metal-organic compounds
4-Fluoroanilinium tetrachloridoferrate(III) 18-crown-6 clathrate
aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: gjz@seu.edu.cn
The reaction of 4-fluoroaniline hydrochloride, 18-crown-6 and ferric chloride in methanolic solution yields the title compound, (C6H7FN)[FeCl4]·C12H24O6, which has an unusual supramolecular structure. N—H⋯O hydrogen-bonding interactions between the NH3+ substituents of the 4-fluoroanilinium cations and the O atoms of the crown ether molecules result in a rotator–stator-like structure.
Related literature
For a related 18-crown-6 clathrate, see: Fender et al. (2002). For the ferroelectric properties of selected transition metal complexes, see: Fu et al. (2007); Ye et al. (2009); Zhang et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).
Supporting information
10.1107/S160053681002009X/im2203sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681002009X/im2203Isup2.hkl
p-F-C6H4-NH2 × HCl (2 mmol, 0.295 g) and 18-crown-6 (2 mmol, 0.528 g) were dissolved in methanol. After addition of ferric chloride (2 mmol, 0.54 g) in concentrated hydrochloric acid, a precipitate (yield is about 95%) was formed, filtered and washed with a small amount of methanol. Single crystals suitable for X-ray
were obtained from slow evaporation of methanol and DMF (v/v 3/1) from the solution at room temperature after two days.All hydrogens were were calculated geometrically. The positions of the H atoms of the nitrogen atoms were refined using a riding model with N—H = 0.89 Å and Uiso(H) = 1.5Ueq(N). C—H groups were also refined using a riding model for hydrogen atoms with C—H distances ranging from 0.93 to 0.97 Å and Uiso(H) = 1.2Ueq(C).
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).(C6H7FN)[FeCl4]·C12H24O6 | F(000) = 1188 |
Mr = 574.09 | Dx = 1.430 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5625 reflections |
a = 11.45 (1) Å | θ = 2.3–27.5° |
b = 24.14 (2) Å | µ = 1.00 mm−1 |
c = 9.719 (9) Å | T = 293 K |
β = 96.82 (2)° | Block, pale yellow |
V = 2667 (4) Å3 | 0.20 × 0.20 × 0.20 mm |
Z = 4 |
Rigaku SCXmini diffractometer | 6039 independent reflections |
Radiation source: fine-focus sealed tube | 3173 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.068 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5°, θmin = 2.3° |
ω scans | h = −14→14 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −31→31 |
Tmin = 0.818, Tmax = 0.818 | l = −12→12 |
26978 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.078 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.271 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.1312P)2 + 0.8151P] where P = (Fo2 + 2Fc2)/3 |
6039 reflections | (Δ/σ)max = 0.005 |
281 parameters | Δρmax = 0.49 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
(C6H7FN)[FeCl4]·C12H24O6 | V = 2667 (4) Å3 |
Mr = 574.09 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.45 (1) Å | µ = 1.00 mm−1 |
b = 24.14 (2) Å | T = 293 K |
c = 9.719 (9) Å | 0.20 × 0.20 × 0.20 mm |
β = 96.82 (2)° |
Rigaku SCXmini diffractometer | 6039 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 3173 reflections with I > 2σ(I) |
Tmin = 0.818, Tmax = 0.818 | Rint = 0.068 |
26978 measured reflections |
R[F2 > 2σ(F2)] = 0.078 | 0 restraints |
wR(F2) = 0.271 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.49 e Å−3 |
6039 reflections | Δρmin = −0.35 e Å−3 |
281 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.5434 (4) | 0.09467 (19) | 0.7021 (5) | 0.0842 (13) | |
O2 | 0.7834 (4) | 0.06611 (18) | 0.6808 (4) | 0.0816 (12) | |
O3 | 0.9463 (3) | 0.14900 (18) | 0.7297 (5) | 0.0741 (11) | |
O4 | 0.8972 (4) | 0.23864 (18) | 0.8904 (5) | 0.0849 (13) | |
O5 | 0.6635 (4) | 0.25943 (19) | 0.9254 (5) | 0.0903 (14) | |
O6 | 0.4892 (4) | 0.1787 (2) | 0.8722 (5) | 0.0895 (14) | |
C1 | 0.5820 (8) | 0.0397 (3) | 0.6788 (9) | 0.102 (2) | |
H1A | 0.5188 | 0.0190 | 0.6268 | 0.122* | |
H1B | 0.6025 | 0.0212 | 0.7670 | 0.122* | |
C2 | 0.6847 (7) | 0.0408 (3) | 0.6013 (8) | 0.093 (2) | |
H2A | 0.7049 | 0.0033 | 0.5776 | 0.112* | |
H2B | 0.6653 | 0.0613 | 0.5158 | 0.112* | |
C3 | 0.8831 (6) | 0.0647 (3) | 0.6178 (7) | 0.0800 (18) | |
H3A | 0.8688 | 0.0824 | 0.5278 | 0.096* | |
H3B | 0.9053 | 0.0265 | 0.6039 | 0.096* | |
C4 | 0.9802 (6) | 0.0937 (3) | 0.7041 (7) | 0.0798 (18) | |
H4A | 0.9987 | 0.0743 | 0.7913 | 0.096* | |
H4B | 1.0500 | 0.0939 | 0.6565 | 0.096* | |
C5 | 1.0380 (5) | 0.1806 (3) | 0.7950 (8) | 0.086 (2) | |
H5A | 1.1034 | 0.1806 | 0.7400 | 0.104* | |
H5B | 1.0650 | 0.1648 | 0.8850 | 0.104* | |
C6 | 0.9964 (6) | 0.2383 (3) | 0.8120 (9) | 0.091 (2) | |
H6A | 1.0596 | 0.2603 | 0.8595 | 0.109* | |
H6B | 0.9739 | 0.2546 | 0.7216 | 0.109* | |
C7 | 0.8554 (8) | 0.2921 (3) | 0.9050 (10) | 0.104 (3) | |
H7A | 0.8286 | 0.3074 | 0.8145 | 0.124* | |
H7B | 0.9180 | 0.3154 | 0.9488 | 0.124* | |
C8 | 0.7560 (8) | 0.2905 (3) | 0.9917 (11) | 0.113 (3) | |
H8A | 0.7825 | 0.2743 | 1.0812 | 0.136* | |
H8B | 0.7293 | 0.3280 | 1.0067 | 0.136* | |
C9 | 0.5658 (7) | 0.2584 (4) | 0.9976 (9) | 0.100 (2) | |
H9A | 0.5470 | 0.2955 | 1.0261 | 0.120* | |
H9B | 0.5813 | 0.2355 | 1.0798 | 0.120* | |
C10 | 0.4667 (6) | 0.2353 (3) | 0.9035 (9) | 0.091 (2) | |
H10A | 0.3948 | 0.2377 | 0.9469 | 0.109* | |
H10B | 0.4561 | 0.2567 | 0.8184 | 0.109* | |
C11 | 0.4035 (6) | 0.1551 (4) | 0.7758 (10) | 0.101 (2) | |
H11A | 0.3981 | 0.1759 | 0.6899 | 0.122* | |
H11B | 0.3276 | 0.1569 | 0.8108 | 0.122* | |
C12 | 0.4324 (6) | 0.0968 (3) | 0.7491 (10) | 0.100 (2) | |
H12A | 0.4329 | 0.0753 | 0.8334 | 0.119* | |
H12B | 0.3736 | 0.0813 | 0.6797 | 0.119* | |
F1 | 0.8204 (4) | 0.00256 (15) | 0.3199 (4) | 0.0906 (12) | |
N1 | 0.7364 (3) | 0.14716 (16) | −0.1213 (4) | 0.0498 (9) | |
H1C | 0.7853 | 0.1760 | −0.1140 | 0.075* | |
H1D | 0.6625 | 0.1592 | −0.1276 | 0.075* | |
H1E | 0.7467 | 0.1277 | −0.1967 | 0.075* | |
C13 | 0.8711 (5) | 0.0971 (3) | 0.0489 (7) | 0.0748 (17) | |
H13A | 0.9340 | 0.1117 | 0.0085 | 0.090* | |
C14 | 0.7606 (4) | 0.11179 (19) | 0.0016 (5) | 0.0493 (11) | |
C15 | 0.6684 (5) | 0.0924 (3) | 0.0657 (7) | 0.0699 (16) | |
H15A | 0.5920 | 0.1037 | 0.0355 | 0.084* | |
C16 | 0.6894 (6) | 0.0558 (3) | 0.1752 (7) | 0.0758 (17) | |
H16A | 0.6279 | 0.0427 | 0.2206 | 0.091* | |
C17 | 0.8011 (6) | 0.0396 (2) | 0.2148 (6) | 0.0658 (15) | |
C18 | 0.8913 (6) | 0.0598 (3) | 0.1588 (7) | 0.0804 (18) | |
H18A | 0.9676 | 0.0493 | 0.1922 | 0.096* | |
Fe2 | 0.25883 (7) | 0.12580 (3) | 0.22601 (9) | 0.0635 (3) | |
Cl1 | 0.44359 (16) | 0.11643 (9) | 0.3030 (3) | 0.1179 (8) | |
Cl2 | 0.2109 (2) | 0.06493 (9) | 0.0642 (2) | 0.1121 (7) | |
Cl3 | 0.22522 (16) | 0.20828 (7) | 0.13775 (19) | 0.0840 (5) | |
Cl4 | 0.1561 (2) | 0.11388 (10) | 0.3981 (2) | 0.1144 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.079 (3) | 0.078 (3) | 0.094 (3) | −0.018 (2) | 0.006 (2) | −0.002 (2) |
O2 | 0.104 (4) | 0.073 (3) | 0.070 (3) | 0.002 (2) | 0.015 (2) | −0.007 (2) |
O3 | 0.058 (2) | 0.079 (3) | 0.086 (3) | 0.010 (2) | 0.012 (2) | 0.006 (2) |
O4 | 0.081 (3) | 0.076 (3) | 0.100 (3) | −0.021 (2) | 0.021 (2) | −0.006 (2) |
O5 | 0.086 (3) | 0.078 (3) | 0.109 (4) | 0.010 (2) | 0.022 (3) | −0.015 (3) |
O6 | 0.062 (3) | 0.098 (3) | 0.109 (4) | 0.013 (2) | 0.013 (2) | 0.017 (3) |
C1 | 0.122 (7) | 0.089 (5) | 0.091 (5) | −0.017 (5) | 0.003 (5) | −0.016 (4) |
C2 | 0.115 (6) | 0.074 (4) | 0.090 (5) | −0.018 (4) | 0.011 (4) | −0.024 (4) |
C3 | 0.093 (5) | 0.077 (4) | 0.073 (4) | 0.029 (4) | 0.017 (3) | −0.005 (3) |
C4 | 0.080 (4) | 0.072 (4) | 0.089 (5) | 0.020 (3) | 0.017 (4) | 0.000 (3) |
C5 | 0.045 (3) | 0.101 (5) | 0.114 (5) | −0.010 (3) | 0.010 (3) | 0.013 (4) |
C6 | 0.068 (4) | 0.097 (5) | 0.110 (6) | −0.021 (4) | 0.020 (4) | 0.006 (4) |
C7 | 0.127 (7) | 0.066 (4) | 0.120 (6) | −0.022 (4) | 0.025 (5) | −0.029 (4) |
C8 | 0.112 (6) | 0.092 (5) | 0.136 (7) | −0.022 (5) | 0.017 (5) | −0.046 (5) |
C9 | 0.091 (5) | 0.109 (6) | 0.108 (6) | 0.024 (4) | 0.044 (5) | 0.002 (5) |
C10 | 0.071 (4) | 0.085 (5) | 0.121 (6) | 0.029 (4) | 0.036 (4) | 0.012 (4) |
C11 | 0.057 (4) | 0.117 (6) | 0.129 (6) | −0.003 (4) | 0.011 (4) | 0.036 (5) |
C12 | 0.059 (4) | 0.102 (6) | 0.135 (7) | −0.028 (4) | 0.002 (4) | 0.013 (5) |
F1 | 0.122 (3) | 0.087 (2) | 0.065 (2) | 0.032 (2) | 0.019 (2) | 0.0282 (19) |
N1 | 0.048 (2) | 0.049 (2) | 0.053 (2) | 0.0015 (17) | 0.0086 (18) | 0.0046 (18) |
C13 | 0.053 (3) | 0.096 (4) | 0.075 (4) | −0.004 (3) | 0.006 (3) | 0.019 (3) |
C14 | 0.054 (3) | 0.048 (3) | 0.047 (3) | 0.002 (2) | 0.011 (2) | −0.003 (2) |
C15 | 0.053 (3) | 0.078 (4) | 0.081 (4) | 0.012 (3) | 0.018 (3) | 0.022 (3) |
C16 | 0.072 (4) | 0.075 (4) | 0.086 (4) | 0.011 (3) | 0.032 (3) | 0.024 (3) |
C17 | 0.090 (4) | 0.055 (3) | 0.053 (3) | 0.007 (3) | 0.010 (3) | 0.005 (2) |
C18 | 0.061 (4) | 0.105 (5) | 0.074 (4) | 0.015 (3) | 0.003 (3) | 0.026 (4) |
Fe2 | 0.0551 (5) | 0.0653 (5) | 0.0706 (5) | 0.0049 (4) | 0.0089 (4) | −0.0102 (4) |
Cl1 | 0.0592 (10) | 0.1006 (14) | 0.187 (2) | 0.0182 (9) | −0.0152 (12) | −0.0312 (14) |
Cl2 | 0.1251 (17) | 0.0938 (13) | 0.1119 (15) | 0.0013 (11) | −0.0090 (12) | −0.0418 (12) |
Cl3 | 0.0859 (11) | 0.0766 (10) | 0.0914 (11) | 0.0080 (8) | 0.0180 (9) | 0.0043 (9) |
Cl4 | 0.1298 (18) | 0.1178 (16) | 0.1061 (15) | 0.0209 (13) | 0.0577 (13) | 0.0211 (12) |
O1—C12 | 1.401 (8) | C8—H8B | 0.9700 |
O1—C1 | 1.425 (9) | C9—C10 | 1.480 (12) |
O2—C3 | 1.357 (8) | C9—H9A | 0.9700 |
O2—C2 | 1.428 (8) | C9—H9B | 0.9700 |
O3—C5 | 1.388 (7) | C10—H10A | 0.9700 |
O3—C4 | 1.420 (7) | C10—H10B | 0.9700 |
O4—C7 | 1.388 (8) | C11—C12 | 1.476 (11) |
O4—C6 | 1.441 (8) | C11—H11A | 0.9700 |
O5—C9 | 1.390 (8) | C11—H11B | 0.9700 |
O5—C8 | 1.391 (9) | C12—H12A | 0.9700 |
O6—C11 | 1.396 (9) | C12—H12B | 0.9700 |
O6—C10 | 1.428 (8) | F1—C17 | 1.356 (6) |
C1—C2 | 1.471 (11) | N1—C14 | 1.467 (6) |
C1—H1A | 0.9700 | N1—H1C | 0.8900 |
C1—H1B | 0.9700 | N1—H1D | 0.8900 |
C2—H2A | 0.9700 | N1—H1E | 0.8900 |
C2—H2B | 0.9700 | C13—C14 | 1.341 (8) |
C3—C4 | 1.486 (10) | C13—C18 | 1.396 (8) |
C3—H3A | 0.9700 | C13—H13A | 0.9300 |
C3—H3B | 0.9700 | C14—C15 | 1.371 (7) |
C4—H4A | 0.9700 | C15—C16 | 1.381 (8) |
C4—H4B | 0.9700 | C15—H15A | 0.9300 |
C5—C6 | 1.487 (10) | C16—C17 | 1.349 (9) |
C5—H5A | 0.9700 | C16—H16A | 0.9300 |
C5—H5B | 0.9700 | C17—C18 | 1.317 (8) |
C6—H6A | 0.9700 | C18—H18A | 0.9300 |
C6—H6B | 0.9700 | Fe2—Cl1 | 2.170 (3) |
C7—C8 | 1.495 (12) | Fe2—Cl2 | 2.175 (2) |
C7—H7A | 0.9700 | Fe2—Cl4 | 2.175 (3) |
C7—H7B | 0.9700 | Fe2—Cl3 | 2.184 (2) |
C8—H8A | 0.9700 | ||
C12—O1—C1 | 113.4 (6) | O5—C9—C10 | 107.4 (7) |
C3—O2—C2 | 113.5 (5) | O5—C9—H9A | 110.2 |
C5—O3—C4 | 112.9 (5) | C10—C9—H9A | 110.2 |
C7—O4—C6 | 111.2 (5) | O5—C9—H9B | 110.2 |
C9—O5—C8 | 113.0 (7) | C10—C9—H9B | 110.2 |
C11—O6—C10 | 113.7 (6) | H9A—C9—H9B | 108.5 |
O1—C1—C2 | 110.2 (6) | O6—C10—C9 | 110.3 (6) |
O1—C1—H1A | 109.6 | O6—C10—H10A | 109.6 |
C2—C1—H1A | 109.6 | C9—C10—H10A | 109.6 |
O1—C1—H1B | 109.6 | O6—C10—H10B | 109.6 |
C2—C1—H1B | 109.6 | C9—C10—H10B | 109.6 |
H1A—C1—H1B | 108.1 | H10A—C10—H10B | 108.1 |
O2—C2—C1 | 111.2 (6) | O6—C11—C12 | 110.7 (6) |
O2—C2—H2A | 109.4 | O6—C11—H11A | 109.5 |
C1—C2—H2A | 109.4 | C12—C11—H11A | 109.5 |
O2—C2—H2B | 109.4 | O6—C11—H11B | 109.5 |
C1—C2—H2B | 109.4 | C12—C11—H11B | 109.5 |
H2A—C2—H2B | 108.0 | H11A—C11—H11B | 108.1 |
O2—C3—C4 | 110.3 (6) | O1—C12—C11 | 108.9 (6) |
O2—C3—H3A | 109.6 | O1—C12—H12A | 109.9 |
C4—C3—H3A | 109.6 | C11—C12—H12A | 109.9 |
O2—C3—H3B | 109.6 | O1—C12—H12B | 109.9 |
C4—C3—H3B | 109.6 | C11—C12—H12B | 109.9 |
H3A—C3—H3B | 108.1 | H12A—C12—H12B | 108.3 |
O3—C4—C3 | 109.9 (5) | C14—N1—H1C | 109.5 |
O3—C4—H4A | 109.7 | C14—N1—H1D | 109.5 |
C3—C4—H4A | 109.7 | H1C—N1—H1D | 109.5 |
O3—C4—H4B | 109.7 | C14—N1—H1E | 109.5 |
C3—C4—H4B | 109.7 | H1C—N1—H1E | 109.5 |
H4A—C4—H4B | 108.2 | H1D—N1—H1E | 109.5 |
O3—C5—C6 | 109.3 (5) | C14—C13—C18 | 119.8 (5) |
O3—C5—H5A | 109.8 | C14—C13—H13A | 120.1 |
C6—C5—H5A | 109.8 | C18—C13—H13A | 120.1 |
O3—C5—H5B | 109.8 | C13—C14—C15 | 120.0 (5) |
C6—C5—H5B | 109.8 | C13—C14—N1 | 120.8 (5) |
H5A—C5—H5B | 108.3 | C15—C14—N1 | 119.2 (5) |
O4—C6—C5 | 110.3 (5) | C14—C15—C16 | 119.7 (5) |
O4—C6—H6A | 109.6 | C14—C15—H15A | 120.1 |
C5—C6—H6A | 109.6 | C16—C15—H15A | 120.1 |
O4—C6—H6B | 109.6 | C17—C16—C15 | 118.5 (5) |
C5—C6—H6B | 109.6 | C17—C16—H16A | 120.7 |
H6A—C6—H6B | 108.1 | C15—C16—H16A | 120.7 |
O4—C7—C8 | 109.2 (7) | C18—C17—C16 | 122.6 (6) |
O4—C7—H7A | 109.8 | C18—C17—F1 | 119.3 (6) |
C8—C7—H7A | 109.8 | C16—C17—F1 | 118.1 (6) |
O4—C7—H7B | 109.8 | C17—C18—C13 | 119.2 (6) |
C8—C7—H7B | 109.8 | C17—C18—H18A | 120.4 |
H7A—C7—H7B | 108.3 | C13—C18—H18A | 120.4 |
O5—C8—C7 | 109.9 (7) | Cl1—Fe2—Cl2 | 109.35 (9) |
O5—C8—H8A | 109.7 | Cl1—Fe2—Cl4 | 108.36 (13) |
C7—C8—H8A | 109.7 | Cl2—Fe2—Cl4 | 110.70 (12) |
O5—C8—H8B | 109.7 | Cl1—Fe2—Cl3 | 110.46 (9) |
C7—C8—H8B | 109.7 | Cl2—Fe2—Cl3 | 108.32 (11) |
H8A—C8—H8B | 108.2 | Cl4—Fe2—Cl3 | 109.66 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1C···O4i | 0.89 | 1.98 | 2.868 (6) | 176 |
N1—H1D···O6i | 0.89 | 2.04 | 2.924 (6) | 173 |
N1—H1E···O2i | 0.89 | 1.98 | 2.840 (6) | 162 |
Symmetry code: (i) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | (C6H7FN)[FeCl4]·C12H24O6 |
Mr | 574.09 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 11.45 (1), 24.14 (2), 9.719 (9) |
β (°) | 96.82 (2) |
V (Å3) | 2667 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.00 |
Crystal size (mm) | 0.20 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Rigaku SCXmini diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.818, 0.818 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 26978, 6039, 3173 |
Rint | 0.068 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.078, 0.271, 1.07 |
No. of reflections | 6039 |
No. of parameters | 281 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.49, −0.35 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1C···O4i | 0.89 | 1.98 | 2.868 (6) | 176.3 |
N1—H1D···O6i | 0.89 | 2.04 | 2.924 (6) | 173.0 |
N1—H1E···O2i | 0.89 | 1.98 | 2.840 (6) | 161.6 |
Symmetry code: (i) x, y, z−1. |
Acknowledgements
The authors thank the start-up projects for Postdoctoral Research Funds of Southeast University (grant No. 1112000047) and the starter fund of Southeast University for financial support to buy the X-ray diffractometer.
References
Fender, N. S., Kahwa, I. A. & Fronczek, F. R. (2002). J. Solid State Chem. 163, 286–293. Web of Science CSD CrossRef CAS Google Scholar
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada. Google Scholar
Fu, D. W., Song, Y. M., Wang, G. X., Ye, Q., Xiong, R. G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. P. (2007). J. Am. Chem. Soc. 129, 5346–5347. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ye, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 42–43. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, W., Cheng, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544–12545. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Crown ethers have attracted much attention because of their ability to form non-covalent, H-bonding complexes with ammonium cations both in solid and in solution (Fender et al. 2002). Both the size of the crown ether and the nature of the ammonium cation (-NH4+, RNH3+, etc) can influence the stoichiometry and stability of these host-guest complexes. The host molecules combine with the guest species by intermolecular interactions, and if the host molecule possess some specific sites (by chelate effect), it is easy to realise high selectivity in ion or molecular recognitions.18-crown-6 have the highest affinity for ammonium cation RNH3+ and most studies of 18-crown-6 and its derivatives invariably showed a 1:1 stoichiometry with RNH3+ cations.
In continuation of our investigations on ferroelectric phase transitions materials the dielectric permittivity of the title compound was tested (Fu et al. 2007; Ye et al. 2009; Zhang et al. 2009). The title compound shows no dielectric anomalies with values of 6-8 and 7-10 in the temperature ranges from 80 to 300 K and 300 K to 400 K (below the compound melting point 433 K), respectively. These findings suggest that the compound should exhibit no distinct phase transition within the measured temperature range.
The title compound crystallizes in the P21/c space group. The asymmetric unit of the title compound is composed of a cationic [(C6H4FN3) (18-Crown-6)]+ moiety and one isolated anionic [FeCl4]- (Fig 1). The protonated p-fluoroanilinium [C6H4FNH3]+ and 18-crown-6 form a superamolecular rotator-stator-like structure by forming N—H···O hydrogen bonds between the -NH3+ substitutents of the cations and oxygen atoms of crown ethers. Intramolecular N—H···O hydrogen distances within the usual range: 2.950 (6) and 2.840 (6) Å. The crown ring is slight distorted. The six oxygen atoms of the crown ether lie approximately in a plane. The C—N bonds of [C6H4FNH3]+ are almost perpendicular to the mean oxygen plane.
The typical Fe—Cl bond lengths in the tetrahedral coordinate anion [FeCl4]- are within 2.170 (3)-2.184 (2) Å. The Cl—Fe—Cl bond angles indicate little distortion from a regular tetrahedron [spread of values 108.3 (1)-110.7 (1)°].
Fig. 2 shows a view down the a axis. An alternate arrangement of cation and anion layers is observed along the c axis, a couple of head-to-head rotator-stator cations and an anion [FeCl4]- along the b axis. No significantly short intermolecular hydrogen bond was observed.