organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Methyl-N-(2-methyl­phen­yl)acetamide

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 1 June 2010; accepted 10 June 2010; online 16 June 2010)

In the title compound, C10H13NO, the N atom and the methyl group are almost coplanar with the benzene ring to which they are bonded [deviations of 0.131 (1) and 0.038 (1) Å, respectively, from the ring plane]. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds form a three-dimensional network. Mol­ecules are stacked parallel to the b-axis direction.

Related literature

For the use of related compounds as inter­mediates in syntheses of ligands for human β-amyloid plaques and for the preparation of the title compound, see Cai et al. (2007[Cai, L. S., Cuevas, J., Temme, S., Herman, M. M., Dagostin, C., Widdowson, D. A., Innis, R. B. & Pike, V. W. (2007). J. Med. Chem. 50, 4746-4758.]). For the use of related compounds in N-substituted glycine peptoid oligomers, see Shah et al. (2008[Shah, N. H., Butterfoss, G. L., Nguyen, K., Yoo, B., Bonneau, R., Rabenstein, D. L. & Kirshenbaum, K. (2008). J. Am. Chem Soc. 130, 16622-16632.]). For a related structure, see: Li et al. (2008[Li, Y.-H., Liu, R., Zhang, X.-N. & Zhu, H.-J. (2008). Acta Cryst. E64, o533.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.])

[Scheme 1]

Experimental

Crystal data
  • C10H13NO

  • Mr = 163.21

  • Monoclinic, P 21 /n

  • a = 11.288 (2) Å

  • b = 6.900 (1) Å

  • c = 12.234 (2) Å

  • β = 94.88 (3)°

  • V = 949.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.978, Tmax = 0.993

  • 3465 measured reflections

  • 1726 independent reflections

  • 1044 reflections with I > 2σ(I)

  • Rint = 0.055

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.180

  • S = 1.00

  • 1726 reflections

  • 112 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7C⋯Oi 0.96 2.51 3.442 (4) 165
C1—H1A⋯Oii 0.93 2.60 3.414 (4) 145
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) -x+2, -y+1, -z.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), contains acetyl group, which can react with different groups to prepare various function organic compounds. It is a kind of aromatic organic intermediate which can be used for many fields such as medicine. (Cai et al., 2007). Herein we report its crystal structure.

In the molecule of (I), (Fig.1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The N and C7 atoms are situated in the same plane as the benzene ring they are bonded to. The C—H···O intermolecular hydrogen bonds form a three dimensional network, which seems to be very effective in the stabilization of the crystal structure.

As can be seen from the packing diagram, (Fig. 2), the molecules are stacked along the b axis. There are also weak π-π interactions of benzene rings with a face-to-face stacking distance of 5.991 (4) Å.

Related literature top

For the use of related compounds as intermediates in syntheses of ligands for human β-amyloid plaques and for the preparation of the title compound, see Cai et al. (2007). For the use of related compounds in N-substituted glycine peptoid oligomers, see Shah et al. (2008). For a related structure, see: Li et al. (2008). For bond-length data, see: Allen et al. (1987)

Experimental top

The title compound, (I) was prepared by the literature method (Cai et al., 2007). Crystals suitable for X-ray analysis were obtained by dissolving (I) (0.5 g) in ethyl acetate (20 ml) and evaporating the solvent slowly at room temperature for about 7 d.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å and 0.96 Å for aromatic H and methyl group H, respectively. The Uiso(H) = xUeq(C), where x = 1.2 for aromatic H, and x = 1.5 for other H.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of (I). Hydrogen bonds are shown as dashed lines.
N-Methyl-N-(2-methylphenyl)acetamide top
Crystal data top
C10H13NOF(000) = 352
Mr = 163.21Dx = 1.142 Mg m3
Monoclinic, P21/nMelting point: 328 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.288 (2) ÅCell parameters from 25 reflections
b = 6.900 (1) Åθ = 9–13°
c = 12.234 (2) ŵ = 0.07 mm1
β = 94.88 (3)°T = 293 K
V = 949.5 (3) Å3Block, colourless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1044 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
Graphite monochromatorθmax = 25.3°, θmin = 2.4°
ω/2θ scansh = 013
Absorption correction: ψ scan
(North et al., 1968)
k = 88
Tmin = 0.978, Tmax = 0.993l = 1414
3465 measured reflections3 standard reflections every 200 reflections
1726 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.060P)2 + 0.550P]
where P = (Fo2 + 2Fc2)/3
1726 reflections(Δ/σ)max < 0.001
112 parametersΔρmax = 0.32 e Å3
4 restraintsΔρmin = 0.16 e Å3
Crystal data top
C10H13NOV = 949.5 (3) Å3
Mr = 163.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.288 (2) ŵ = 0.07 mm1
b = 6.900 (1) ÅT = 293 K
c = 12.234 (2) Å0.30 × 0.20 × 0.10 mm
β = 94.88 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1044 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.055
Tmin = 0.978, Tmax = 0.9933 standard reflections every 200 reflections
3465 measured reflections intensity decay: 1%
1726 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0704 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.00Δρmax = 0.32 e Å3
1726 reflectionsΔρmin = 0.16 e Å3
112 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.8267 (3)0.3421 (5)0.0762 (2)0.0917 (9)
O0.9121 (2)0.5682 (4)0.1656 (2)0.1110 (10)
C10.8287 (3)0.1854 (5)0.1029 (3)0.0744 (9)
H1A0.91110.19760.10950.089*
C20.7737 (3)0.0925 (4)0.1832 (2)0.0696 (8)
H2A0.81810.03870.24320.083*
C30.6508 (3)0.0794 (4)0.1741 (2)0.0660 (8)
H3A0.61210.01770.22850.079*
C40.5867 (3)0.1571 (4)0.0853 (2)0.0629 (8)
H4A0.50430.14650.08010.075*
C50.6408 (2)0.2526 (4)0.0015 (2)0.0554 (7)
C60.7649 (3)0.2603 (5)0.0137 (2)0.0682 (8)
C70.5689 (3)0.3319 (5)0.0977 (2)0.0733 (9)
H7A0.58520.46760.10480.110*
H7B0.48580.31380.08950.110*
H7C0.58970.26480.16210.110*
C80.8631 (3)0.1932 (7)0.1620 (3)0.1025 (12)
H8A0.91020.25650.21320.154*
H8B0.79300.13970.20060.154*
H8C0.90870.09110.12550.154*
C90.8569 (3)0.5129 (7)0.0876 (3)0.0931 (10)
C100.8173 (3)0.6500 (5)0.0004 (3)0.0896 (10)
H10A0.87120.63980.06520.134*
H10B0.73860.61550.01770.134*
H10C0.81710.78080.02640.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0813 (19)0.107 (2)0.089 (2)0.0143 (17)0.0181 (15)0.0186 (16)
O0.0849 (16)0.150 (2)0.1002 (17)0.0239 (16)0.0217 (13)0.0430 (16)
C10.0646 (18)0.081 (2)0.077 (2)0.0093 (16)0.0022 (16)0.0066 (18)
C20.090 (2)0.0613 (17)0.0576 (17)0.0028 (17)0.0063 (15)0.0046 (14)
C30.086 (2)0.0624 (17)0.0519 (15)0.0241 (16)0.0178 (15)0.0047 (14)
C40.0630 (17)0.0684 (17)0.0600 (17)0.0176 (14)0.0214 (14)0.0081 (15)
C50.0601 (16)0.0554 (15)0.0517 (14)0.0082 (13)0.0109 (12)0.0029 (12)
C60.0639 (18)0.077 (2)0.0650 (18)0.0171 (16)0.0108 (14)0.0132 (16)
C70.0699 (18)0.083 (2)0.0683 (18)0.0097 (17)0.0101 (15)0.0085 (17)
C80.083 (2)0.159 (4)0.070 (2)0.011 (2)0.0350 (17)0.007 (2)
C90.073 (2)0.122 (3)0.085 (2)0.017 (2)0.0104 (16)0.0221 (18)
C100.097 (2)0.0670 (19)0.106 (2)0.0223 (18)0.0166 (19)0.0247 (16)
Geometric parameters (Å, º) top
N—C91.238 (5)C5—C61.396 (4)
N—C61.465 (4)C5—C71.505 (4)
N—C81.549 (5)C7—H7A0.9600
O—C91.243 (4)C7—H7B0.9600
C1—C61.358 (4)C7—H7C0.9600
C1—C21.366 (4)C8—H8A0.9600
C1—H1A0.9300C8—H8B0.9600
C2—C31.384 (4)C8—H8C0.9600
C2—H2A0.9300C9—C101.528 (5)
C3—C41.363 (4)C10—H10A0.9600
C3—H3A0.9300C10—H10B0.9600
C4—C51.401 (3)C10—H10C0.9600
C4—H4A0.9300
C9—N—C6127.2 (3)C5—C7—H7A109.5
C9—N—C8117.6 (3)C5—C7—H7B109.5
C6—N—C8115.1 (3)H7A—C7—H7B109.5
C6—C1—C2120.9 (3)C5—C7—H7C109.5
C6—C1—H1A119.5H7A—C7—H7C109.5
C2—C1—H1A119.5H7B—C7—H7C109.5
C1—C2—C3119.1 (3)N—C8—H8A109.5
C1—C2—H2A120.4N—C8—H8B109.5
C3—C2—H2A120.4H8A—C8—H8B109.5
C4—C3—C2119.9 (3)N—C8—H8C109.5
C4—C3—H3A120.0H8A—C8—H8C109.5
C2—C3—H3A120.0H8B—C8—H8C109.5
C3—C4—C5122.2 (3)N—C9—O122.6 (4)
C3—C4—H4A118.9N—C9—C10114.2 (3)
C5—C4—H4A118.9O—C9—C10123.1 (4)
C6—C5—C4115.8 (3)C9—C10—H10A109.5
C6—C5—C7122.6 (2)C9—C10—H10B109.5
C4—C5—C7121.5 (2)H10A—C10—H10B109.5
C1—C6—C5122.0 (3)C9—C10—H10C109.5
C1—C6—N119.8 (3)H10A—C10—H10C109.5
C5—C6—N118.1 (3)H10B—C10—H10C109.5
C6—C1—C2—C31.7 (5)C7—C5—C6—N2.5 (4)
C1—C2—C3—C40.6 (5)C9—N—C6—C191.7 (5)
C2—C3—C4—C50.4 (4)C8—N—C6—C184.8 (4)
C3—C4—C5—C61.1 (4)C9—N—C6—C591.8 (4)
C3—C4—C5—C7178.0 (3)C8—N—C6—C591.7 (4)
C2—C1—C6—C52.4 (5)C6—N—C9—O178.1 (3)
C2—C1—C6—N174.0 (3)C8—N—C9—O1.6 (6)
C4—C5—C6—C12.1 (4)C6—N—C9—C103.6 (5)
C7—C5—C6—C1179.0 (3)C8—N—C9—C10179.9 (3)
C4—C5—C6—N174.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7C···Oi0.962.513.442 (4)165
C1—H1A···Oii0.932.603.414 (4)145
Symmetry codes: (i) x+3/2, y1/2, z1/2; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H13NO
Mr163.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.288 (2), 6.900 (1), 12.234 (2)
β (°) 94.88 (3)
V3)949.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.978, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
3465, 1726, 1044
Rint0.055
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.180, 1.00
No. of reflections1726
No. of parameters112
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.16

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7C···Oi0.962.513.442 (4)165
C1—H1A···Oii0.932.603.414 (4)145
Symmetry codes: (i) x+3/2, y1/2, z1/2; (ii) x+2, y+1, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCai, L. S., Cuevas, J., Temme, S., Herman, M. M., Dagostin, C., Widdowson, D. A., Innis, R. B. & Pike, V. W. (2007). J. Med. Chem. 50, 4746–4758.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLi, Y.-H., Liu, R., Zhang, X.-N. & Zhu, H.-J. (2008). Acta Cryst. E64, o533.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationShah, N. H., Butterfoss, G. L., Nguyen, K., Yoo, B., Bonneau, R., Rabenstein, D. L. & Kirshenbaum, K. (2008). J. Am. Chem Soc. 130, 16622–16632.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds