organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Polymorphic form II of 4,4′-methyl­enebis(benzene­sulfonamide)

aInstitute of Pharmacy, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
*Correspondence e-mail: thomas.gelbrich@uibk.ac.at

(Received 1 June 2010; accepted 4 June 2010; online 9 June 2010)

In the title compound, C13H14N2O4S2 (alternative names: diphenyl­methane-4,4′-disulfonamide, nirexon, CRN: 535–66-0), the two benzene rings form a dihedral angle of 70.8 (1)°. There are two sets of shorter (H⋯O < 2.1 Å) and longer (H⋯O > 2.4 Å) N—H⋯O hydrogen bonds per sulfonamide NH2 group, which together result in hydrogen-bonded sheets parallel (102). Adjacent sheets are connected to one another by an additional N—H⋯N inter­action so that a three-dimensional network of hydrogen-bonded mol­ecules is formed. The investigated polymorph is identical with the form II previously described by Kuhnert-Brandstätter & Moser [(1981). Mikrochim. Acta, 75, 421–440].

Related literature

For the polymorphism of diphenyl­methane-4,4′-disulfonamide, see Kuhnert-Brandstätter & Moser (1981[Kuhnert-Brandstätter, M. & Moser, I. (1981). Mikrochim. Acta, 75, 421-440.]); Kuhnert-Brandstätter & Wunsch (1969[Kuhnert-Brandstätter, M. & Wunsch, S. (1969). Mikrochim. Acta, 57, 1297-1370.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14N2O4S2

  • Mr = 326.38

  • Monoclinic, P 21

  • a = 10.8251 (5) Å

  • b = 5.0791 (3) Å

  • c = 12.6912 (5) Å

  • β = 90.931 (3)°

  • V = 697.69 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 120 K

  • 0.25 × 0.1 × 0.05 mm

Data collection
  • Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.907, Tmax = 0.980

  • 7877 measured reflections

  • 2438 independent reflections

  • 2152 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.087

  • S = 1.06

  • 2438 reflections

  • 216 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.46 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 904 Friedel pairs

  • Flack parameter: −0.18 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 (2) 2.09 (2) 2.960 (4) 168 (4)
N1—H2⋯O1ii 0.89 (2) 2.42 (3) 3.166 (4) 142 (3)
N1—H2⋯O4iii 0.89 (2) 2.53 (3) 3.116 (4) 124 (3)
N2—H3⋯O3iv 0.88 (2) 2.06 (2) 2.898 (3) 159 (3)
N2—H4⋯N1v 0.88 (2) 2.50 (3) 3.182 (3) 135 (3)
N2—H4⋯O4vi 0.88 (2) 2.50 (3) 3.149 (4) 131 (3)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+1]; (ii) x, y+1, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iv) [-x+2, y-{\script{1\over 2}}, -z]; (v) [-x+1, y+{\script{1\over 2}}, -z+1]; (vi) x, y-1, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

The polymorphic behaviour of the title compound, a carbonic anhydrase inhibitor with diuretic effects, was described by Kuhnert-Brandstätter & Moser (1981) and Kuhnert-Brandstätter & Wunsch (1969), who identified five distinct polymorphic modifications. The commercial product contained form II (mp. 172–174 °C), which was also found to be the stable polymorph at room temperature. The identity of the crystals investigated in the present study with form II reported by Kuhnert-Brandstätter & Moser (1981) was established by thermomicroscopy and IR spectroscopy. The asymmetric unit contains a single molecule (Fig. 1). Its central plane, defined by S1, S2, C1, C11, C14, C21 and C24, forms angles of 21.8 (1)° and 78.7 (1)° with the mean planes of the two phenyl rings C11 > C16 and C21 > C26, respectively. The two sulfonamide groups are differently oriented with respect to the adjacent phenyl ring, so that the corresponding torsion angles N1—S1—C1—C24 and N2—S2—C1—C14 are 115.6 (2)° and 53.3 (2)°, respectively. Each molecule is connected to four other molecules by four short N—H···O bonds (H···O < 2.1 Å, see Table 2) so that an H-bonded sheet parallel to (102) is formed. The symmetry operation between molecules linked by these primary interactions involving one H-bond donor and one acceptor site of each sulfonamide group is a twofold screw axis. There are two additional N—H···O contacts (H···O > 2.4 Å, see Table 2) within the same plane so that all four NH hydrogen bond donor sites are employed once. These secondary N—H···O bonds link molecules related by a translation along [010]. The O3 and O4 sites of one sulfonyl group accept one H-bond each, while in the group O1 accepts two H-bonds. Thus, the sulfonamide groups of molecules in the hydrogen bonded sheet form two distinct chains of fused rings both propagating parallel to [010]. One chain consists of ten-membered rings with two H-bond donor and two acceptor sites (labeled 'A' in Fig. 2), and the other is generated from 9-membered rings with two three H-bond donor and two acceptor sites ('B'). Each of the N—H···O sheets is linked to two neighbouring sheets by a N2—H···N1(-x + 1, y + 1/2, -z + 1) interaction (represented by arrows in Fig. 2). Thus, this crystal structure contains a three-dimensional network of N—H···O and N—H···N bonded molecules of diphenylmethane-4,4'-disulfonamide.

Related literature top

For the polymorphism of diphenylmethane-4,4'-disulfonamide, see Kuhnert-Brandstätter & Moser (1981); Kuhnert-Brandstätter & Wunsch (1969).

Experimental top

The crystals for this study were obtained from a commercial sample of diphenylmethane-4,4'-disulfonamide (Farbenfabriken Bayer AG, Leverkusen).

Refinement top

All H atoms were identified in a difference map. H atoms bonded to secondary CH2 (C—H = 0.99 Å) and aromatic carbon atoms (C—H = 0.95 Å) were positioned geometrically. Hydrogen atoms attached to N were refined with restrained distances [N—H = 0.88 (12) Å].The Uiso parameters of all H atoms were refined freely.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 50% probability level and hydrogen atoms shown as spheres of arbitrary size.
[Figure 2] Fig. 2. Portion of a single hydrogen bonded sheet parallel to (102) and generated by shorter N—H···O bonds (dotted lines) and longer N—H···O bonds (dashed lines). N—H···N bonds (arrows) connect to neighbouring sheets. O, H and N atoms directly involved in hydrogen bonds are drawn as balls.
4,4'-methylenebis(benzenesulfonamide) top
Crystal data top
C13H14N2O4S2F(000) = 340
Mr = 326.38Dx = 1.554 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 6304 reflections
a = 10.8251 (5) Åθ = 2.9–26.0°
b = 5.0791 (3) ŵ = 0.40 mm1
c = 12.6912 (5) ÅT = 120 K
β = 90.931 (3)°Needle, colourless
V = 697.69 (6) Å30.25 × 0.1 × 0.05 mm
Z = 2
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
2438 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode2152 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 3.7°
ϕ & ω scansh = 1312
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 56
Tmin = 0.907, Tmax = 0.980l = 1515
7877 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0361P)2 + 0.182P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2438 reflectionsΔρmax = 0.26 e Å3
216 parametersΔρmin = 0.46 e Å3
5 restraintsAbsolute structure: Flack (1983), 904 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.18 (9)
Crystal data top
C13H14N2O4S2V = 697.69 (6) Å3
Mr = 326.38Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.8251 (5) ŵ = 0.40 mm1
b = 5.0791 (3) ÅT = 120 K
c = 12.6912 (5) Å0.25 × 0.1 × 0.05 mm
β = 90.931 (3)°
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
2438 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2152 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 0.980Rint = 0.054
7877 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087Δρmax = 0.26 e Å3
S = 1.06Δρmin = 0.46 e Å3
2438 reflectionsAbsolute structure: Flack (1983), 904 Friedel pairs
216 parametersAbsolute structure parameter: 0.18 (9)
5 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20189 (6)0.23188 (15)0.54432 (5)0.01593 (18)
S20.88754 (6)0.73072 (17)0.14221 (5)0.01695 (19)
O10.1335 (2)0.4632 (4)0.51332 (16)0.0205 (5)
O20.30683 (18)0.2579 (6)0.61295 (14)0.0238 (5)
O30.90887 (19)0.8314 (5)0.03829 (15)0.0249 (6)
O40.90645 (19)0.9060 (4)0.23016 (16)0.0208 (5)
N10.1033 (3)0.0417 (6)0.6023 (2)0.0189 (6)
H10.035 (3)0.039 (10)0.563 (3)0.053 (13)*
H20.129 (3)0.124 (4)0.608 (3)0.035 (11)*
N20.9759 (2)0.4794 (6)0.1575 (2)0.0197 (6)
H30.994 (3)0.410 (7)0.0960 (18)0.030 (10)*
H40.965 (3)0.381 (7)0.213 (2)0.042 (12)*
C10.3517 (3)0.3849 (7)0.1577 (2)0.0208 (7)
H1A0.33190.27840.09430.024 (8)*
H1B0.29900.54410.15500.028 (10)*
C110.2504 (3)0.0654 (6)0.4304 (2)0.0169 (7)
C120.1806 (3)0.0834 (7)0.3372 (2)0.0212 (7)
H120.10970.19340.33350.021 (8)*
C130.2160 (3)0.0610 (7)0.2502 (2)0.0200 (7)
H130.16960.04700.18630.032 (10)*
C140.3184 (2)0.2261 (7)0.2547 (2)0.0164 (6)
C150.3882 (2)0.2386 (8)0.3479 (2)0.0189 (6)
H150.45990.34630.35140.045 (12)*
C160.3538 (3)0.0945 (7)0.4360 (2)0.0188 (7)
H160.40110.10580.49950.026 (9)*
C210.7330 (3)0.6228 (6)0.1479 (2)0.0151 (6)
C220.6511 (2)0.7639 (7)0.2093 (2)0.0174 (6)
H220.67860.91080.24970.037 (11)*
C230.5271 (3)0.6854 (6)0.2106 (2)0.0179 (7)
H230.47020.78140.25200.021 (8)*
C240.4857 (3)0.4701 (6)0.1528 (2)0.0170 (7)
C250.5703 (3)0.3302 (7)0.0928 (2)0.0183 (7)
H250.54320.18100.05360.030 (10)*
C260.6932 (3)0.4053 (7)0.0892 (2)0.0187 (7)
H260.74980.31000.04730.043 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0169 (3)0.0134 (4)0.0174 (3)0.0005 (4)0.0005 (2)0.0018 (4)
S20.0179 (4)0.0157 (4)0.0174 (3)0.0004 (4)0.0033 (3)0.0020 (4)
O10.0255 (12)0.0093 (11)0.0268 (12)0.0053 (10)0.0004 (9)0.0009 (10)
O20.0203 (10)0.0268 (13)0.0241 (10)0.0016 (12)0.0057 (8)0.0087 (13)
O30.0256 (12)0.0306 (15)0.0187 (10)0.0016 (10)0.0085 (8)0.0113 (10)
O40.0222 (11)0.0154 (12)0.0249 (11)0.0026 (10)0.0013 (9)0.0060 (10)
N10.0232 (15)0.0143 (15)0.0193 (14)0.0003 (13)0.0061 (11)0.0001 (12)
N20.0231 (14)0.0191 (16)0.0170 (14)0.0058 (13)0.0049 (11)0.0032 (12)
C10.0209 (16)0.0217 (18)0.0196 (16)0.0019 (15)0.0019 (12)0.0066 (14)
C110.0178 (15)0.0145 (16)0.0183 (14)0.0002 (14)0.0012 (12)0.0014 (13)
C120.0173 (16)0.0217 (19)0.0246 (16)0.0055 (15)0.0045 (12)0.0016 (15)
C130.0184 (16)0.0229 (18)0.0186 (15)0.0020 (15)0.0032 (12)0.0005 (14)
C140.0155 (14)0.0149 (16)0.0189 (13)0.0007 (15)0.0011 (10)0.0006 (15)
C150.0176 (14)0.0204 (16)0.0188 (13)0.0024 (17)0.0009 (11)0.0022 (17)
C160.0178 (16)0.0191 (17)0.0194 (15)0.0032 (14)0.0010 (12)0.0008 (13)
C210.0169 (15)0.0134 (16)0.0153 (13)0.0005 (13)0.0031 (11)0.0024 (13)
C220.0228 (15)0.0124 (15)0.0169 (13)0.0014 (15)0.0009 (11)0.0002 (16)
C230.0184 (15)0.0181 (18)0.0174 (14)0.0015 (13)0.0054 (12)0.0014 (13)
C240.0222 (16)0.0168 (17)0.0118 (14)0.0009 (14)0.0020 (12)0.0076 (13)
C250.0244 (16)0.0183 (18)0.0123 (13)0.0037 (13)0.0008 (12)0.0027 (12)
C260.0245 (16)0.0153 (17)0.0163 (14)0.0028 (15)0.0019 (12)0.0002 (14)
Geometric parameters (Å, º) top
S1—O21.4263 (19)C12—C131.385 (4)
S1—O11.440 (2)C12—H120.9500
S1—N11.624 (3)C13—C141.390 (4)
S1—C111.762 (3)C13—H130.9500
S2—O31.437 (2)C14—C151.395 (4)
S2—O41.440 (2)C15—C161.391 (4)
S2—N21.605 (3)C15—H150.9500
S2—C211.763 (3)C16—H160.9500
N1—H10.881 (19)C21—C221.389 (4)
N1—H20.887 (19)C21—C261.397 (4)
N2—H30.883 (18)C22—C231.401 (4)
N2—H40.875 (19)C22—H220.9500
C1—C241.516 (4)C23—C241.387 (4)
C1—C141.520 (4)C23—H230.9500
C1—H1A0.9900C24—C251.395 (4)
C1—H1B0.9900C25—C261.386 (4)
C11—C161.384 (4)C25—H250.9500
C11—C121.396 (4)C26—H260.9500
O2—S1—O1119.49 (15)C12—C13—C14121.1 (3)
O2—S1—N1107.52 (14)C12—C13—H13119.4
O1—S1—N1105.68 (14)C14—C13—H13119.4
O2—S1—C11107.49 (13)C13—C14—C15118.9 (3)
O1—S1—C11109.03 (14)C13—C14—C1119.1 (3)
N1—S1—C11107.02 (15)C15—C14—C1122.0 (3)
O3—S2—O4117.93 (14)C16—C15—C14120.6 (3)
O3—S2—N2106.86 (13)C16—C15—H15119.7
O4—S2—N2108.72 (13)C14—C15—H15119.7
O3—S2—C21108.36 (13)C11—C16—C15119.7 (3)
O4—S2—C21106.48 (13)C11—C16—H16120.2
N2—S2—C21108.18 (15)C15—C16—H16120.2
S1—N1—H1108 (3)C22—C21—C26120.9 (3)
S1—N1—H2114 (2)C22—C21—S2118.5 (2)
H1—N1—H2107 (4)C26—C21—S2120.6 (2)
S2—N2—H3111 (2)C21—C22—C23118.7 (3)
S2—N2—H4118 (3)C21—C22—H22120.6
H3—N2—H4121 (4)C23—C22—H22120.6
C24—C1—C14115.1 (2)C24—C23—C22121.3 (3)
C24—C1—H1A108.5C24—C23—H23119.4
C14—C1—H1A108.5C22—C23—H23119.4
C24—C1—H1B108.5C23—C24—C25118.8 (3)
C14—C1—H1B108.5C23—C24—C1120.2 (3)
H1A—C1—H1B107.5C25—C24—C1120.9 (3)
C16—C11—C12120.5 (3)C26—C25—C24121.1 (3)
C16—C11—S1119.5 (2)C26—C25—H25119.4
C12—C11—S1120.0 (2)C24—C25—H25119.4
C13—C12—C11119.2 (3)C25—C26—C21119.2 (3)
C13—C12—H12120.4C25—C26—H26120.4
C11—C12—H12120.4C21—C26—H26120.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.88 (2)2.09 (2)2.960 (4)168 (4)
N1—H2···O1ii0.89 (2)2.42 (3)3.166 (4)142 (3)
N1—H2···O4iii0.89 (2)2.53 (3)3.116 (4)124 (3)
N2—H3···O3iv0.88 (2)2.06 (2)2.898 (3)159 (3)
N2—H4···N1v0.88 (2)2.50 (3)3.182 (3)135 (3)
N2—H4···O4vi0.88 (2)2.50 (3)3.149 (4)131 (3)
Symmetry codes: (i) x, y+1/2, z+1; (ii) x, y+1, z; (iii) x+1, y1/2, z+1; (iv) x+2, y1/2, z; (v) x+1, y+1/2, z+1; (vi) x, y1, z.

Experimental details

Crystal data
Chemical formulaC13H14N2O4S2
Mr326.38
Crystal system, space groupMonoclinic, P21
Temperature (K)120
a, b, c (Å)10.8251 (5), 5.0791 (3), 12.6912 (5)
β (°) 90.931 (3)
V3)697.69 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.25 × 0.1 × 0.05
Data collection
DiffractometerBruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.907, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
7877, 2438, 2152
Rint0.054
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.087, 1.06
No. of reflections2438
No. of parameters216
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.46
Absolute structureFlack (1983), 904 Friedel pairs
Absolute structure parameter0.18 (9)

Computer programs: COLLECT (Hooft, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881 (19)2.09 (2)2.960 (4)168 (4)
N1—H2···O1ii0.887 (19)2.42 (3)3.166 (4)142 (3)
N1—H2···O4iii0.887 (19)2.53 (3)3.116 (4)124 (3)
N2—H3···O3iv0.883 (18)2.06 (2)2.898 (3)159 (3)
N2—H4···N1v0.875 (19)2.50 (3)3.182 (3)135 (3)
N2—H4···O4vi0.875 (19)2.50 (3)3.149 (4)131 (3)
Symmetry codes: (i) x, y+1/2, z+1; (ii) x, y+1, z; (iii) x+1, y1/2, z+1; (iv) x+2, y1/2, z; (v) x+1, y+1/2, z+1; (vi) x, y1, z.
 

Footnotes

Current address: School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, England.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKuhnert-Brandstätter, M. & Moser, I. (1981). Mikrochim. Acta, 75, 421–440.  Google Scholar
First citationKuhnert-Brandstätter, M. & Wunsch, S. (1969). Mikrochim. Acta, 57, 1297–1370.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds