metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Fluoro­anilinium tetra­chloridoferrate(III) 18-crown-6 clathrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: gjz@seu.edu.cn

(Received 15 May 2010; accepted 27 May 2010; online 5 June 2010)

The reaction of 4-fluoro­aniline hydro­chloride, 18-crown-6 and ferric chloride in methano­lic solution yields the title compound, (C6H7FN)[FeCl4]·C12H24O6, which has an unusual supramolecular structure. N—H⋯O hydrogen-bonding inter­actions between the NH3+ substituents of the 4-fluoro­anilinium cations and the O atoms of the crown ether mol­ecules result in a rotator–stator-like structure.

Related literature

For a related 18-crown-6 clathrate, see: Fender et al. (2002[Fender, N. S., Kahwa, I. A. & Fronczek, F. R. (2002). J. Solid State Chem. 163, 286-293.]). For the ferroelectric properties of selected transition metal complexes, see: Fu et al. (2007[Fu, D. W., Song, Y. M., Wang, G. X., Ye, Q., Xiong, R. G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. P. (2007). J. Am. Chem. Soc. 129, 5346-5347.]); Ye et al. (2009[Ye, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 42-43.]); Zhang et al. (2009[Zhang, W., Cheng, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544-12545.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H7FN)[FeCl4]·C12H24O6

  • Mr = 574.09

  • Monoclinic, P 21 /c

  • a = 11.45 (1) Å

  • b = 24.14 (2) Å

  • c = 9.719 (9) Å

  • β = 96.82 (2)°

  • V = 2667 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.818, Tmax = 0.818

  • 26978 measured reflections

  • 6039 independent reflections

  • 3173 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.271

  • S = 1.07

  • 6039 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O4i 0.89 1.98 2.868 (6) 176
N1—H1D⋯O6i 0.89 2.04 2.924 (6) 173
N1—H1E⋯O2i 0.89 1.98 2.840 (6) 162
Symmetry code: (i) x, y, z-1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

Crown ethers have attracted much attention because of their ability to form non-covalent, H-bonding complexes with ammonium cations both in solid and in solution (Fender et al. 2002). Both the size of the crown ether and the nature of the ammonium cation (-NH4+, RNH3+, etc) can influence the stoichiometry and stability of these host-guest complexes. The host molecules combine with the guest species by intermolecular interactions, and if the host molecule possess some specific sites (by chelate effect), it is easy to realise high selectivity in ion or molecular recognitions.18-crown-6 have the highest affinity for ammonium cation RNH3+ and most studies of 18-crown-6 and its derivatives invariably showed a 1:1 stoichiometry with RNH3+ cations.

In continuation of our investigations on ferroelectric phase transitions materials the dielectric permittivity of the title compound was tested (Fu et al. 2007; Ye et al. 2009; Zhang et al. 2009). The title compound shows no dielectric anomalies with values of 6-8 and 7-10 in the temperature ranges from 80 to 300 K and 300 K to 400 K (below the compound melting point 433 K), respectively. These findings suggest that the compound should exhibit no distinct phase transition within the measured temperature range.

The title compound crystallizes in the P21/c space group. The asymmetric unit of the title compound is composed of a cationic [(C6H4FN3) (18-Crown-6)]+ moiety and one isolated anionic [FeCl4]- (Fig 1). The protonated p-fluoroanilinium [C6H4FNH3]+ and 18-crown-6 form a superamolecular rotator-stator-like structure by forming N—H···O hydrogen bonds between the -NH3+ substitutents of the cations and oxygen atoms of crown ethers. Intramolecular N—H···O hydrogen distances within the usual range: 2.950 (6) and 2.840 (6) Å. The crown ring is slight distorted. The six oxygen atoms of the crown ether lie approximately in a plane. The C—N bonds of [C6H4FNH3]+ are almost perpendicular to the mean oxygen plane.

The typical Fe—Cl bond lengths in the tetrahedral coordinate anion [FeCl4]- are within 2.170 (3)-2.184 (2) Å. The Cl—Fe—Cl bond angles indicate little distortion from a regular tetrahedron [spread of values 108.3 (1)-110.7 (1)°].

Fig. 2 shows a view down the a axis. An alternate arrangement of cation and anion layers is observed along the c axis, a couple of head-to-head rotator-stator cations and an anion [FeCl4]- along the b axis. No significantly short intermolecular hydrogen bond was observed.

Related literature top

For a related 18-crown-6 clathrate, see: Fender et al. (2002). For the ferroelectric properties of selected transition metal complexes, see: Fu et al. (2007); Ye et al. (2009); Zhang et al. (2009).

Experimental top

p-F-C6H4-NH2 × HCl (2 mmol, 0.295 g) and 18-crown-6 (2 mmol, 0.528 g) were dissolved in methanol. After addition of ferric chloride (2 mmol, 0.54 g) in concentrated hydrochloric acid, a precipitate (yield is about 95%) was formed, filtered and washed with a small amount of methanol. Single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of methanol and DMF (v/v 3/1) from the solution at room temperature after two days.

Refinement top

All hydrogens were were calculated geometrically. The positions of the H atoms of the nitrogen atoms were refined using a riding model with N—H = 0.89 Å and Uiso(H) = 1.5Ueq(N). C—H groups were also refined using a riding model for hydrogen atoms with C—H distances ranging from 0.93 to 0.97 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the a axis. Dashed lines indicate hydrogen bonds.
4-Fluoroanilinium tetrachloridoferrate(III)–1,4,7,10,13,16-hexaoxacyclooctadecane (1/1) top
Crystal data top
(C6H7FN)[FeCl4]·C12H24O6F(000) = 1188
Mr = 574.09Dx = 1.430 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5625 reflections
a = 11.45 (1) Åθ = 2.3–27.5°
b = 24.14 (2) ŵ = 1.00 mm1
c = 9.719 (9) ÅT = 293 K
β = 96.82 (2)°Block, pale yellow
V = 2667 (4) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
6039 independent reflections
Radiation source: fine-focus sealed tube3173 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 3131
Tmin = 0.818, Tmax = 0.818l = 1212
26978 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.271H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1312P)2 + 0.8151P]
where P = (Fo2 + 2Fc2)/3
6039 reflections(Δ/σ)max = 0.005
281 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
(C6H7FN)[FeCl4]·C12H24O6V = 2667 (4) Å3
Mr = 574.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.45 (1) ŵ = 1.00 mm1
b = 24.14 (2) ÅT = 293 K
c = 9.719 (9) Å0.20 × 0.20 × 0.20 mm
β = 96.82 (2)°
Data collection top
Rigaku SCXmini
diffractometer
6039 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3173 reflections with I > 2σ(I)
Tmin = 0.818, Tmax = 0.818Rint = 0.068
26978 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0780 restraints
wR(F2) = 0.271H-atom parameters constrained
S = 1.07Δρmax = 0.49 e Å3
6039 reflectionsΔρmin = 0.35 e Å3
281 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5434 (4)0.09467 (19)0.7021 (5)0.0842 (13)
O20.7834 (4)0.06611 (18)0.6808 (4)0.0816 (12)
O30.9463 (3)0.14900 (18)0.7297 (5)0.0741 (11)
O40.8972 (4)0.23864 (18)0.8904 (5)0.0849 (13)
O50.6635 (4)0.25943 (19)0.9254 (5)0.0903 (14)
O60.4892 (4)0.1787 (2)0.8722 (5)0.0895 (14)
C10.5820 (8)0.0397 (3)0.6788 (9)0.102 (2)
H1A0.51880.01900.62680.122*
H1B0.60250.02120.76700.122*
C20.6847 (7)0.0408 (3)0.6013 (8)0.093 (2)
H2A0.70490.00330.57760.112*
H2B0.66530.06130.51580.112*
C30.8831 (6)0.0647 (3)0.6178 (7)0.0800 (18)
H3A0.86880.08240.52780.096*
H3B0.90530.02650.60390.096*
C40.9802 (6)0.0937 (3)0.7041 (7)0.0798 (18)
H4A0.99870.07430.79130.096*
H4B1.05000.09390.65650.096*
C51.0380 (5)0.1806 (3)0.7950 (8)0.086 (2)
H5A1.10340.18060.74000.104*
H5B1.06500.16480.88500.104*
C60.9964 (6)0.2383 (3)0.8120 (9)0.091 (2)
H6A1.05960.26030.85950.109*
H6B0.97390.25460.72160.109*
C70.8554 (8)0.2921 (3)0.9050 (10)0.104 (3)
H7A0.82860.30740.81450.124*
H7B0.91800.31540.94880.124*
C80.7560 (8)0.2905 (3)0.9917 (11)0.113 (3)
H8A0.78250.27431.08120.136*
H8B0.72930.32801.00670.136*
C90.5658 (7)0.2584 (4)0.9976 (9)0.100 (2)
H9A0.54700.29551.02610.120*
H9B0.58130.23551.07980.120*
C100.4667 (6)0.2353 (3)0.9035 (9)0.091 (2)
H10A0.39480.23770.94690.109*
H10B0.45610.25670.81840.109*
C110.4035 (6)0.1551 (4)0.7758 (10)0.101 (2)
H11A0.39810.17590.68990.122*
H11B0.32760.15690.81080.122*
C120.4324 (6)0.0968 (3)0.7491 (10)0.100 (2)
H12A0.43290.07530.83340.119*
H12B0.37360.08130.67970.119*
F10.8204 (4)0.00256 (15)0.3199 (4)0.0906 (12)
N10.7364 (3)0.14716 (16)0.1213 (4)0.0498 (9)
H1C0.78530.17600.11400.075*
H1D0.66250.15920.12760.075*
H1E0.74670.12770.19670.075*
C130.8711 (5)0.0971 (3)0.0489 (7)0.0748 (17)
H13A0.93400.11170.00850.090*
C140.7606 (4)0.11179 (19)0.0016 (5)0.0493 (11)
C150.6684 (5)0.0924 (3)0.0657 (7)0.0699 (16)
H15A0.59200.10370.03550.084*
C160.6894 (6)0.0558 (3)0.1752 (7)0.0758 (17)
H16A0.62790.04270.22060.091*
C170.8011 (6)0.0396 (2)0.2148 (6)0.0658 (15)
C180.8913 (6)0.0598 (3)0.1588 (7)0.0804 (18)
H18A0.96760.04930.19220.096*
Fe20.25883 (7)0.12580 (3)0.22601 (9)0.0635 (3)
Cl10.44359 (16)0.11643 (9)0.3030 (3)0.1179 (8)
Cl20.2109 (2)0.06493 (9)0.0642 (2)0.1121 (7)
Cl30.22522 (16)0.20828 (7)0.13775 (19)0.0840 (5)
Cl40.1561 (2)0.11388 (10)0.3981 (2)0.1144 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.079 (3)0.078 (3)0.094 (3)0.018 (2)0.006 (2)0.002 (2)
O20.104 (4)0.073 (3)0.070 (3)0.002 (2)0.015 (2)0.007 (2)
O30.058 (2)0.079 (3)0.086 (3)0.010 (2)0.012 (2)0.006 (2)
O40.081 (3)0.076 (3)0.100 (3)0.021 (2)0.021 (2)0.006 (2)
O50.086 (3)0.078 (3)0.109 (4)0.010 (2)0.022 (3)0.015 (3)
O60.062 (3)0.098 (3)0.109 (4)0.013 (2)0.013 (2)0.017 (3)
C10.122 (7)0.089 (5)0.091 (5)0.017 (5)0.003 (5)0.016 (4)
C20.115 (6)0.074 (4)0.090 (5)0.018 (4)0.011 (4)0.024 (4)
C30.093 (5)0.077 (4)0.073 (4)0.029 (4)0.017 (3)0.005 (3)
C40.080 (4)0.072 (4)0.089 (5)0.020 (3)0.017 (4)0.000 (3)
C50.045 (3)0.101 (5)0.114 (5)0.010 (3)0.010 (3)0.013 (4)
C60.068 (4)0.097 (5)0.110 (6)0.021 (4)0.020 (4)0.006 (4)
C70.127 (7)0.066 (4)0.120 (6)0.022 (4)0.025 (5)0.029 (4)
C80.112 (6)0.092 (5)0.136 (7)0.022 (5)0.017 (5)0.046 (5)
C90.091 (5)0.109 (6)0.108 (6)0.024 (4)0.044 (5)0.002 (5)
C100.071 (4)0.085 (5)0.121 (6)0.029 (4)0.036 (4)0.012 (4)
C110.057 (4)0.117 (6)0.129 (6)0.003 (4)0.011 (4)0.036 (5)
C120.059 (4)0.102 (6)0.135 (7)0.028 (4)0.002 (4)0.013 (5)
F10.122 (3)0.087 (2)0.065 (2)0.032 (2)0.019 (2)0.0282 (19)
N10.048 (2)0.049 (2)0.053 (2)0.0015 (17)0.0086 (18)0.0046 (18)
C130.053 (3)0.096 (4)0.075 (4)0.004 (3)0.006 (3)0.019 (3)
C140.054 (3)0.048 (3)0.047 (3)0.002 (2)0.011 (2)0.003 (2)
C150.053 (3)0.078 (4)0.081 (4)0.012 (3)0.018 (3)0.022 (3)
C160.072 (4)0.075 (4)0.086 (4)0.011 (3)0.032 (3)0.024 (3)
C170.090 (4)0.055 (3)0.053 (3)0.007 (3)0.010 (3)0.005 (2)
C180.061 (4)0.105 (5)0.074 (4)0.015 (3)0.003 (3)0.026 (4)
Fe20.0551 (5)0.0653 (5)0.0706 (5)0.0049 (4)0.0089 (4)0.0102 (4)
Cl10.0592 (10)0.1006 (14)0.187 (2)0.0182 (9)0.0152 (12)0.0312 (14)
Cl20.1251 (17)0.0938 (13)0.1119 (15)0.0013 (11)0.0090 (12)0.0418 (12)
Cl30.0859 (11)0.0766 (10)0.0914 (11)0.0080 (8)0.0180 (9)0.0043 (9)
Cl40.1298 (18)0.1178 (16)0.1061 (15)0.0209 (13)0.0577 (13)0.0211 (12)
Geometric parameters (Å, º) top
O1—C121.401 (8)C8—H8B0.9700
O1—C11.425 (9)C9—C101.480 (12)
O2—C31.357 (8)C9—H9A0.9700
O2—C21.428 (8)C9—H9B0.9700
O3—C51.388 (7)C10—H10A0.9700
O3—C41.420 (7)C10—H10B0.9700
O4—C71.388 (8)C11—C121.476 (11)
O4—C61.441 (8)C11—H11A0.9700
O5—C91.390 (8)C11—H11B0.9700
O5—C81.391 (9)C12—H12A0.9700
O6—C111.396 (9)C12—H12B0.9700
O6—C101.428 (8)F1—C171.356 (6)
C1—C21.471 (11)N1—C141.467 (6)
C1—H1A0.9700N1—H1C0.8900
C1—H1B0.9700N1—H1D0.8900
C2—H2A0.9700N1—H1E0.8900
C2—H2B0.9700C13—C141.341 (8)
C3—C41.486 (10)C13—C181.396 (8)
C3—H3A0.9700C13—H13A0.9300
C3—H3B0.9700C14—C151.371 (7)
C4—H4A0.9700C15—C161.381 (8)
C4—H4B0.9700C15—H15A0.9300
C5—C61.487 (10)C16—C171.349 (9)
C5—H5A0.9700C16—H16A0.9300
C5—H5B0.9700C17—C181.317 (8)
C6—H6A0.9700C18—H18A0.9300
C6—H6B0.9700Fe2—Cl12.170 (3)
C7—C81.495 (12)Fe2—Cl22.175 (2)
C7—H7A0.9700Fe2—Cl42.175 (3)
C7—H7B0.9700Fe2—Cl32.184 (2)
C8—H8A0.9700
C12—O1—C1113.4 (6)O5—C9—C10107.4 (7)
C3—O2—C2113.5 (5)O5—C9—H9A110.2
C5—O3—C4112.9 (5)C10—C9—H9A110.2
C7—O4—C6111.2 (5)O5—C9—H9B110.2
C9—O5—C8113.0 (7)C10—C9—H9B110.2
C11—O6—C10113.7 (6)H9A—C9—H9B108.5
O1—C1—C2110.2 (6)O6—C10—C9110.3 (6)
O1—C1—H1A109.6O6—C10—H10A109.6
C2—C1—H1A109.6C9—C10—H10A109.6
O1—C1—H1B109.6O6—C10—H10B109.6
C2—C1—H1B109.6C9—C10—H10B109.6
H1A—C1—H1B108.1H10A—C10—H10B108.1
O2—C2—C1111.2 (6)O6—C11—C12110.7 (6)
O2—C2—H2A109.4O6—C11—H11A109.5
C1—C2—H2A109.4C12—C11—H11A109.5
O2—C2—H2B109.4O6—C11—H11B109.5
C1—C2—H2B109.4C12—C11—H11B109.5
H2A—C2—H2B108.0H11A—C11—H11B108.1
O2—C3—C4110.3 (6)O1—C12—C11108.9 (6)
O2—C3—H3A109.6O1—C12—H12A109.9
C4—C3—H3A109.6C11—C12—H12A109.9
O2—C3—H3B109.6O1—C12—H12B109.9
C4—C3—H3B109.6C11—C12—H12B109.9
H3A—C3—H3B108.1H12A—C12—H12B108.3
O3—C4—C3109.9 (5)C14—N1—H1C109.5
O3—C4—H4A109.7C14—N1—H1D109.5
C3—C4—H4A109.7H1C—N1—H1D109.5
O3—C4—H4B109.7C14—N1—H1E109.5
C3—C4—H4B109.7H1C—N1—H1E109.5
H4A—C4—H4B108.2H1D—N1—H1E109.5
O3—C5—C6109.3 (5)C14—C13—C18119.8 (5)
O3—C5—H5A109.8C14—C13—H13A120.1
C6—C5—H5A109.8C18—C13—H13A120.1
O3—C5—H5B109.8C13—C14—C15120.0 (5)
C6—C5—H5B109.8C13—C14—N1120.8 (5)
H5A—C5—H5B108.3C15—C14—N1119.2 (5)
O4—C6—C5110.3 (5)C14—C15—C16119.7 (5)
O4—C6—H6A109.6C14—C15—H15A120.1
C5—C6—H6A109.6C16—C15—H15A120.1
O4—C6—H6B109.6C17—C16—C15118.5 (5)
C5—C6—H6B109.6C17—C16—H16A120.7
H6A—C6—H6B108.1C15—C16—H16A120.7
O4—C7—C8109.2 (7)C18—C17—C16122.6 (6)
O4—C7—H7A109.8C18—C17—F1119.3 (6)
C8—C7—H7A109.8C16—C17—F1118.1 (6)
O4—C7—H7B109.8C17—C18—C13119.2 (6)
C8—C7—H7B109.8C17—C18—H18A120.4
H7A—C7—H7B108.3C13—C18—H18A120.4
O5—C8—C7109.9 (7)Cl1—Fe2—Cl2109.35 (9)
O5—C8—H8A109.7Cl1—Fe2—Cl4108.36 (13)
C7—C8—H8A109.7Cl2—Fe2—Cl4110.70 (12)
O5—C8—H8B109.7Cl1—Fe2—Cl3110.46 (9)
C7—C8—H8B109.7Cl2—Fe2—Cl3108.32 (11)
H8A—C8—H8B108.2Cl4—Fe2—Cl3109.66 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O4i0.891.982.868 (6)176
N1—H1D···O6i0.892.042.924 (6)173
N1—H1E···O2i0.891.982.840 (6)162
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formula(C6H7FN)[FeCl4]·C12H24O6
Mr574.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.45 (1), 24.14 (2), 9.719 (9)
β (°) 96.82 (2)
V3)2667 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.818, 0.818
No. of measured, independent and
observed [I > 2σ(I)] reflections
26978, 6039, 3173
Rint0.068
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.271, 1.07
No. of reflections6039
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.35

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O4i0.891.982.868 (6)176.3
N1—H1D···O6i0.892.042.924 (6)173.0
N1—H1E···O2i0.891.982.840 (6)161.6
Symmetry code: (i) x, y, z1.
 

Acknowledgements

The authors thank the start-up projects for Postdoctoral Research Funds of Southeast University (grant No. 1112000047) and the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationFender, N. S., Kahwa, I. A. & Fronczek, F. R. (2002). J. Solid State Chem. 163, 286–293.  Web of Science CSD CrossRef CAS Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFu, D. W., Song, Y. M., Wang, G. X., Ye, Q., Xiong, R. G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. P. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 42–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Cheng, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds