters

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—O1 2.070 (3)
Fe1—O2 1.904 (3)
Fe1—O4 2.062 (3)
Fe1—O5 1.901 (3)
Fe1—N2 2.106 (3)
Fe1—N4 2.124 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯Cl1i 0.86 2.25 3.087 (3) 163
N3—H3B⋯O1W 0.86 1.92 2.759 (4) 164
O1W—H1WA⋯O5ii 0.85 2.39 3.045 (4) 134
O1W—H1WB⋯Cl1 0.85 2.37 3.198 (3) 163
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

Studies of acylhydrazone Schiff base and the dependence of their chelation mode with transition metal ions have been of significant interest. On one hand, their metal compounds have been reported to act as enzyme inhibitors (Dilworth, 1976) and are useful due to their pharmacological applications (Merchant & Clothia, 1970). On the other hand, it seems to be a good candidate for catalytic oxidation studies because of their stability to resist oxidation (Pickart et al., 1983). These findings have triggered the exploration of new molecular clusters based on acylhydrazone Schiff base. During the last several years, the crystal structures of metal compounds with 3-methoxysalicylaldehyde benzoylhydrazide have been attracted tremendous interest (Gao et al., 1998; Monfared et al., 2007; Yu et al., 2010). As a continuation of our effort in this system, the preparation and crystal structure of the title Schiff base iron(III) compound are reported here.

The molecular structure of the title compound is illustrated in Fig. 1, which consists of one mononuclear [Fe(C15H13N2O3)2]+ cation, one Cl- anion and one water molecule. The FeIII atom has a distorted octahedral geometry and is six-coordinated by four O atoms and two N atoms from two ligands (Table 1). In one ligand, the strained angle of O1—Fe1—N2 [74.54 (11)°] correlates with the bite angle for the five-membered chelate ring Fe1—O1—C7—N1—N2, and the loose angle of O2—Fe1—N2 [84.74 (11)°] correlates with the six-membered ring Fe1—N2—C8—C9—C10—O2. The axial angle N2—Fe1—N4 [159.46 (12)°] deviates significantly from the ideal 180°. Similar case occurrs for another ligand. In the crystal structure, the complex cations, Cl- anions and water molecules are connected into a chain through N—H···O, O—H···Cl and N—H···Cl hydrogen bonds. Two adjacent chains are linked by O—H···O hydrogen bonds. (Fig. 2 and Table 2).

Related literature top

For the applications of metal–Schiff base compounds, see: Dilworth (1976); Merchant & Clothia (1970); Pickart et al. (1983). For the ligand synthesis, see: Pouralimardan et al. (2007); Sacconi (1954). For related structures, see: Gao et al. (1998); Monfared et al. (2007); Yu et al. (2010).

Experimental top

The 3-methoxysalicylaldehyde benzoylhydrazide ligand (H2L) was prepared in a similar manner according to the reported procedures (Pouralimardan et al., 2007; Sacconi, 1954). The title compound was synthesized by adding FeCl3.6H2O (27.0 mg, 0.1 mmol) to a solution of H2L (27.3 mg, 0.10 mmol) in methanol (15 ml). The resulting mixture was stirred for 3 h at room temperature to afford a dark brown solution and then filtered. The filtrate was allowed to stand at room temperature for about three weeks and black crystals were produced at the bottom of the vessel on slow evaporation of methanol.

Refinement top

All H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93 (aromatic), 0.96 (methyl) Å and N—H = 0.86 Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C, N). Water H atoms were located in a difference Fourier map and refined as riding, with O—H = 0.85 Å and Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. H atoms are omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. One-dimensional chain structure in the title compound. Hydrogen bonds are shown as green dashed lines.
Bis{2-[(2-benzoylhydrazin-1-ylidene)methyl]-6-methoxyphenolato}iron(III) chloride monohydrate top
Crystal data top
[Fe(C15H13N2O3)2]Cl·H2OF(000) = 1340
Mr = 647.86Dx = 1.479 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4767 reflections
a = 12.7778 (10) Åθ = 4.8–51.7°
b = 22.7113 (18) ŵ = 0.67 mm1
c = 10.0604 (7) ÅT = 296 K
β = 94.542 (1)°Block, black
V = 2910.4 (4) Å30.24 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
5098 independent reflections
Radiation source: fine-focus sealed tube3508 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.857, Tmax = 0.907k = 2723
14540 measured reflectionsl = 1110
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0933P)2 + 0.1872P]
where P = (Fo2 + 2Fc2)/3
5098 reflections(Δ/σ)max < 0.001
390 parametersΔρmax = 0.95 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Fe(C15H13N2O3)2]Cl·H2OV = 2910.4 (4) Å3
Mr = 647.86Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.7778 (10) ŵ = 0.67 mm1
b = 22.7113 (18) ÅT = 296 K
c = 10.0604 (7) Å0.24 × 0.18 × 0.15 mm
β = 94.542 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5098 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3508 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.907Rint = 0.052
14540 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 0.98Δρmax = 0.95 e Å3
5098 reflectionsΔρmin = 0.48 e Å3
390 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.28270 (4)0.56160 (2)0.90592 (5)0.02612 (19)
Cl10.87327 (8)0.66511 (5)0.74420 (12)0.0455 (3)
C10.0861 (3)0.69236 (18)0.5203 (4)0.0376 (10)
H1A0.03960.70240.58320.045*
C20.0804 (4)0.7195 (2)0.3979 (5)0.0449 (12)
H2A0.03050.74870.37870.054*
C30.1472 (4)0.7040 (2)0.3036 (5)0.0511 (13)
H3A0.14160.72270.22110.061*
C40.2219 (4)0.6615 (2)0.3292 (4)0.0433 (11)
H4A0.26590.65080.26400.052*
C50.2313 (3)0.63511 (19)0.4515 (4)0.0350 (10)
H5A0.28370.60730.47030.042*
C60.1631 (3)0.64933 (18)0.5489 (4)0.0307 (9)
C70.1786 (3)0.61984 (17)0.6799 (4)0.0275 (9)
C80.0525 (3)0.58652 (18)0.9627 (4)0.0310 (9)
H8A0.01290.60230.93590.037*
C90.0651 (3)0.55879 (18)1.0885 (4)0.0294 (9)
C100.1608 (3)0.53399 (17)1.1403 (4)0.0290 (9)
C110.1644 (3)0.50693 (18)1.2666 (4)0.0319 (10)
C120.0756 (3)0.5034 (2)1.3356 (4)0.0397 (11)
H12A0.07860.48441.41770.048*
C130.0175 (3)0.5278 (2)1.2842 (4)0.0440 (12)
H13A0.07660.52561.33220.053*
C140.0234 (3)0.5551 (2)1.1631 (4)0.0405 (11)
H14A0.08670.57161.12940.049*
C150.2726 (4)0.4590 (2)1.4393 (4)0.0500 (13)
H15A0.34460.44781.45940.075*
H15B0.22880.42461.43920.075*
H15C0.25220.48621.50560.075*
C160.5865 (3)0.71820 (18)1.0512 (4)0.0353 (10)
H16A0.63240.69141.01690.042*
C170.6243 (4)0.76907 (19)1.1109 (4)0.0400 (11)
H17A0.69610.77661.11780.048*
C180.5563 (4)0.8090 (2)1.1605 (4)0.0435 (12)
H18A0.58220.84361.20030.052*
C190.4499 (4)0.7979 (2)1.1514 (4)0.0444 (12)
H19A0.40430.82501.18520.053*
C200.4108 (3)0.74682 (18)1.0923 (4)0.0356 (10)
H20A0.33890.73951.08630.043*
C210.4784 (3)0.70675 (17)1.0423 (4)0.0294 (9)
C220.4344 (3)0.65140 (17)0.9850 (4)0.0257 (9)
C230.5028 (3)0.52154 (17)0.8316 (4)0.0257 (9)
H23A0.57350.52970.82440.031*
C240.4618 (3)0.46776 (17)0.7770 (4)0.0267 (9)
C250.3558 (3)0.45109 (17)0.7842 (4)0.0269 (9)
C260.3226 (3)0.39603 (18)0.7277 (4)0.0303 (9)
C270.3928 (3)0.36044 (19)0.6688 (4)0.0351 (10)
H27A0.37030.32460.63190.042*
C280.4968 (3)0.37752 (19)0.6638 (4)0.0366 (10)
H28A0.54340.35270.62460.044*
C290.5312 (3)0.42949 (18)0.7147 (4)0.0327 (10)
H29A0.60080.44040.70910.039*
C300.1794 (4)0.3313 (2)0.6782 (6)0.0551 (14)
H30A0.10630.32800.69280.083*
H30B0.21670.29810.71750.083*
H30C0.18740.33210.58420.083*
N10.1015 (3)0.61943 (14)0.7608 (3)0.0307 (8)
H1B0.04120.63520.73990.037*
N20.1262 (2)0.59143 (14)0.8822 (3)0.0260 (7)
N30.4973 (2)0.61077 (13)0.9384 (3)0.0277 (8)
H3B0.56400.61580.93780.033*
N40.4475 (2)0.55953 (13)0.8906 (3)0.0231 (7)
O10.2638 (2)0.59602 (12)0.7150 (3)0.0307 (6)
O1W0.7122 (2)0.60423 (13)0.9294 (3)0.0421 (8)
H1WA0.73680.57190.96110.050*
H1WB0.74340.62400.87250.050*
O20.2468 (2)0.53545 (13)1.0763 (3)0.0346 (7)
O30.2611 (2)0.48627 (13)1.3112 (3)0.0396 (7)
O40.3375 (2)0.64162 (12)0.9791 (3)0.0318 (7)
O50.2873 (2)0.48311 (12)0.8409 (3)0.0323 (7)
O60.2204 (2)0.38391 (13)0.7375 (3)0.0423 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0196 (3)0.0345 (3)0.0245 (3)0.0041 (2)0.0039 (2)0.0024 (3)
Cl10.0289 (6)0.0524 (7)0.0550 (8)0.0074 (5)0.0009 (5)0.0078 (6)
C10.036 (3)0.040 (3)0.036 (3)0.001 (2)0.0045 (19)0.007 (2)
C20.045 (3)0.045 (3)0.043 (3)0.001 (2)0.008 (2)0.013 (2)
C30.055 (3)0.062 (3)0.034 (3)0.011 (3)0.010 (2)0.024 (2)
C40.046 (3)0.055 (3)0.029 (3)0.001 (2)0.001 (2)0.008 (2)
C50.036 (2)0.042 (3)0.027 (2)0.001 (2)0.0000 (19)0.002 (2)
C60.029 (2)0.036 (2)0.027 (2)0.0047 (18)0.0044 (18)0.0020 (18)
C70.028 (2)0.028 (2)0.026 (2)0.0035 (17)0.0018 (17)0.0018 (17)
C80.026 (2)0.041 (2)0.026 (2)0.0031 (18)0.0046 (18)0.0017 (19)
C90.024 (2)0.038 (2)0.026 (2)0.0022 (18)0.0032 (17)0.0015 (19)
C100.028 (2)0.032 (2)0.028 (2)0.0005 (17)0.0064 (17)0.0040 (18)
C110.036 (2)0.035 (2)0.025 (2)0.0016 (19)0.0011 (18)0.0016 (19)
C120.037 (3)0.056 (3)0.026 (2)0.003 (2)0.0081 (19)0.001 (2)
C130.034 (3)0.068 (3)0.032 (3)0.002 (2)0.013 (2)0.005 (2)
C140.030 (2)0.058 (3)0.034 (3)0.006 (2)0.0046 (19)0.007 (2)
C150.056 (3)0.068 (3)0.026 (2)0.006 (3)0.003 (2)0.017 (2)
C160.033 (2)0.036 (2)0.037 (3)0.0015 (19)0.0023 (19)0.001 (2)
C170.043 (3)0.039 (3)0.036 (3)0.005 (2)0.005 (2)0.002 (2)
C180.062 (3)0.039 (3)0.028 (2)0.006 (2)0.003 (2)0.009 (2)
C190.052 (3)0.041 (3)0.040 (3)0.010 (2)0.003 (2)0.009 (2)
C200.040 (3)0.038 (2)0.029 (2)0.006 (2)0.0011 (19)0.0023 (19)
C210.032 (2)0.033 (2)0.022 (2)0.0003 (18)0.0045 (17)0.0024 (18)
C220.023 (2)0.033 (2)0.021 (2)0.0052 (17)0.0003 (16)0.0050 (17)
C230.020 (2)0.037 (2)0.020 (2)0.0047 (17)0.0027 (16)0.0028 (17)
C240.022 (2)0.037 (2)0.020 (2)0.0021 (17)0.0017 (16)0.0021 (18)
C250.028 (2)0.033 (2)0.019 (2)0.0039 (17)0.0007 (17)0.0034 (17)
C260.027 (2)0.037 (2)0.027 (2)0.0001 (18)0.0022 (17)0.0054 (18)
C270.043 (3)0.035 (2)0.027 (2)0.002 (2)0.0001 (19)0.0036 (19)
C280.033 (2)0.043 (3)0.034 (2)0.008 (2)0.0037 (19)0.010 (2)
C290.025 (2)0.041 (3)0.032 (2)0.0027 (18)0.0034 (18)0.0056 (19)
C300.041 (3)0.047 (3)0.077 (4)0.013 (2)0.001 (3)0.012 (3)
N10.0245 (18)0.040 (2)0.0274 (19)0.0083 (15)0.0023 (14)0.0098 (15)
N20.0231 (17)0.0344 (19)0.0201 (17)0.0038 (14)0.0001 (14)0.0063 (14)
N30.0231 (17)0.0315 (18)0.0281 (19)0.0025 (14)0.0002 (14)0.0003 (15)
N40.0208 (16)0.0286 (17)0.0197 (16)0.0011 (14)0.0008 (13)0.0002 (14)
O10.0250 (15)0.0424 (17)0.0251 (15)0.0053 (13)0.0053 (12)0.0069 (13)
O1W0.0332 (17)0.0456 (19)0.0476 (19)0.0050 (14)0.0044 (14)0.0046 (15)
O20.0249 (15)0.0553 (19)0.0242 (15)0.0088 (13)0.0043 (12)0.0116 (13)
O30.0346 (17)0.059 (2)0.0248 (16)0.0076 (15)0.0022 (13)0.0145 (14)
O40.0279 (16)0.0359 (16)0.0318 (16)0.0046 (12)0.0033 (12)0.0048 (13)
O50.0235 (15)0.0342 (16)0.0399 (17)0.0001 (12)0.0073 (12)0.0046 (13)
O60.0303 (17)0.0440 (18)0.053 (2)0.0081 (14)0.0050 (14)0.0108 (15)
Geometric parameters (Å, º) top
Fe1—O12.070 (3)C16—C171.372 (6)
Fe1—O21.904 (3)C16—C211.402 (6)
Fe1—O42.062 (3)C16—H16A0.9300
Fe1—O51.901 (3)C17—C181.377 (6)
Fe1—N22.106 (3)C17—H17A0.9300
Fe1—N42.124 (3)C18—C191.379 (7)
C1—C21.373 (6)C18—H18A0.9300
C1—C61.401 (6)C19—C201.379 (6)
C1—H1A0.9300C19—H19A0.9300
C2—C31.372 (7)C20—C211.377 (5)
C2—H2A0.9300C20—H20A0.9300
C3—C41.367 (6)C21—C221.476 (5)
C3—H3A0.9300C22—O41.254 (4)
C4—C51.365 (6)C22—N31.334 (5)
C4—H4A0.9300C23—N41.289 (5)
C5—C61.399 (6)C23—C241.422 (5)
C5—H5A0.9300C23—H23A0.9300
C6—C71.478 (5)C24—C251.413 (5)
C7—O11.241 (5)C24—C291.422 (5)
C7—N11.328 (5)C25—O51.303 (4)
C8—N21.294 (4)C25—C261.425 (5)
C8—C91.411 (5)C26—O61.346 (5)
C8—H8A0.9300C26—C271.375 (6)
C9—C101.408 (5)C27—C281.389 (6)
C9—C141.409 (5)C27—H27A0.9300
C10—O21.317 (4)C28—C291.347 (6)
C10—C111.409 (5)C28—H28A0.9300
C11—O31.364 (5)C29—H29A0.9300
C11—C121.379 (5)C30—O61.417 (5)
C12—C131.375 (6)C30—H30A0.9600
C12—H12A0.9300C30—H30B0.9600
C13—C141.364 (6)C30—H30C0.9600
C13—H13A0.9300N1—N21.391 (4)
C14—H14A0.9300N1—H1B0.8600
C15—O31.428 (5)N3—N41.394 (4)
C15—H15A0.9600N3—H3B0.8600
C15—H15B0.9600O1W—H1WA0.8500
C15—H15C0.9600O1W—H1WB0.8502
O5—Fe1—O291.94 (12)C21—C16—H16A120.1
O5—Fe1—O4158.43 (11)C16—C17—C18120.2 (4)
O2—Fe1—O493.00 (12)C16—C17—H17A119.9
O5—Fe1—O192.26 (11)C18—C17—H17A119.9
O2—Fe1—O1159.12 (11)C17—C18—C19120.2 (4)
O4—Fe1—O190.57 (11)C17—C18—H18A119.9
O5—Fe1—N2108.53 (12)C19—C18—H18A119.9
O2—Fe1—N284.74 (11)C18—C19—C20120.3 (4)
O4—Fe1—N292.83 (11)C18—C19—H19A119.9
O1—Fe1—N274.54 (11)C20—C19—H19A119.9
O5—Fe1—N484.04 (11)C21—C20—C19119.8 (4)
O2—Fe1—N4111.65 (11)C21—C20—H20A120.1
O4—Fe1—N474.63 (11)C19—C20—H20A120.1
O1—Fe1—N489.13 (11)C20—C21—C16119.9 (4)
N2—Fe1—N4159.46 (12)C20—C21—C22118.4 (4)
C2—C1—C6118.9 (4)C16—C21—C22121.7 (4)
C2—C1—H1A120.5O4—C22—N3118.8 (4)
C6—C1—H1A120.5O4—C22—C21120.9 (3)
C3—C2—C1120.9 (4)N3—C22—C21120.3 (3)
C3—C2—H2A119.6N4—C23—C24123.6 (3)
C1—C2—H2A119.6N4—C23—H23A118.2
C4—C3—C2121.0 (4)C24—C23—H23A118.2
C4—C3—H3A119.5C25—C24—C29119.5 (4)
C2—C3—H3A119.5C25—C24—C23122.4 (3)
C5—C4—C3119.3 (4)C29—C24—C23118.1 (3)
C5—C4—H4A120.3O5—C25—C24123.5 (4)
C3—C4—H4A120.3O5—C25—C26118.4 (3)
C4—C5—C6120.9 (4)C24—C25—C26118.1 (3)
C4—C5—H5A119.5O6—C26—C27125.5 (4)
C6—C5—H5A119.5O6—C26—C25114.2 (3)
C5—C6—C1118.9 (4)C27—C26—C25120.3 (4)
C5—C6—C7118.2 (4)C26—C27—C28120.6 (4)
C1—C6—C7122.8 (4)C26—C27—H27A119.7
O1—C7—N1120.0 (4)C28—C27—H27A119.7
O1—C7—C6120.3 (3)C29—C28—C27121.0 (4)
N1—C7—C6119.8 (4)C29—C28—H28A119.5
N2—C8—C9124.2 (4)C27—C28—H28A119.5
N2—C8—H8A117.9C28—C29—C24120.5 (4)
C9—C8—H8A117.9C28—C29—H29A119.8
C10—C9—C14119.3 (4)C24—C29—H29A119.8
C10—C9—C8123.0 (3)O6—C30—H30A109.5
C14—C9—C8117.7 (4)O6—C30—H30B109.5
O2—C10—C9122.9 (3)H30A—C30—H30B109.5
O2—C10—C11118.8 (4)O6—C30—H30C109.5
C9—C10—C11118.3 (3)H30A—C30—H30C109.5
O3—C11—C12125.1 (4)H30B—C30—H30C109.5
O3—C11—C10114.3 (3)C7—N1—N2114.4 (3)
C12—C11—C10120.6 (4)C7—N1—H1B122.8
C13—C12—C11120.6 (4)N2—N1—H1B122.8
C13—C12—H12A119.7C8—N2—N1117.5 (3)
C11—C12—H12A119.7C8—N2—Fe1129.2 (3)
C14—C13—C12120.3 (4)N1—N2—Fe1113.2 (2)
C14—C13—H13A119.8C22—N3—N4115.3 (3)
C12—C13—H13A119.8C22—N3—H3B122.4
C13—C14—C9120.8 (4)N4—N3—H3B122.4
C13—C14—H14A119.6C23—N4—N3117.7 (3)
C9—C14—H14A119.6C23—N4—Fe1129.1 (3)
O3—C15—H15A109.5N3—N4—Fe1112.6 (2)
O3—C15—H15B109.5C7—O1—Fe1117.7 (2)
H15A—C15—H15B109.5H1WA—O1W—H1WB121.9
O3—C15—H15C109.5C10—O2—Fe1135.8 (3)
H15A—C15—H15C109.5C11—O3—C15118.2 (3)
H15B—C15—H15C109.5C22—O4—Fe1118.6 (2)
C17—C16—C21119.7 (4)C25—O5—Fe1135.6 (2)
C17—C16—H16A120.1C26—O6—C30118.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl1i0.862.253.087 (3)163
N3—H3B···O1W0.861.922.759 (4)164
O1W—H1WA···O5ii0.852.393.045 (4)134
O1W—H1WB···Cl10.852.373.198 (3)163
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Fe(C15H13N2O3)2]Cl·H2O
Mr647.86
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.7778 (10), 22.7113 (18), 10.0604 (7)
β (°) 94.542 (1)
V3)2910.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.24 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.857, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
14540, 5098, 3508
Rint0.052
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.153, 0.98
No. of reflections5098
No. of parameters390
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.95, 0.48

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXL97 and publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Fe1—O12.070 (3)Fe1—O51.901 (3)
Fe1—O21.904 (3)Fe1—N22.106 (3)
Fe1—O42.062 (3)Fe1—N42.124 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl1i0.862.253.087 (3)163
N3—H3B···O1W0.861.922.759 (4)164
O1W—H1WA···O5ii0.852.393.045 (4)134
O1W—H1WB···Cl10.852.373.198 (3)163
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+2.
 

Acknowledgements

We thank the Jilin Environmental Protection Bureau Foundation of China (2007-28) and Changchun University of Science and Technology for financial support.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDilworth, J.-R. (1976). Coord. Chem. Rev. 21, 29–62.  CrossRef CAS Web of Science Google Scholar
First citationGao, S., Weng, Z.-Q. & Liu, S.-X. (1998). Polyhedron, 17, 3595–3606.  Web of Science CSD CrossRef CAS Google Scholar
First citationMerchant, J. R. & Clothia, D. S. (1970). J. Med. Chem. 13, 335–336.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMonfared, H. H., Sadighian, S., Kamyabi, M. A. & Mayer, P. (2007). J. Mol. Catal. A, 304, 139–146.  CrossRef Google Scholar
First citationPickart, L., Goodwin, W. H., Burgua, W., Murphy, T. B. & Johnson, D. K. (1983). Biochem. Pharmacol. 32, 3868–3871.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPouralimardan, O., Chamayou, A. C., Janiak, C. & Monfared, H. H. (2007). Inorg. Chim. Acta, 360, 1599–1608.  Web of Science CSD CrossRef CAS Google Scholar
First citationSacconi, L. (1954). Z. Anorg. Allg. Chem. 275, 249–256.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar
First citationYu, G.-M., Li, Y.-H., Zou, L.-F., Zhu, J.-W. & Liu, X.-Q. (2010). Acta Cryst. E66, m693–m694.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds