organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Meth­­oxy­anilinium hexa­fluoro­phosphate monohydrate

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fuxuequn222@163.com

(Received 25 May 2010; accepted 10 June 2010; online 23 June 2010)

In the structure of the title compound, C7H10NO+·PF6·H2O, the protonated 4-meth­oxy­anilinium cations and hexa­fluoro­phosphate anions are bridged by the water mol­ecule via N—H⋯O and O—H⋯F hydrogen bonds. The resulting zigzag chains extend along the c axis. In addition, C—H⋯π inter­actions are observed in the crystal packing.

Related literature

The title compound was studied as part of our search for ferroelectric compounds, which usually have a phase transition. For background to phase-transition materials, see: Li et al. (2008[Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959-1962.]); Zhang et al. (2009[Zhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544-12545.]); Fu (2009[Fu, X. (2009). Acta Cryst. E65, o2344.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10NO+·PF6·H2O

  • Mr = 287.15

  • Monoclinic, P 21 /c

  • a = 15.152 (3) Å

  • b = 5.079 (1) Å

  • c = 14.758 (3) Å

  • β = 94.26 (3)°

  • V = 1132.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.939, Tmax = 0.939

  • 11166 measured reflections

  • 2602 independent reflections

  • 2083 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.145

  • S = 1.06

  • 2602 reflections

  • 199 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O1W 0.84 (3) 2.06 (3) 2.896 (3) 172 (3)
N1—H1A⋯O1Wi 0.92 (3) 2.00 (3) 2.917 (3) 172 (3)
N1—H1B⋯F3ii 0.87 (3) 2.32 (3) 3.056 (5) 142 (2)
N1—H1B⋯F1iii 0.87 (3) 2.49 (3) 3.049 (5) 123 (2)
O1W—H1WB⋯F6iv 0.85 (2) 2.21 (4) 2.91 (2) 139 (3)
O1W—H1WB⋯F4v 0.85 (2) 2.57 (4) 3.04 (3) 116 (3)
C7—H7BCg1vi 0.96 3.18 4.013 (5) 146
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) -x+2, -y, -z+1; (v) -x+2, -y+1, -z+1; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

As a continuation of our study of dielectric-ferroelectric materials, including organic ligands (Li et al., 2008), metal-organic coordination compounds (Zhang et al., 2009) and organic-inorganic hybrid materials, we studied the dielectric properties of the title compound. Unfortunately, there was no distinct anomaly observed from 93 K to 350 K, suggesting that this compound should be not a real ferroelectric material or there may be no distinct phase transition occurred within the measured temperature range. The crystal structure of 4-methoxyanilinium bromide is known (Fu, 2009). In this article, the crystal structure of the title compound is presented.

The asymmetric unit of the title compound consists of an almost planar 4-methoxyanilinium cation with a mean deviation from the plan of 0.0512 Å, a disordered hexafluorophosphate anion and a water molecule (Fig.1). N—H···F, N—H···O and O—H···F hydrogen bonds link the cations, anions and water molecules to chains along c axis (Fig.2). The C—H···π interactions with a C7···Cg1 distance of 4.013 (5) Å are also observed in the crystal packing.

Related literature top

For background to phase transition materials, see: Li et al. (2008); Zhang et al. (2009); Fu (2009).

Experimental top

1.23 g (10 mmol) 4-Methoxyaniline was dissolved in 10 ml e thanol, to which hexafluorophosphoric acid in aqueous solution (70% w/w) was then added under stirring until the pH of the solution was ca 6. Ethanol was added until all suspended substrates disappeared. Single crystals of the title compound were prepared by slow evaporation of the acidic solution at room temperature of the acidic solution after 3 days giving a yield of 85%.

Refinement top

Positional parameters of all the H atoms bonded to C atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C) for the methyl group. H atoms bonded to N and O atoms were found in the difference Fourier maps and were refined using restraints for O—H and N—H bond distances (0.85–0.86 Å) and angles at the corresponding O and N atoms. Thermal parameters of these hydrogen atoms were refined freely.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.
4-Methoxyanilinium hexafluorophosphate monohydrate top
Crystal data top
C7H10NO+·PF6·H2OF(000) = 584
Mr = 287.15Dx = 1.684 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5000 reflections
a = 15.152 (3) Åθ = 3.1–27.6°
b = 5.079 (1) ŵ = 0.32 mm1
c = 14.758 (3) ÅT = 298 K
β = 94.26 (3)°Prism, colourless
V = 1132.6 (4) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2602 independent reflections
Radiation source: fine-focus sealed tube2083 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 1919
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 66
Tmin = 0.939, Tmax = 0.939l = 1918
11166 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0694P)2 + 0.5932P]
where P = (Fo2 + 2Fc2)/3
2602 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.45 e Å3
3 restraintsΔρmin = 0.43 e Å3
Crystal data top
C7H10NO+·PF6·H2OV = 1132.6 (4) Å3
Mr = 287.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.152 (3) ŵ = 0.32 mm1
b = 5.079 (1) ÅT = 298 K
c = 14.758 (3) Å0.20 × 0.20 × 0.20 mm
β = 94.26 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2602 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2083 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.939Rint = 0.052
11166 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0533 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.45 e Å3
2602 reflectionsΔρmin = 0.43 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.83257 (13)0.3532 (5)0.34412 (16)0.0380 (5)
H1B0.8411 (18)0.369 (5)0.287 (2)0.044 (7)*
H1A0.8573 (19)0.507 (6)0.368 (2)0.054 (8)*
H1C0.858 (2)0.217 (7)0.365 (2)0.059 (9)*
C10.73739 (14)0.3340 (4)0.35733 (15)0.0341 (5)
C60.70834 (17)0.1498 (5)0.41677 (18)0.0464 (6)
H6A0.74820.03650.44790.056*
C40.56043 (16)0.3061 (5)0.38507 (18)0.0456 (6)
C20.67959 (18)0.5003 (5)0.3115 (2)0.0523 (7)
H2A0.70010.62200.27090.063*
O10.47356 (12)0.2800 (5)0.40334 (16)0.0671 (6)
C50.61892 (17)0.1359 (6)0.42951 (19)0.0520 (7)
H5A0.59840.01000.46860.062*
C30.58996 (18)0.4883 (6)0.3253 (2)0.0568 (8)
H3A0.55030.60250.29450.068*
C70.4131 (2)0.4775 (8)0.3713 (3)0.0747 (10)
H7A0.35500.43450.38870.112*
H7B0.41220.48780.30630.112*
H7C0.43120.64400.39730.112*
O1W0.91135 (11)0.1445 (4)0.40178 (13)0.0430 (4)
H1WA0.925 (2)0.165 (7)0.4589 (12)0.069 (10)*
H1WB0.9587 (16)0.128 (8)0.3745 (18)0.082 (12)*
P10.87333 (4)0.53074 (12)0.62599 (4)0.0359 (2)
F50.8065 (12)0.680 (4)0.5640 (14)0.067 (5)0.582 (6)
F30.7987 (3)0.3110 (9)0.6454 (3)0.0524 (4)0.582 (6)
F10.8401 (3)0.7005 (8)0.7068 (3)0.0524 (4)0.582 (6)
F40.9546 (19)0.699 (6)0.5972 (19)0.069 (5)0.582 (6)
F60.9439 (11)0.379 (3)0.6897 (13)0.067 (4)0.582 (6)
F20.9045 (3)0.3475 (11)0.5434 (3)0.0524 (4)0.582 (6)
F3'0.7951 (4)0.3803 (12)0.6680 (4)0.0524 (4)0.418 (6)
F5'0.8045 (13)0.667 (4)0.5461 (19)0.046 (2)0.418 (6)
F1'0.8666 (4)0.7675 (12)0.6988 (4)0.0524 (4)0.418 (6)
F6'0.9394 (13)0.388 (4)0.7046 (18)0.047 (2)0.418 (6)
F4'0.945 (2)0.740 (8)0.598 (2)0.065 (6)0.418 (6)
F2'0.8876 (4)0.3068 (15)0.5555 (5)0.0524 (4)0.418 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0359 (11)0.0378 (11)0.0412 (12)0.0003 (9)0.0080 (9)0.0002 (9)
C10.0338 (11)0.0351 (11)0.0340 (11)0.0031 (9)0.0065 (9)0.0053 (9)
C60.0441 (13)0.0461 (14)0.0498 (14)0.0043 (11)0.0088 (11)0.0103 (11)
C40.0356 (12)0.0542 (15)0.0479 (14)0.0046 (11)0.0088 (10)0.0055 (12)
C20.0456 (14)0.0516 (15)0.0606 (17)0.0013 (12)0.0091 (12)0.0214 (13)
O10.0357 (10)0.0845 (15)0.0826 (15)0.0045 (10)0.0152 (9)0.0085 (12)
C50.0486 (15)0.0540 (16)0.0552 (16)0.0036 (12)0.0156 (12)0.0134 (13)
C30.0411 (14)0.0623 (18)0.0668 (18)0.0074 (13)0.0021 (13)0.0176 (14)
C70.0395 (15)0.100 (3)0.086 (2)0.0104 (17)0.0084 (15)0.015 (2)
O1W0.0348 (9)0.0483 (10)0.0466 (10)0.0002 (8)0.0074 (8)0.0041 (8)
P10.0356 (3)0.0405 (3)0.0323 (3)0.0051 (2)0.0072 (2)0.0037 (2)
F50.067 (4)0.088 (5)0.045 (8)0.016 (3)0.004 (3)0.024 (4)
F30.0545 (9)0.0554 (14)0.0500 (10)0.0045 (8)0.0216 (9)0.0070 (6)
F10.0545 (9)0.0554 (14)0.0500 (10)0.0045 (8)0.0216 (9)0.0070 (6)
F40.053 (3)0.074 (11)0.079 (5)0.014 (4)0.008 (3)0.016 (5)
F60.059 (4)0.102 (5)0.039 (6)0.035 (4)0.005 (3)0.008 (3)
F20.0545 (9)0.0554 (14)0.0500 (10)0.0045 (8)0.0216 (9)0.0070 (6)
F3'0.0545 (9)0.0554 (14)0.0500 (10)0.0045 (8)0.0216 (9)0.0070 (6)
F5'0.043 (4)0.060 (4)0.034 (7)0.016 (3)0.003 (3)0.020 (4)
F1'0.0545 (9)0.0554 (14)0.0500 (10)0.0045 (8)0.0216 (9)0.0070 (6)
F6'0.038 (4)0.068 (5)0.037 (7)0.008 (4)0.006 (3)0.017 (4)
F4'0.070 (13)0.058 (8)0.065 (6)0.033 (10)0.001 (7)0.003 (5)
F2'0.0545 (9)0.0554 (14)0.0500 (10)0.0045 (8)0.0216 (9)0.0070 (6)
Geometric parameters (Å, º) top
N1—C11.473 (3)C7—H7B0.9600
N1—H1B0.87 (3)C7—H7C0.9600
N1—H1A0.92 (3)O1W—H1WA0.860 (17)
N1—H1C0.84 (3)O1W—H1WB0.853 (17)
C1—C21.360 (3)P1—F51.516 (17)
C1—C61.377 (3)P1—F2'1.567 (8)
C6—C51.383 (3)P1—F61.571 (17)
C6—H6A0.9300P1—F3'1.576 (7)
C4—O11.370 (3)P1—F41.58 (3)
C4—C51.370 (4)P1—F11.584 (4)
C4—C31.376 (4)P1—F4'1.60 (4)
C2—C31.390 (4)P1—F1'1.621 (6)
C2—H2A0.9300P1—F31.629 (5)
O1—C71.415 (4)P1—F21.631 (6)
C5—H5A0.9300P1—F6'1.64 (2)
C3—H3A0.9300P1—F5'1.67 (2)
C7—H7A0.9600
C1—N1—H1B110.7 (18)F4—P1—F1101.9 (11)
C1—N1—H1A112.3 (18)F5—P1—F4'87.0 (17)
H1B—N1—H1A102 (3)F2'—P1—F4'100.4 (14)
C1—N1—H1C108 (2)F6—P1—F4'92.0 (16)
H1B—N1—H1C110 (3)F3'—P1—F4'166.3 (15)
H1A—N1—H1C113 (3)F1—P1—F4'95.4 (14)
C2—C1—C6121.0 (2)F5—P1—F1'87.6 (8)
C2—C1—N1119.6 (2)F2'—P1—F1'175.6 (2)
C6—C1—N1119.5 (2)F6—P1—F1'92.3 (8)
C1—C6—C5118.9 (2)F3'—P1—F1'90.73 (19)
C1—C6—H6A120.5F4—P1—F1'82.4 (11)
C5—C6—H6A120.5F4'—P1—F1'75.9 (14)
O1—C4—C5116.2 (2)F5—P1—F390.4 (8)
O1—C4—C3123.7 (3)F2'—P1—F375.58 (18)
C5—C4—C3120.1 (2)F6—P1—F390.6 (5)
C1—C2—C3120.0 (2)F4—P1—F3168.8 (12)
C1—C2—H2A120.0F1—P1—F388.68 (14)
C3—C2—H2A120.0F4'—P1—F3175.0 (12)
C4—O1—C7118.2 (2)F1'—P1—F3108.24 (18)
C4—C5—C6120.5 (2)F5—P1—F293.0 (8)
C4—C5—H5A119.7F6—P1—F286.9 (8)
C6—C5—H5A119.7F3'—P1—F2106.6 (2)
C4—C3—C2119.4 (3)F4—P1—F280.3 (11)
C4—C3—H3A120.3F1—P1—F2177.73 (15)
C2—C3—H3A120.3F4'—P1—F286.8 (14)
O1—C7—H7A109.5F1'—P1—F2162.7 (2)
O1—C7—H7B109.5F3—P1—F289.06 (16)
H7A—C7—H7B109.5F5—P1—F6'172.2 (12)
O1—C7—H7C109.5F2'—P1—F6'92.5 (9)
H7A—C7—H7C109.5F3'—P1—F6'86.9 (6)
H7B—C7—H7C109.5F4—P1—F6'88.9 (13)
H1WA—O1W—H1WB109 (2)F1—P1—F6'85.4 (10)
F5—P1—F2'94.6 (9)F4'—P1—F6'94.9 (16)
F5—P1—F6179.0 (9)F1'—P1—F6'85.6 (9)
F2'—P1—F685.5 (8)F3—P1—F6'88.3 (5)
F5—P1—F3'89.5 (8)F2—P1—F6'94.7 (10)
F2'—P1—F3'93.1 (2)F2'—P1—F5'86.7 (9)
F6—P1—F3'91.5 (6)F6—P1—F5'171.6 (12)
F5—P1—F493.9 (14)F3'—P1—F5'91.7 (8)
F2'—P1—F493.7 (11)F4—P1—F5'92.6 (14)
F6—P1—F485.1 (13)F1—P1—F5'95.1 (9)
F3'—P1—F4172.2 (10)F4'—P1—F5'86.6 (16)
F5—P1—F186.9 (8)F1'—P1—F5'95.4 (9)
F2'—P1—F1164.18 (19)F3—P1—F5'90.2 (8)
F6—P1—F193.3 (8)F2—P1—F5'84.8 (9)
F3'—P1—F171.17 (18)F6'—P1—F5'178.4 (10)
C2—C1—C6—C50.1 (4)O1—C4—C5—C6178.9 (3)
N1—C1—C6—C5179.2 (2)C3—C4—C5—C61.7 (4)
C6—C1—C2—C30.9 (4)C1—C6—C5—C41.3 (4)
N1—C1—C2—C3178.3 (3)O1—C4—C3—C2179.8 (3)
C5—C4—O1—C7169.6 (3)C5—C4—C3—C20.8 (4)
C3—C4—O1—C711.0 (4)C1—C2—C3—C40.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O1W0.84 (3)2.06 (3)2.896 (3)172 (3)
N1—H1A···O1Wi0.92 (3)2.00 (3)2.917 (3)172 (3)
N1—H1B···F3ii0.87 (3)2.32 (3)3.056 (5)142 (2)
N1—H1B···F1iii0.87 (3)2.49 (3)3.049 (5)123 (2)
O1W—H1WB···F6iv0.85 (2)2.21 (4)2.91 (2)139 (3)
O1W—H1WB···F4v0.85 (2)2.57 (4)3.04 (3)116 (3)
C7—H7B···Cg1vi0.963.184.013 (5)146
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z1/2; (iii) x, y+3/2, z1/2; (iv) x+2, y, z+1; (v) x+2, y+1, z+1; (vi) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H10NO+·PF6·H2O
Mr287.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)15.152 (3), 5.079 (1), 14.758 (3)
β (°) 94.26 (3)
V3)1132.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.939, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
11166, 2602, 2083
Rint0.052
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.145, 1.06
No. of reflections2602
No. of parameters199
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.43

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O1W0.84 (3)2.06 (3)2.896 (3)172 (3)
N1—H1A···O1Wi0.92 (3)2.00 (3)2.917 (3)172 (3)
N1—H1B···F3ii0.87 (3)2.32 (3)3.056 (5)142 (2)
N1—H1B···F1iii0.87 (3)2.49 (3)3.049 (5)123 (2)
O1W—H1WB···F6iv0.853 (17)2.21 (4)2.91 (2)139 (3)
O1W—H1WB···F4v0.853 (17)2.57 (4)3.04 (3)116 (3)
C7—H7B···Cg1vi0.963.184.013 (5)145.71
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z1/2; (iii) x, y+3/2, z1/2; (iv) x+2, y, z+1; (v) x+2, y+1, z+1; (vi) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Starter Fund of Southeast University for financial support in purchasing the X-ray diffractometer.

References

First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFu, X. (2009). Acta Cryst. E65, o2344.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959–1962.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds