organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzyl­ammonium tetra­fluoro­borate 18-crown-6 clathrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zmmzyahfdzg@126.com

(Received 31 May 2010; accepted 4 June 2010; online 9 June 2010)

The reaction of benzyl­ammonium tetra­fluoro­borate and 18-crown-6 in a methano­lic solution yields the title compound, C7H10N+·BF4·C12H24O6O6, which displays a supra­molecular structure. The –NH3+ substituent of the benzyl­ammonium cation forms a 1:1 supra­molecular rotator–stator structure by N—H⋯O hydrogen-bonding inter­actions.

Related literature

For similar crown ether clathrates, see: Akutagawa et al. (2002[Akutagawa, T., Hashimoto, A., Nishihara, S., Hasegawa, T. & Nakamura, T. (2002). J. Supramol. Chem. 2, 175-186.]); Kryatova et al. (2004[Kryatova, O. P., Korendovych, I. V. & Rybak-Akimova, E. V. (2004). Tetrahedron, 60, 4579-4588.]). For their ferroelectric properties, see: Zhang et al. (2009[Zhang, W., Cheng, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544-12545.]); Ye et al. (2009[Ye, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 42-43.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10N+·BF4·C12H24O6

  • Mr = 459.28

  • Triclinic, [P \overline 1]

  • a = 9.281 (6) Å

  • b = 10.673 (6) Å

  • c = 11.863 (7) Å

  • α = 76.418 (16)°

  • β = 86.244 (17)°

  • γ = 78.274 (15)°

  • V = 1118.2 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.958, Tmax = 0.976

  • 12286 measured reflections

  • 5057 independent reflections

  • 4153 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.103

  • S = 1.03

  • 5057 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O6 0.89 1.99 2.866 (2) 167
N2—H2B⋯O3 0.89 2.15 2.986 (2) 157
N2—H2C⋯O1 0.89 2.05 2.936 (2) 173

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

There is currently a great deal of interest in crown ethers because of their ability to form non-covalent, H-bonding complexes with ammonium cations both in solid and in solution (Akutagawa et al., 2002; Kryatova et al. 2004). Not only the size of the crown ether, but also the nature of the ammonium cation (–NH4+, RNH3+, R2NH2+, etc) can influence both stoichiometry and stability of these host–guest complexes. The host molecules combine with the guest species by intermolecular interactions, and if the host molecule possesses some specific sites, it is easy to realise high selectivity in ion or molecular recognitions. 18-Crown-6 exhibits the highest affinity for ammonium cations RNH3+, mostly resulting in a 1:1 stoichiometry.

Dielectric permittivity of the title compound was tested to systematically investigate the ferroelectric phase transitions of new materials (Ye et al., 2009; Zhang et al., 2009). The title compound has no dielectric anomaly with the value of 5 and 8 under 1M Hz in the temperature range from 80 to 433 K (m.p.> 453 K), suggesting that the compound should show no distinct phase transition occurring within the measured temperature range.

The title compound is composed of cationic [C7H10N(18-Crown-6)]+ and anionic [BF4] ions in a 1:1 stoichiometry (Fig. 1). Supramolecular rotator-like structures are assembled between benzylammonium cations and 18-crown-6 molecules by N—H···O hydrogen-bonding. Intramolecular N—H···O hydrogen bonding lengths are within the usual range around 2.9 Å. No intermolecular hydrogen bond was observed.

The crown ether adopts a conformation in which the rings show some distortion from planarity, with torsion angles: O5—C8—C9—O3 = 64.5 (2) °; O2—C10—C13—O1 = 68.1 (2) °; C16—C17—O2—C10 = 176.0 (1) °; C10—C13—O1—C14 = 179.5 (1) ° and C8—C9—O3—C11 = 167.9 (1) °. C—N bonds of [C7H10N]+ are almost perpendicular to the mean plane formed by oxygen atoms of the crown ether. Boron shows a slightly distorted tetrahedral coordination by four F ions [range of cis-bond angles = 108.9 (1) – 110.2 (1) °; average distance (B—F) = 1.383 (2)–1.397 (2) Å].

Related literature top

For similar crown ether clathrates, see: Akutagawa et al. (2002); Kryatova et al. (2004). For their ferroelectric properties, see: Zhang et al. (2009); Ye et al. (2009).

Experimental top

C7H10N+BF4 (2 mmol, 0.388 g) and 18-crown-6 (2 mmol, 0.528 g) were dissolved in 15 ml methanol. The resulting precipitate was filtered. Two days later, single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of the remaining methanolic solution at 0°C (yield: 95%).

Refinement top

All hydrogen atoms were calculated geometrically with C—H distances ranging from 0.93 to 0.97 Å and N—H = 0.90 Å. refinement of hydrogen atoms was performed using a riding model with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showingh the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Benzylammonium tetrafluoroborate 1,4,7,10,13,16-hexaoxacyclooctadecane solvate top
Crystal data top
C7H10N+·BF4·C12H24O6Z = 2
Mr = 459.28F(000) = 488
Triclinic, P1Dx = 1.364 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.281 (6) ÅCell parameters from 2953 reflections
b = 10.673 (6) Åθ = 2.9–27.5°
c = 11.863 (7) ŵ = 0.12 mm1
α = 76.418 (16)°T = 293 K
β = 86.244 (17)°Prism, colorless
γ = 78.274 (15)°0.40 × 0.30 × 0.20 mm
V = 1118.2 (12) Å3
Data collection top
Rigaku SCXmini
diffractometer
5057 independent reflections
Radiation source: fine-focus sealed tube4153 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 2.7°
ω scansh = 1212
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1313
Tmin = 0.958, Tmax = 0.976l = 1515
12286 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.2316P]
where P = (Fo2 + 2Fc2)/3
5057 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C7H10N+·BF4·C12H24O6γ = 78.274 (15)°
Mr = 459.28V = 1118.2 (12) Å3
Triclinic, P1Z = 2
a = 9.281 (6) ÅMo Kα radiation
b = 10.673 (6) ŵ = 0.12 mm1
c = 11.863 (7) ÅT = 293 K
α = 76.418 (16)°0.40 × 0.30 × 0.20 mm
β = 86.244 (17)°
Data collection top
Rigaku SCXmini
diffractometer
5057 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
4153 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.976Rint = 0.031
12286 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.03Δρmax = 0.25 e Å3
5057 reflectionsΔρmin = 0.24 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C80.24636 (17)0.50111 (14)0.10270 (14)0.0196 (3)
H8A0.34970.51750.08410.024*
H8B0.19730.55620.04180.024*
C90.23023 (16)0.53375 (15)0.21673 (14)0.0194 (3)
H9A0.28040.62320.21530.023*
H9B0.27380.47510.27850.023*
C100.27734 (17)0.10959 (14)0.00480 (13)0.0189 (3)
H10A0.28600.02380.05730.023*
H10B0.34790.10250.05850.023*
C110.05246 (17)0.57472 (15)0.33132 (13)0.0203 (3)
H11A0.10230.53450.40070.024*
H11B0.09220.66840.31330.024*
C120.31163 (16)0.37847 (15)0.42392 (13)0.0188 (3)
H12A0.33080.29150.47480.023*
H12B0.33450.43970.46570.023*
C130.12451 (16)0.15430 (14)0.04151 (12)0.0176 (3)
H13A0.11220.24440.08610.021*
H13B0.10800.09960.09230.021*
C140.12985 (16)0.18795 (15)0.01623 (13)0.0186 (3)
H14A0.19280.14300.07350.022*
H14B0.13840.16310.05630.022*
C150.18267 (17)0.33378 (15)0.00050 (13)0.0194 (3)
H15A0.11800.38020.05470.023*
H15B0.28110.35900.03150.023*
C160.48137 (16)0.27382 (15)0.16325 (13)0.0180 (3)
H16A0.58280.25460.18750.022*
H16B0.46470.35740.10720.022*
C170.45350 (16)0.16760 (15)0.10879 (13)0.0189 (3)
H17A0.52410.15700.04610.023*
H17B0.46480.08490.16600.023*
C180.41154 (16)0.37904 (14)0.31845 (13)0.0184 (3)
H18A0.39240.46500.26600.022*
H18B0.51360.35960.34140.022*
C290.10945 (17)0.55084 (14)0.35178 (13)0.0195 (3)
H29A0.16140.57980.27980.023*
H29B0.12860.59930.40700.023*
O10.02026 (11)0.14543 (10)0.05354 (8)0.0168 (2)
O20.30731 (11)0.20280 (9)0.06498 (9)0.0164 (2)
O30.07640 (11)0.51969 (10)0.23695 (8)0.0160 (2)
O40.15806 (11)0.41358 (9)0.39606 (9)0.0170 (2)
O50.18295 (11)0.36644 (9)0.10949 (9)0.0171 (2)
O60.38446 (11)0.28133 (10)0.26150 (9)0.0165 (2)
B10.40157 (19)0.76448 (17)0.26818 (15)0.0188 (3)
F10.26267 (12)0.84348 (11)0.26112 (10)0.0428 (3)
F20.42418 (11)0.70503 (10)0.17371 (8)0.0311 (2)
F30.41256 (12)0.66888 (9)0.37036 (8)0.0327 (2)
F40.50826 (12)0.83934 (11)0.26526 (10)0.0401 (3)
N20.08837 (13)0.24571 (11)0.25008 (10)0.0149 (3)
H2A0.17710.26660.24310.022*
H2B0.02080.31510.25880.022*
H2C0.06980.22110.18670.022*
C10.34030 (17)0.02500 (15)0.39415 (13)0.0193 (3)
H1A0.43250.00210.40170.023*
C20.23098 (17)0.03380 (14)0.32762 (13)0.0186 (3)
H2D0.24980.09650.29070.022*
C30.09306 (16)0.00054 (14)0.31579 (12)0.0171 (3)
H3A0.01950.04060.27220.020*
C40.06450 (16)0.09625 (14)0.36893 (12)0.0158 (3)
C50.17497 (17)0.15401 (14)0.43633 (13)0.0189 (3)
H5A0.15680.21720.47290.023*
C60.31203 (17)0.11841 (15)0.44960 (13)0.0202 (3)
H6A0.38470.15700.49550.024*
C70.08405 (16)0.13519 (14)0.35362 (13)0.0186 (3)
H7A0.10600.16160.42250.022*
H7B0.15890.06010.34460.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C80.0179 (8)0.0141 (7)0.0260 (8)0.0017 (6)0.0072 (6)0.0024 (6)
C90.0139 (7)0.0176 (7)0.0268 (8)0.0023 (6)0.0005 (6)0.0053 (6)
C100.0220 (8)0.0162 (7)0.0199 (8)0.0036 (6)0.0026 (6)0.0077 (6)
C110.0247 (8)0.0196 (7)0.0169 (7)0.0011 (6)0.0016 (6)0.0092 (6)
C120.0185 (8)0.0198 (7)0.0192 (7)0.0042 (6)0.0039 (6)0.0047 (6)
C130.0231 (8)0.0161 (7)0.0149 (7)0.0055 (6)0.0027 (6)0.0055 (6)
C140.0175 (7)0.0207 (7)0.0200 (8)0.0065 (6)0.0030 (6)0.0062 (6)
C150.0208 (8)0.0211 (7)0.0169 (7)0.0050 (6)0.0054 (6)0.0030 (6)
C160.0131 (7)0.0207 (7)0.0196 (7)0.0041 (6)0.0031 (6)0.0037 (6)
C170.0140 (7)0.0201 (7)0.0208 (8)0.0006 (6)0.0009 (6)0.0045 (6)
C180.0172 (7)0.0174 (7)0.0230 (8)0.0060 (6)0.0012 (6)0.0072 (6)
C290.0256 (8)0.0151 (7)0.0191 (8)0.0035 (6)0.0047 (6)0.0058 (6)
O10.0165 (5)0.0191 (5)0.0152 (5)0.0044 (4)0.0002 (4)0.0040 (4)
O20.0147 (5)0.0149 (5)0.0206 (5)0.0014 (4)0.0010 (4)0.0073 (4)
O30.0139 (5)0.0184 (5)0.0169 (5)0.0021 (4)0.0010 (4)0.0070 (4)
O40.0175 (5)0.0151 (5)0.0189 (5)0.0033 (4)0.0019 (4)0.0044 (4)
O50.0207 (5)0.0131 (5)0.0174 (5)0.0020 (4)0.0043 (4)0.0030 (4)
O60.0157 (5)0.0172 (5)0.0196 (5)0.0063 (4)0.0032 (4)0.0080 (4)
B10.0194 (9)0.0190 (8)0.0189 (8)0.0056 (7)0.0011 (7)0.0040 (7)
F10.0308 (6)0.0468 (7)0.0417 (7)0.0136 (5)0.0010 (5)0.0099 (5)
F20.0356 (6)0.0352 (6)0.0263 (5)0.0055 (4)0.0027 (4)0.0151 (4)
F30.0475 (6)0.0251 (5)0.0250 (5)0.0125 (5)0.0064 (5)0.0013 (4)
F40.0464 (7)0.0388 (6)0.0443 (7)0.0292 (5)0.0010 (5)0.0094 (5)
N20.0148 (6)0.0156 (6)0.0149 (6)0.0038 (5)0.0005 (5)0.0040 (5)
C10.0156 (7)0.0234 (8)0.0170 (7)0.0051 (6)0.0007 (6)0.0005 (6)
C20.0220 (8)0.0183 (7)0.0170 (7)0.0072 (6)0.0020 (6)0.0037 (6)
C30.0182 (7)0.0181 (7)0.0141 (7)0.0026 (6)0.0020 (6)0.0032 (6)
C40.0179 (7)0.0152 (7)0.0127 (7)0.0053 (6)0.0033 (6)0.0026 (5)
C50.0249 (8)0.0156 (7)0.0160 (7)0.0037 (6)0.0026 (6)0.0026 (6)
C60.0194 (8)0.0206 (8)0.0176 (7)0.0001 (6)0.0021 (6)0.0028 (6)
C70.0180 (8)0.0174 (7)0.0185 (7)0.0054 (6)0.0042 (6)0.0024 (6)
Geometric parameters (Å, º) top
C8—O51.4236 (19)C16—H16B0.9700
C8—C91.497 (2)C17—O21.4303 (19)
C8—H8A0.9700C17—H17A0.9700
C8—H8B0.9700C17—H17B0.9700
C9—O31.4351 (19)C18—O61.4376 (18)
C9—H9A0.9700C18—H18A0.9700
C9—H9B0.9700C18—H18B0.9700
C10—O21.4313 (18)C29—O41.4235 (19)
C10—C131.498 (2)C29—H29A0.9700
C10—H10A0.9700C29—H29B0.9700
C10—H10B0.9700B1—F31.383 (2)
C11—O31.4290 (18)B1—F11.385 (2)
C11—C291.498 (2)B1—F41.387 (2)
C11—H11A0.9700B1—F21.397 (2)
C11—H11B0.9700N2—C71.4946 (19)
C12—O41.4380 (19)N2—H2A0.8900
C12—C181.507 (2)N2—H2B0.8900
C12—H12A0.9700N2—H2C0.8900
C12—H12B0.9700C1—C21.384 (2)
C13—O11.4355 (18)C1—C61.390 (2)
C13—H13A0.9700C1—H1A0.9300
C13—H13B0.9700C2—C31.391 (2)
C14—O11.4395 (19)C2—H2D0.9300
C14—C151.503 (2)C3—C41.395 (2)
C14—H14A0.9700C3—H3A0.9300
C14—H14B0.9700C4—C51.392 (2)
C15—O51.4272 (19)C4—C71.507 (2)
C15—H15A0.9700C5—C61.389 (2)
C15—H15B0.9700C5—H5A0.9300
C16—O61.4322 (18)C6—H6A0.9300
C16—C171.501 (2)C7—H7A0.9700
C16—H16A0.9700C7—H7B0.9700
O5—C8—C9109.25 (12)O2—C17—H17B109.9
O5—C8—H8A109.8C16—C17—H17B109.9
C9—C8—H8A109.8H17A—C17—H17B108.3
O5—C8—H8B109.8O6—C18—C12108.68 (12)
C9—C8—H8B109.8O6—C18—H18A110.0
H8A—C8—H8B108.3C12—C18—H18A110.0
O3—C9—C8108.54 (12)O6—C18—H18B110.0
O3—C9—H9A110.0C12—C18—H18B110.0
C8—C9—H9A110.0H18A—C18—H18B108.3
O3—C9—H9B110.0O4—C29—C11107.80 (12)
C8—C9—H9B110.0O4—C29—H29A110.1
H9A—C9—H9B108.4C11—C29—H29A110.1
O2—C10—C13108.95 (12)O4—C29—H29B110.1
O2—C10—H10A109.9C11—C29—H29B110.1
C13—C10—H10A109.9H29A—C29—H29B108.5
O2—C10—H10B109.9C13—O1—C14112.74 (12)
C13—C10—H10B109.9C17—O2—C10111.77 (11)
H10A—C10—H10B108.3C11—O3—C9111.85 (11)
O3—C11—C29109.20 (12)C29—O4—C12113.18 (11)
O3—C11—H11A109.8C8—O5—C15111.32 (11)
C29—C11—H11A109.8C16—O6—C18110.94 (11)
O3—C11—H11B109.8F3—B1—F1109.87 (14)
C29—C11—H11B109.8F3—B1—F4109.19 (13)
H11A—C11—H11B108.3F1—B1—F4110.24 (14)
O4—C12—C18113.11 (12)F3—B1—F2109.64 (14)
O4—C12—H12A109.0F1—B1—F2108.85 (13)
C18—C12—H12A109.0F4—B1—F2109.04 (14)
O4—C12—H12B109.0C7—N2—H2A109.5
C18—C12—H12B109.0C7—N2—H2B109.5
H12A—C12—H12B107.8H2A—N2—H2B109.5
O1—C13—C10109.27 (13)C7—N2—H2C109.5
O1—C13—H13A109.8H2A—N2—H2C109.5
C10—C13—H13A109.8H2B—N2—H2C109.5
O1—C13—H13B109.8C2—C1—C6119.87 (14)
C10—C13—H13B109.8C2—C1—H1A120.1
H13A—C13—H13B108.3C6—C1—H1A120.1
O1—C14—C15112.86 (12)C1—C2—C3120.23 (14)
O1—C14—H14A109.0C1—C2—H2D119.9
C15—C14—H14A109.0C3—C2—H2D119.9
O1—C14—H14B109.0C2—C3—C4120.39 (14)
C15—C14—H14B109.0C2—C3—H3A119.8
H14A—C14—H14B107.8C4—C3—H3A119.8
O5—C15—C14108.15 (12)C5—C4—C3118.85 (14)
O5—C15—H15A110.1C5—C4—C7120.99 (14)
C14—C15—H15A110.1C3—C4—C7120.15 (13)
O5—C15—H15B110.1C6—C5—C4120.80 (14)
C14—C15—H15B110.1C6—C5—H5A119.6
H15A—C15—H15B108.4C4—C5—H5A119.6
O6—C16—C17109.34 (12)C5—C6—C1119.85 (14)
O6—C16—H16A109.8C5—C6—H6A120.1
C17—C16—H16A109.8C1—C6—H6A120.1
O6—C16—H16B109.8N2—C7—C4111.37 (12)
C17—C16—H16B109.8N2—C7—H7A109.4
H16A—C16—H16B108.3C4—C7—H7A109.4
O2—C17—C16109.06 (12)N2—C7—H7B109.4
O2—C17—H17A109.9C4—C7—H7B109.4
C16—C17—H17A109.9H7A—C7—H7B108.0
O5—C8—C9—O364.50 (15)C9—C8—O5—C15174.28 (12)
O2—C10—C13—O168.12 (15)C14—C15—O5—C8173.89 (12)
O1—C14—C15—O564.33 (16)C17—C16—O6—C18177.97 (12)
O6—C16—C17—O264.18 (15)C12—C18—O6—C16177.47 (12)
O4—C12—C18—O662.79 (15)C6—C1—C2—C30.2 (2)
O3—C11—C29—O468.82 (15)C1—C2—C3—C41.2 (2)
C10—C13—O1—C14179.48 (11)C2—C3—C4—C51.7 (2)
C15—C14—O1—C1386.11 (15)C2—C3—C4—C7178.64 (13)
C16—C17—O2—C10176.00 (12)C3—C4—C5—C60.7 (2)
C13—C10—O2—C17178.41 (12)C7—C4—C5—C6179.59 (13)
C29—C11—O3—C9177.14 (12)C4—C5—C6—C10.7 (2)
C8—C9—O3—C11167.91 (12)C2—C1—C6—C51.1 (2)
C11—C29—O4—C12177.59 (11)C5—C4—C7—N290.62 (17)
C18—C12—O4—C2976.33 (15)C3—C4—C7—N289.72 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O60.891.992.866 (2)167
N2—H2B···O30.892.152.986 (2)157
N2—H2C···O10.892.052.936 (2)173

Experimental details

Crystal data
Chemical formulaC7H10N+·BF4·C12H24O6
Mr459.28
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.281 (6), 10.673 (6), 11.863 (7)
α, β, γ (°)76.418 (16), 86.244 (17), 78.274 (15)
V3)1118.2 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.958, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
12286, 5057, 4153
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.103, 1.03
No. of reflections5057
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.24

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O60.891.992.866 (2)166.6
N2—H2B···O30.892.152.986 (2)156.7
N2—H2C···O10.892.052.936 (2)173.2
 

Acknowledgements

The authors are grateful to the starter fund of Southeast University for financial support to purchase the X-ray diffractometer.

References

First citationAkutagawa, T., Hashimoto, A., Nishihara, S., Hasegawa, T. & Nakamura, T. (2002). J. Supramol. Chem. 2, 175–186.  CSD CrossRef CAS Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationKryatova, O. P., Korendovych, I. V. & Rybak-Akimova, E. V. (2004). Tetrahedron, 60, 4579–4588.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 42–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Cheng, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds