organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(1,5-Di­methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)acetamide–naphthalene-2,3-diol (1/1)

aChemistry Department, Faculty of Science, King Abdul Aziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 16 June 2010; accepted 23 June 2010; online 26 June 2010)

In the reaction of naphthalene-2,3-diol and 4-amino­anti­pyrine in the presence of acetic acid, the amine function is acetyl­ated and the resulting acetamide co-crystallizes with the diol in the title compound, C13H15N3O2·C10H8O2, with 1:1 molar stoichiometry. The two components are linked by two O–H⋯O=C hydrogen bonds. One of the hy­droxy groups inter­acts with the pyrazolone carbonyl O atom and the other hy­droxy group inter­acts with the amide O atom of another component, generating a chain motif. Adjacent chains are linked into a layer motif via N—H⋯O inter­actions involving only the heterocyclic acetamide component.

Related literature

For the crystal structure of 4-acetamido-2,3-dimethyl-1-phenyl-5-pyrazol-3-one, see: Kuznetsov et al. (1999[Kuznetsov, M. L., Bel'skii, V. K., Dement'ev, A. I., Zaitsev, B. E., Lokshin, B. V. & Zhornik, V. G. (1999). Russ. Chem. Bull. 48, 1274-1280.]). For co-crystals of naphthalene-2,3-diol, see: Fritchie & Johnston (1975[Fritchie, C. J. & Johnston, R. M. (1975). Acta Cryst. B31, 454-461.]); Herbert & Truter (1980[Herbert, J. A. & Truter, M. R. (1980). J. Chem. Soc. Perkin Trans. 2, pp. 1253-1258.]); Kuo et al. (1974[Kuo, M. C., Dunn, J. B. R. & Fritchie, C. J. (1974). Acta Cryst. B30, 1766-1771.]); Nakamatsu et al. (2003[Nakamatsu, S., Yoshizawa, K., Toyota, S., Toda, F. & Matijasic, I. (2003). Org. Biomol. Chem. 1, 2231-2234.]); Wang et al. (2008[Wang, Y.-T., Tang, G.-M. & Wan, W.-Z. (2008). Acta Cryst. E64, o1754.]); Wells et al. (1974[Wells, J. L., Trus, B. L., Johnston, R. M., Marsh, R. E. & Fritchie, C. J. (1974). Acta Cryst. B30, 1127-1134.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15N3O2·C10H8O2

  • Mr = 405.44

  • Monoclinic, P 21 /c

  • a = 12.426 (1) Å

  • b = 14.304 (2) Å

  • c = 12.959 (1) Å

  • β = 117.845 (1)°

  • V = 2036.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.25 × 0.25 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 19263 measured reflections

  • 4683 independent reflections

  • 3189 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.131

  • S = 1.02

  • 4683 reflections

  • 286 parameters

  • 27 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.87 (1) 2.07 (1) 2.924 (2) 169 (2)
O3—H3⋯O2 0.85 (3) 1.81 (3) 2.639 (2) 163 (3)
O4—H4⋯O1ii 0.85 (3) 1.81 (3) 2.646 (2) 168 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

Naphthalene-2,3-diol forms co-crystals with a number of neutral organic compounds (Fritchie & Johnston, 1975; Herbert & Truter, 1980; Kuo et al., 1974; Nakamatsu et al., 2003; Wang et al., 2008; Wells et al., 1974). The attempt to co-crystallize it with the drug 4-aminoantipyrine was sussessful when the reaction was carried out in the presence of acetic acid, but the acetic acid converted the amino group to an acetamido group instead. In the co-crystal (Scheme I, Fig. 1), the acetamide and the diol are linked by two O–H···OC hydrogen bonds. One of the hydroxy groups interacts with the pyrazolyl carbonyl O-atom and the other hydroxy group interacts with the amido O-atom of another component to generate a chain motif. Adjacent chains are linked into a layer motif via N–H···O interactions that involves the acetamide component only.

Related literature top

For the crystal structure of 4-acetamido-2,3-dimethyl-1-phenyl-5-pyrazol-3-one, see: Kuznetsov et al. (1999). For co-crystals of naphthalene-2,3-diol, see: Fritchie & Johnston (1975); Herbert & Truter (1980); Kuo et al. (1974); Nakamatsu et al. (2003); Wang et al. (2008); Wells et al. (1974).

Experimental top

Naphthalene-2,3-diol (0.35 g, 2.2 mol) and 4-aminoantipyrine (0.45 g, 2.2 mmol) were heated in methanol (15 ml) for 5 h; three drops of acetic acid were added. Crystals separated from the cool solution when it was set aside for a day.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.98 Å, U(H) = 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The hydroxy and amino H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H 0.84±0.01Å and N–H 0.86±0.01 Å. Their temperature factors were freely refined.

The anisotropic temperature factors of C17 to C20 atoms of the naphthalene fused-ring were restrained to be nearly isotropic and with the restraints, the ellipsoids were somewhat elongated.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the (C13H15N3O2)(C10H8O2) co-crystal at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
N-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4- yl)acetamide–naphthalene-2,3-diol (1/1) top
Crystal data top
C13H15N3O2·C10H8O2F(000) = 856
Mr = 405.44Dx = 1.322 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2505 reflections
a = 12.426 (1) Åθ = 2.3–27.9°
b = 14.304 (2) ŵ = 0.09 mm1
c = 12.959 (1) ÅT = 100 K
β = 117.845 (1)°Prism, colorless
V = 2036.7 (4) Å30.25 × 0.25 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3189 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.061
Graphite monochromatorθmax = 27.5°, θmin = 1.9°
ω scansh = 1616
19263 measured reflectionsk = 1818
4683 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.6929P]
where P = (Fo2 + 2Fc2)/3
4683 reflections(Δ/σ)max = 0.001
286 parametersΔρmax = 0.31 e Å3
27 restraintsΔρmin = 0.36 e Å3
Crystal data top
C13H15N3O2·C10H8O2V = 2036.7 (4) Å3
Mr = 405.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.426 (1) ŵ = 0.09 mm1
b = 14.304 (2) ÅT = 100 K
c = 12.959 (1) Å0.25 × 0.25 × 0.10 mm
β = 117.845 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3189 reflections with I > 2σ(I)
19263 measured reflectionsRint = 0.061
4683 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05227 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.31 e Å3
4683 reflectionsΔρmin = 0.36 e Å3
286 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33173 (12)0.73209 (10)0.32885 (12)0.0290 (3)
O20.65387 (11)0.56345 (9)0.48381 (11)0.0232 (3)
O30.56600 (12)0.65279 (10)0.60626 (11)0.0253 (3)
O40.44923 (12)0.70985 (10)0.71521 (12)0.0279 (3)
N10.37471 (14)0.57790 (11)0.36783 (14)0.0224 (4)
N20.51486 (14)0.55398 (11)0.18066 (13)0.0233 (4)
N30.61709 (14)0.55929 (11)0.29124 (13)0.0219 (4)
C10.25557 (17)0.65611 (14)0.44515 (17)0.0255 (4)
H1A0.18790.70070.41230.038*
H1B0.31050.67280.52640.038*
H1C0.22370.59290.44220.038*
C20.32386 (16)0.65897 (14)0.37571 (16)0.0219 (4)
C30.58105 (17)0.56524 (12)0.37598 (16)0.0199 (4)
C40.45083 (17)0.57041 (13)0.31423 (16)0.0218 (4)
C50.41487 (17)0.56533 (13)0.19785 (16)0.0240 (4)
C60.29135 (19)0.57192 (16)0.09672 (18)0.0326 (5)
H6A0.23020.55910.12260.049*
H6B0.28350.52610.03740.049*
H6C0.27880.63500.06340.049*
C70.52538 (19)0.60264 (14)0.08616 (17)0.0284 (5)
H7A0.45400.58850.01160.043*
H7B0.59920.58170.08360.043*
H7C0.53000.67020.10020.043*
C80.73390 (18)0.53349 (14)0.30516 (17)0.0266 (4)
C90.7468 (2)0.45251 (15)0.25275 (18)0.0326 (5)
H90.67850.41350.20910.039*
C100.8600 (2)0.4293 (2)0.2648 (2)0.0501 (7)
H100.86960.37450.22850.060*
C110.9594 (2)0.4857 (2)0.3296 (3)0.0681 (10)
H111.03710.46980.33750.082*
C120.9456 (2)0.5654 (2)0.3830 (3)0.0676 (10)
H121.01440.60350.42840.081*
C130.8323 (2)0.59026 (18)0.3707 (2)0.0428 (6)
H130.82260.64520.40670.051*
C140.63471 (17)0.66192 (13)0.72372 (15)0.0202 (4)
C150.75639 (18)0.64515 (14)0.78429 (17)0.0266 (4)
H150.79870.62320.74400.032*
C160.82114 (19)0.65991 (16)0.90656 (18)0.0339 (5)
C170.9490 (2)0.6515 (2)0.9714 (2)0.0634 (9)
H170.99450.63160.93350.076*
C181.0082 (3)0.6715 (3)1.0883 (2)0.0872 (13)
H181.09440.66741.12990.105*
C190.9427 (2)0.6980 (3)1.1467 (2)0.0719 (10)
H190.98450.71041.22810.086*
C200.8197 (2)0.70618 (18)1.08762 (19)0.0406 (6)
H200.77610.72351.12850.049*
C210.75571 (18)0.68925 (14)0.96659 (17)0.0274 (4)
C220.62919 (17)0.70463 (13)0.90182 (16)0.0211 (4)
H220.58480.72350.94130.025*
C230.56923 (16)0.69285 (12)0.78342 (16)0.0198 (4)
H10.373 (2)0.5318 (11)0.4107 (17)0.036 (6)*
H30.608 (2)0.6281 (17)0.577 (2)0.054 (8)*
H40.419 (2)0.7345 (19)0.755 (2)0.067 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0304 (8)0.0313 (8)0.0338 (8)0.0020 (6)0.0222 (7)0.0056 (6)
O20.0239 (7)0.0308 (7)0.0178 (7)0.0018 (6)0.0121 (6)0.0039 (5)
O30.0269 (7)0.0340 (8)0.0172 (7)0.0026 (6)0.0121 (6)0.0035 (6)
O40.0215 (7)0.0423 (9)0.0207 (7)0.0040 (6)0.0106 (6)0.0036 (6)
N10.0230 (8)0.0287 (9)0.0210 (9)0.0039 (7)0.0147 (7)0.0004 (7)
N20.0266 (9)0.0303 (9)0.0165 (8)0.0067 (7)0.0131 (7)0.0030 (7)
N30.0238 (8)0.0281 (9)0.0175 (8)0.0064 (7)0.0127 (7)0.0067 (7)
C10.0186 (9)0.0374 (11)0.0224 (10)0.0005 (8)0.0111 (8)0.0010 (8)
C20.0169 (9)0.0310 (10)0.0170 (9)0.0037 (8)0.0073 (8)0.0025 (8)
C30.0263 (10)0.0194 (9)0.0196 (10)0.0040 (7)0.0155 (8)0.0036 (7)
C40.0246 (10)0.0240 (10)0.0214 (10)0.0042 (8)0.0147 (8)0.0025 (8)
C50.0273 (10)0.0275 (10)0.0203 (10)0.0063 (8)0.0137 (8)0.0024 (8)
C60.0285 (11)0.0463 (13)0.0221 (11)0.0047 (10)0.0110 (9)0.0027 (9)
C70.0387 (12)0.0323 (11)0.0211 (10)0.0084 (9)0.0198 (10)0.0035 (8)
C80.0275 (10)0.0352 (11)0.0251 (11)0.0061 (8)0.0191 (9)0.0079 (8)
C90.0346 (12)0.0400 (12)0.0291 (12)0.0036 (10)0.0198 (10)0.0093 (9)
C100.0452 (15)0.0678 (18)0.0458 (15)0.0041 (13)0.0284 (13)0.0223 (13)
C110.0308 (14)0.117 (3)0.0654 (19)0.0044 (15)0.0300 (14)0.0417 (18)
C120.0341 (14)0.110 (3)0.071 (2)0.0277 (15)0.0349 (14)0.0542 (19)
C130.0349 (13)0.0565 (15)0.0477 (15)0.0169 (11)0.0282 (12)0.0290 (12)
C140.0257 (10)0.0207 (9)0.0159 (9)0.0005 (8)0.0111 (8)0.0022 (7)
C150.0262 (10)0.0348 (11)0.0247 (11)0.0040 (8)0.0169 (9)0.0030 (8)
C160.0252 (11)0.0538 (14)0.0230 (11)0.0065 (10)0.0115 (9)0.0049 (10)
C170.0274 (13)0.125 (3)0.0358 (14)0.0178 (14)0.0129 (11)0.0205 (15)
C180.0297 (15)0.180 (4)0.0390 (16)0.0292 (19)0.0051 (13)0.025 (2)
C190.0341 (14)0.142 (3)0.0275 (14)0.0191 (16)0.0041 (11)0.0231 (16)
C200.0315 (12)0.0672 (17)0.0221 (11)0.0076 (11)0.0117 (10)0.0076 (11)
C210.0251 (10)0.0361 (11)0.0215 (10)0.0012 (9)0.0115 (9)0.0030 (8)
C220.0259 (10)0.0235 (9)0.0186 (9)0.0005 (8)0.0145 (8)0.0003 (7)
C230.0201 (9)0.0205 (9)0.0197 (10)0.0000 (7)0.0101 (8)0.0004 (7)
Geometric parameters (Å, º) top
O1—C21.236 (2)C8—C91.389 (3)
O2—C31.261 (2)C9—C101.381 (3)
O3—C141.360 (2)C9—H90.9500
O3—H30.85 (3)C10—C111.383 (4)
O4—C231.354 (2)C10—H100.9500
O4—H40.85 (3)C11—C121.385 (4)
N1—C21.347 (2)C11—H110.9500
N1—C41.415 (2)C12—C131.388 (3)
N1—H10.868 (10)C12—H120.9500
N2—C51.371 (2)C13—H130.9500
N2—N31.404 (2)C14—C151.361 (3)
N2—C71.466 (2)C14—C231.430 (2)
N3—C31.369 (2)C15—C161.418 (3)
N3—C81.425 (2)C15—H150.9500
C1—C21.498 (2)C16—C171.413 (3)
C1—H1A0.9800C16—C211.426 (3)
C1—H1B0.9800C17—C181.369 (4)
C1—H1C0.9800C17—H170.9500
C3—C41.433 (3)C18—C191.398 (4)
C4—C51.360 (3)C18—H180.9500
C5—C61.484 (3)C19—C201.358 (3)
C6—H6A0.9800C19—H190.9500
C6—H6B0.9800C20—C211.409 (3)
C6—H6C0.9800C20—H200.9500
C7—H7A0.9800C21—C221.411 (3)
C7—H7B0.9800C22—C231.367 (3)
C7—H7C0.9800C22—H220.9500
C8—C131.380 (3)
C14—O3—H3109.9 (18)C10—C9—H9120.4
C23—O4—H4110.2 (19)C8—C9—H9120.4
C2—N1—C4123.16 (16)C9—C10—C11120.1 (2)
C2—N1—H1117.1 (15)C9—C10—H10119.9
C4—N1—H1118.4 (15)C11—C10—H10119.9
C5—N2—N3106.52 (14)C10—C11—C12120.0 (2)
C5—N2—C7121.38 (17)C10—C11—H11120.0
N3—N2—C7115.82 (15)C12—C11—H11120.0
C3—N3—N2110.07 (14)C11—C12—C13120.6 (2)
C3—N3—C8127.60 (16)C11—C12—H12119.7
N2—N3—C8119.84 (14)C13—C12—H12119.7
C2—C1—H1A109.5C8—C13—C12118.7 (2)
C2—C1—H1B109.5C8—C13—H13120.7
H1A—C1—H1B109.5C12—C13—H13120.7
C2—C1—H1C109.5O3—C14—C15125.21 (16)
H1A—C1—H1C109.5O3—C14—C23114.64 (16)
H1B—C1—H1C109.5C15—C14—C23120.15 (17)
O1—C2—N1122.93 (17)C14—C15—C16121.07 (17)
O1—C2—C1121.01 (17)C14—C15—H15119.5
N1—C2—C1116.05 (17)C16—C15—H15119.5
O2—C3—N3123.60 (17)C17—C16—C15123.06 (19)
O2—C3—C4131.17 (16)C17—C16—C21117.99 (19)
N3—C3—C4105.21 (15)C15—C16—C21118.87 (18)
C5—C4—N1126.85 (17)C18—C17—C16121.0 (2)
C5—C4—C3108.47 (16)C18—C17—H17119.5
N1—C4—C3124.68 (16)C16—C17—H17119.5
C4—C5—N2109.47 (17)C17—C18—C19120.5 (2)
C4—C5—C6130.11 (18)C17—C18—H18119.8
N2—C5—C6120.40 (17)C19—C18—H18119.8
C5—C6—H6A109.5C20—C19—C18120.3 (2)
C5—C6—H6B109.5C20—C19—H19119.8
H6A—C6—H6B109.5C18—C19—H19119.8
C5—C6—H6C109.5C19—C20—C21120.9 (2)
H6A—C6—H6C109.5C19—C20—H20119.5
H6B—C6—H6C109.5C21—C20—H20119.5
N2—C7—H7A109.5C20—C21—C22121.83 (18)
N2—C7—H7B109.5C20—C21—C16119.28 (19)
H7A—C7—H7B109.5C22—C21—C16118.82 (18)
N2—C7—H7C109.5C23—C22—C21121.33 (17)
H7A—C7—H7C109.5C23—C22—H22119.3
H7B—C7—H7C109.5C21—C22—H22119.3
C13—C8—C9121.35 (19)O4—C23—C22124.57 (16)
C13—C8—N3118.83 (18)O4—C23—C14115.71 (16)
C9—C8—N3119.81 (18)C22—C23—C14119.71 (17)
C10—C9—C8119.3 (2)
C5—N2—N3—C35.4 (2)C8—C9—C10—C110.8 (4)
C7—N2—N3—C3143.68 (16)C9—C10—C11—C120.3 (5)
C5—N2—N3—C8168.77 (16)C10—C11—C12—C131.0 (5)
C7—N2—N3—C852.9 (2)C9—C8—C13—C120.5 (4)
C4—N1—C2—O15.8 (3)N3—C8—C13—C12179.3 (2)
C4—N1—C2—C1174.38 (16)C11—C12—C13—C80.6 (5)
N2—N3—C3—O2174.23 (16)O3—C14—C15—C16177.70 (19)
C8—N3—C3—O212.4 (3)C23—C14—C15—C161.5 (3)
N2—N3—C3—C44.09 (19)C14—C15—C16—C17174.2 (2)
C8—N3—C3—C4165.87 (17)C14—C15—C16—C212.5 (3)
C2—N1—C4—C579.6 (3)C15—C16—C17—C18176.3 (3)
C2—N1—C4—C3101.6 (2)C21—C16—C17—C180.4 (5)
O2—C3—C4—C5176.82 (19)C16—C17—C18—C192.0 (6)
N3—C3—C4—C51.3 (2)C17—C18—C19—C201.5 (6)
O2—C3—C4—N12.2 (3)C18—C19—C20—C210.7 (5)
N3—C3—C4—N1179.66 (17)C19—C20—C21—C22174.8 (3)
N1—C4—C5—N2176.99 (17)C19—C20—C21—C162.3 (4)
C3—C4—C5—N22.0 (2)C17—C16—C21—C201.7 (3)
N1—C4—C5—C64.2 (3)C15—C16—C21—C20178.5 (2)
C3—C4—C5—C6176.78 (19)C17—C16—C21—C22175.4 (2)
N3—N2—C5—C44.4 (2)C15—C16—C21—C221.4 (3)
C7—N2—C5—C4139.91 (18)C20—C21—C22—C23176.4 (2)
N3—N2—C5—C6174.48 (17)C16—C21—C22—C230.7 (3)
C7—N2—C5—C639.0 (3)C21—C22—C23—O4177.26 (18)
C3—N3—C8—C1364.6 (3)C21—C22—C23—C141.7 (3)
N2—N3—C8—C13135.2 (2)O3—C14—C23—O40.8 (2)
C3—N3—C8—C9115.5 (2)C15—C14—C23—O4178.42 (17)
N2—N3—C8—C944.7 (3)O3—C14—C23—C22179.90 (16)
C13—C8—C9—C101.2 (3)C15—C14—C23—C220.6 (3)
N3—C8—C9—C10178.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.87 (1)2.07 (1)2.924 (2)169 (2)
O3—H3···O20.85 (3)1.81 (3)2.639 (2)163 (3)
O4—H4···O1ii0.85 (3)1.81 (3)2.646 (2)168 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H15N3O2·C10H8O2
Mr405.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.426 (1), 14.304 (2), 12.959 (1)
β (°) 117.845 (1)
V3)2036.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.25 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19263, 4683, 3189
Rint0.061
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.131, 1.02
No. of reflections4683
No. of parameters286
No. of restraints27
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.36

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.87 (1)2.07 (1)2.924 (2)169 (2)
O3—H3···O20.85 (3)1.81 (3)2.639 (2)163 (3)
O4—H4···O1ii0.85 (3)1.81 (3)2.646 (2)168 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

We thank King Abdul Aziz University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFritchie, C. J. & Johnston, R. M. (1975). Acta Cryst. B31, 454–461.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHerbert, J. A. & Truter, M. R. (1980). J. Chem. Soc. Perkin Trans. 2, pp. 1253–1258.  CrossRef Google Scholar
First citationKuo, M. C., Dunn, J. B. R. & Fritchie, C. J. (1974). Acta Cryst. B30, 1766–1771.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationKuznetsov, M. L., Bel'skii, V. K., Dement'ev, A. I., Zaitsev, B. E., Lokshin, B. V. & Zhornik, V. G. (1999). Russ. Chem. Bull. 48, 1274–1280.  Web of Science CrossRef CAS Google Scholar
First citationNakamatsu, S., Yoshizawa, K., Toyota, S., Toda, F. & Matijasic, I. (2003). Org. Biomol. Chem. 1, 2231–2234.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-T., Tang, G.-M. & Wan, W.-Z. (2008). Acta Cryst. E64, o1754.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWells, J. L., Trus, B. L., Johnston, R. M., Marsh, R. E. & Fritchie, C. J. (1974). Acta Cryst. B30, 1127–1134.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds