organic compounds
N-Methyl-N-(2-methylphenyl)acetamide
aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn
In the title compound, C10H13NO, the N atom and the methyl group are almost coplanar with the benzene ring to which they are bonded [deviations of 0.131 (1) and 0.038 (1) Å, respectively, from the ring plane]. In the intermolecular C—H⋯O hydrogen bonds form a three-dimensional network. Molecules are stacked parallel to the b-axis direction.
Related literature
For the use of related compounds as intermediates in syntheses of ligands for human β-amyloid plaques and for the preparation of the title compound, see Cai et al. (2007). For the use of related compounds in N-substituted glycine peptoid oligomers, see Shah et al. (2008). For a related structure, see: Li et al. (2008). For bond-length data, see: Allen et al. (1987)
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536810022361/im2208sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810022361/im2208Isup2.hkl
The title compound, (I) was prepared by the literature method (Cai et al., 2007). Crystals suitable for X-ray analysis were obtained by dissolving (I) (0.5 g) in ethyl acetate (20 ml) and evaporating the solvent slowly at room temperature for about 7 d.
All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å and 0.96 Å for aromatic H and methyl group H, respectively. The Uiso(H) = xUeq(C), where x = 1.2 for aromatic H, and x = 1.5 for other H.
Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell
CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C10H13NO | F(000) = 352 |
Mr = 163.21 | Dx = 1.142 Mg m−3 |
Monoclinic, P21/n | Melting point: 328 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 11.288 (2) Å | Cell parameters from 25 reflections |
b = 6.900 (1) Å | θ = 9–13° |
c = 12.234 (2) Å | µ = 0.07 mm−1 |
β = 94.88 (3)° | T = 293 K |
V = 949.5 (3) Å3 | Block, colourless |
Z = 4 | 0.30 × 0.20 × 0.10 mm |
Enraf–Nonius CAD-4 diffractometer | 1044 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.055 |
Graphite monochromator | θmax = 25.3°, θmin = 2.4° |
ω/2θ scans | h = 0→13 |
Absorption correction: ψ scan (North et al., 1968) | k = −8→8 |
Tmin = 0.978, Tmax = 0.993 | l = −14→14 |
3465 measured reflections | 3 standard reflections every 200 reflections |
1726 independent reflections | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.070 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.180 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.060P)2 + 0.550P] where P = (Fo2 + 2Fc2)/3 |
1726 reflections | (Δ/σ)max < 0.001 |
112 parameters | Δρmax = 0.32 e Å−3 |
4 restraints | Δρmin = −0.16 e Å−3 |
C10H13NO | V = 949.5 (3) Å3 |
Mr = 163.21 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 11.288 (2) Å | µ = 0.07 mm−1 |
b = 6.900 (1) Å | T = 293 K |
c = 12.234 (2) Å | 0.30 × 0.20 × 0.10 mm |
β = 94.88 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1044 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.055 |
Tmin = 0.978, Tmax = 0.993 | 3 standard reflections every 200 reflections |
3465 measured reflections | intensity decay: 1% |
1726 independent reflections |
R[F2 > 2σ(F2)] = 0.070 | 4 restraints |
wR(F2) = 0.180 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.32 e Å−3 |
1726 reflections | Δρmin = −0.16 e Å−3 |
112 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N | 0.8267 (3) | 0.3421 (5) | −0.0762 (2) | 0.0917 (9) | |
O | 0.9121 (2) | 0.5682 (4) | −0.1656 (2) | 0.1110 (10) | |
C1 | 0.8287 (3) | 0.1854 (5) | 0.1029 (3) | 0.0744 (9) | |
H1A | 0.9111 | 0.1976 | 0.1095 | 0.089* | |
C2 | 0.7737 (3) | 0.0925 (4) | 0.1832 (2) | 0.0696 (8) | |
H2A | 0.8181 | 0.0387 | 0.2432 | 0.083* | |
C3 | 0.6508 (3) | 0.0794 (4) | 0.1741 (2) | 0.0660 (8) | |
H3A | 0.6121 | 0.0177 | 0.2285 | 0.079* | |
C4 | 0.5867 (3) | 0.1571 (4) | 0.0853 (2) | 0.0629 (8) | |
H4A | 0.5043 | 0.1465 | 0.0801 | 0.075* | |
C5 | 0.6408 (2) | 0.2526 (4) | 0.0015 (2) | 0.0554 (7) | |
C6 | 0.7649 (3) | 0.2603 (5) | 0.0137 (2) | 0.0682 (8) | |
C7 | 0.5689 (3) | 0.3319 (5) | −0.0977 (2) | 0.0733 (9) | |
H7A | 0.5852 | 0.4676 | −0.1048 | 0.110* | |
H7B | 0.4858 | 0.3138 | −0.0895 | 0.110* | |
H7C | 0.5897 | 0.2648 | −0.1621 | 0.110* | |
C8 | 0.8631 (3) | 0.1932 (7) | −0.1620 (3) | 0.1025 (12) | |
H8A | 0.9102 | 0.2565 | −0.2132 | 0.154* | |
H8B | 0.7930 | 0.1397 | −0.2006 | 0.154* | |
H8C | 0.9087 | 0.0911 | −0.1255 | 0.154* | |
C9 | 0.8569 (3) | 0.5129 (7) | −0.0876 (3) | 0.0931 (10) | |
C10 | 0.8173 (3) | 0.6500 (5) | 0.0004 (3) | 0.0896 (10) | |
H10A | 0.8712 | 0.6398 | 0.0652 | 0.134* | |
H10B | 0.7386 | 0.6155 | 0.0177 | 0.134* | |
H10C | 0.8171 | 0.7808 | −0.0264 | 0.134* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N | 0.0813 (19) | 0.107 (2) | 0.089 (2) | −0.0143 (17) | 0.0181 (15) | 0.0186 (16) |
O | 0.0849 (16) | 0.150 (2) | 0.1002 (17) | −0.0239 (16) | 0.0217 (13) | 0.0430 (16) |
C1 | 0.0646 (18) | 0.081 (2) | 0.077 (2) | −0.0093 (16) | 0.0022 (16) | 0.0066 (18) |
C2 | 0.090 (2) | 0.0613 (17) | 0.0576 (17) | −0.0028 (17) | 0.0063 (15) | 0.0046 (14) |
C3 | 0.086 (2) | 0.0624 (17) | 0.0519 (15) | −0.0241 (16) | 0.0178 (15) | 0.0047 (14) |
C4 | 0.0630 (17) | 0.0684 (17) | 0.0600 (17) | −0.0176 (14) | 0.0214 (14) | −0.0081 (15) |
C5 | 0.0601 (16) | 0.0554 (15) | 0.0517 (14) | −0.0082 (13) | 0.0109 (12) | −0.0029 (12) |
C6 | 0.0639 (18) | 0.077 (2) | 0.0650 (18) | −0.0171 (16) | 0.0108 (14) | 0.0132 (16) |
C7 | 0.0699 (18) | 0.083 (2) | 0.0683 (18) | −0.0097 (17) | 0.0101 (15) | 0.0085 (17) |
C8 | 0.083 (2) | 0.159 (4) | 0.070 (2) | −0.011 (2) | 0.0350 (17) | 0.007 (2) |
C9 | 0.073 (2) | 0.122 (3) | 0.085 (2) | −0.017 (2) | 0.0104 (16) | 0.0221 (18) |
C10 | 0.097 (2) | 0.0670 (19) | 0.106 (2) | −0.0223 (18) | 0.0166 (19) | 0.0247 (16) |
N—C9 | 1.238 (5) | C5—C6 | 1.396 (4) |
N—C6 | 1.465 (4) | C5—C7 | 1.505 (4) |
N—C8 | 1.549 (5) | C7—H7A | 0.9600 |
O—C9 | 1.243 (4) | C7—H7B | 0.9600 |
C1—C6 | 1.358 (4) | C7—H7C | 0.9600 |
C1—C2 | 1.366 (4) | C8—H8A | 0.9600 |
C1—H1A | 0.9300 | C8—H8B | 0.9600 |
C2—C3 | 1.384 (4) | C8—H8C | 0.9600 |
C2—H2A | 0.9300 | C9—C10 | 1.528 (5) |
C3—C4 | 1.363 (4) | C10—H10A | 0.9600 |
C3—H3A | 0.9300 | C10—H10B | 0.9600 |
C4—C5 | 1.401 (3) | C10—H10C | 0.9600 |
C4—H4A | 0.9300 | ||
C9—N—C6 | 127.2 (3) | C5—C7—H7A | 109.5 |
C9—N—C8 | 117.6 (3) | C5—C7—H7B | 109.5 |
C6—N—C8 | 115.1 (3) | H7A—C7—H7B | 109.5 |
C6—C1—C2 | 120.9 (3) | C5—C7—H7C | 109.5 |
C6—C1—H1A | 119.5 | H7A—C7—H7C | 109.5 |
C2—C1—H1A | 119.5 | H7B—C7—H7C | 109.5 |
C1—C2—C3 | 119.1 (3) | N—C8—H8A | 109.5 |
C1—C2—H2A | 120.4 | N—C8—H8B | 109.5 |
C3—C2—H2A | 120.4 | H8A—C8—H8B | 109.5 |
C4—C3—C2 | 119.9 (3) | N—C8—H8C | 109.5 |
C4—C3—H3A | 120.0 | H8A—C8—H8C | 109.5 |
C2—C3—H3A | 120.0 | H8B—C8—H8C | 109.5 |
C3—C4—C5 | 122.2 (3) | N—C9—O | 122.6 (4) |
C3—C4—H4A | 118.9 | N—C9—C10 | 114.2 (3) |
C5—C4—H4A | 118.9 | O—C9—C10 | 123.1 (4) |
C6—C5—C4 | 115.8 (3) | C9—C10—H10A | 109.5 |
C6—C5—C7 | 122.6 (2) | C9—C10—H10B | 109.5 |
C4—C5—C7 | 121.5 (2) | H10A—C10—H10B | 109.5 |
C1—C6—C5 | 122.0 (3) | C9—C10—H10C | 109.5 |
C1—C6—N | 119.8 (3) | H10A—C10—H10C | 109.5 |
C5—C6—N | 118.1 (3) | H10B—C10—H10C | 109.5 |
C6—C1—C2—C3 | −1.7 (5) | C7—C5—C6—N | −2.5 (4) |
C1—C2—C3—C4 | 0.6 (5) | C9—N—C6—C1 | −91.7 (5) |
C2—C3—C4—C5 | −0.4 (4) | C8—N—C6—C1 | 84.8 (4) |
C3—C4—C5—C6 | 1.1 (4) | C9—N—C6—C5 | 91.8 (4) |
C3—C4—C5—C7 | 178.0 (3) | C8—N—C6—C5 | −91.7 (4) |
C2—C1—C6—C5 | 2.4 (5) | C6—N—C9—O | 178.1 (3) |
C2—C1—C6—N | −174.0 (3) | C8—N—C9—O | 1.6 (6) |
C4—C5—C6—C1 | −2.1 (4) | C6—N—C9—C10 | −3.6 (5) |
C7—C5—C6—C1 | −179.0 (3) | C8—N—C9—C10 | 179.9 (3) |
C4—C5—C6—N | 174.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7C···Oi | 0.96 | 2.51 | 3.442 (4) | 165 |
C1—H1A···Oii | 0.93 | 2.60 | 3.414 (4) | 145 |
Symmetry codes: (i) −x+3/2, y−1/2, −z−1/2; (ii) −x+2, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C10H13NO |
Mr | 163.21 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 11.288 (2), 6.900 (1), 12.234 (2) |
β (°) | 94.88 (3) |
V (Å3) | 949.5 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.978, 0.993 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3465, 1726, 1044 |
Rint | 0.055 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.070, 0.180, 1.00 |
No. of reflections | 1726 |
No. of parameters | 112 |
No. of restraints | 4 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.16 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7C···Oi | 0.96 | 2.51 | 3.442 (4) | 165 |
C1—H1A···Oii | 0.93 | 2.60 | 3.414 (4) | 145 |
Symmetry codes: (i) −x+3/2, y−1/2, −z−1/2; (ii) −x+2, −y+1, −z. |
Acknowledgements
The authors thank the Center of Testing and Analysis, Nanjing University, for support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Cai, L. S., Cuevas, J., Temme, S., Herman, M. M., Dagostin, C., Widdowson, D. A., Innis, R. B. & Pike, V. W. (2007). J. Med. Chem. 50, 4746–4758. Web of Science CrossRef PubMed CAS Google Scholar
Enraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Li, Y.-H., Liu, R., Zhang, X.-N. & Zhu, H.-J. (2008). Acta Cryst. E64, o533. Web of Science CSD CrossRef IUCr Journals Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Shah, N. H., Butterfoss, G. L., Nguyen, K., Yoo, B., Bonneau, R., Rabenstein, D. L. & Kirshenbaum, K. (2008). J. Am. Chem Soc. 130, 16622–16632. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, (I), contains acetyl group, which can react with different groups to prepare various function organic compounds. It is a kind of aromatic organic intermediate which can be used for many fields such as medicine. (Cai et al., 2007). Herein we report its crystal structure.
In the molecule of (I), (Fig.1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The N and C7 atoms are situated in the same plane as the benzene ring they are bonded to. The C—H···O intermolecular hydrogen bonds form a three dimensional network, which seems to be very effective in the stabilization of the crystal structure.
As can be seen from the packing diagram, (Fig. 2), the molecules are stacked along the b axis. There are also weak π-π interactions of benzene rings with a face-to-face stacking distance of 5.991 (4) Å.