metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Penta­aqua­[2-(5-carboxyl­ato-2-oxido-1-pyridinio)acetato]zinc(II) monohydrate

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: sky37@zjnu.cn

(Received 20 April 2010; accepted 12 May 2010; online 9 June 2010)

In the title compound, [Zn(C8H5NO5)(H2O)5]·H2O, the ZnII atom is coordinated by one O atom from the 2-(5-carboxyl­ato-2-oxidopyridinium-1-yl)acetate ligand and by five water mol­ecules, forming a distorted octa­hedral geometry. Coordinated and uncoordinated water mol­ecules form O—H⋯O hydrogen bonds, leading to a three-dimensional framework.

Related literature

For related structures, see: Jiang et al. (2009[Jiang, M.-X., Feng, Y.-L., He, Y.-H. & Su, H. (2009). Inorg. Chim. Acta, 362, 2856-2860.]); Szafran et al. (2006[Szafran, M., Katrusiak, A., Koput, J. & Dega, S. Z. (2006). J. Mol. Struct. 784, 98-108.]); Yang et al. (2010[Yang, Q., Zhao, J.-P., Hu, B.-W., Zhang, X.-F. & Bu, X.-H. (2010). Inorg. Chem. 49, 3746-3751.]); Zhang et al. (2003[Zhang, B., Zhu, X.-Q., Lu, J.-Y., He, J., Wang, P. & Cheng, J.-P. (2003). J. Org. Chem. 68, 3295-3298.]); He & Feng (2007[He, Y.-H. & Feng, Y.-L. (2007). Acta Cryst. E63, o3422.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H5NO5)(H2O)5]·H2O

  • Mr = 368.60

  • Monoclinic, P 21 /c

  • a = 10.9584 (4) Å

  • b = 7.5548 (4) Å

  • c = 16.6510 (7) Å

  • β = 103.498 (3)°

  • V = 1340.43 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.89 mm−1

  • T = 293 K

  • 0.36 × 0.09 × 0.05 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.824, Tmax = 0.918

  • 19343 measured reflections

  • 3086 independent reflections

  • 2233 reflections with I > 2σ(I)

  • Rint = 0.100

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.084

  • S = 1.00

  • 3086 reflections

  • 226 parameters

  • 18 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O2i 0.83 (2) 2.25 (2) 2.972 (3) 145 (3)
O1W—H1WB⋯O2Wii 0.81 (2) 2.58 (3) 3.118 (3) 125 (3)
O2W—H2WA⋯O4iii 0.83 (2) 1.89 (2) 2.716 (2) 169 (3)
O2W—H2WB⋯O2i 0.80 (2) 1.96 (2) 2.742 (2) 163 (2)
O3W—H3WA⋯O2iv 0.81 (2) 1.89 (2) 2.701 (2) 173 (2)
O3W—H3WB⋯O4v 0.82 (2) 2.04 (2) 2.849 (2) 170 (3)
O4W—H4WA⋯O5vi 0.82 (2) 2.02 (2) 2.810 (2) 160 (3)
O5W—H5WA⋯O1iii 0.82 (2) 1.90 (2) 2.705 (2) 166 (3)
O5W—H5WB⋯O1iv 0.81 (2) 1.95 (2) 2.742 (2) 164 (3)
O6W—H6WB⋯O3v 0.82 (2) 1.89 (2) 2.697 (3) 171 (3)
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y, -z+1; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The pyridinium carboxylate ligands, containing both of carboxylate and quaternary ammonium groups, have been extensively employed to design and construct novel complexes due to its versatile coordination behavior to metal ions (Zhang et al., 2003; Szafran et al., 2006; Yang et al., 2010). Herein, we report the synthesis and crystal structure of a new complex, [ZnL(H2O)5].H2O (LH2 = 5-carboxy-1-carboxymethyl-2-oxidopyridinium; He & Feng, 2007).

As shown in Fig. 1, the metal center ZnII atom is six-coordinated by one O atom from one L2- ligand [Zn—O 2.1039 (16) Å] and five water molecules [Zn—O 2.0554 (17)–2.0988 (19) Å], to form a distorted octahdral geometry. Notably, only one O atom from the flexible carboxylic groups of L2- ligand coordinates to the ZnII ion. As shown in Fig. 2, the complexes connected with each other by the O—H···O hydrogen bonds generate a three-dimensional structure.

Related literature top

For related structures, see: Jiang et al. (2009); Szafran et al. (2006); Yang et al. (2010); Zhang et al. (2003); He & Feng (2007).

Experimental top

All the starting materials and solvents were obtained commercially and were used without further purification. A mixture of N-carboxymethyl-2-oxo-pyridine-5-carboxylic acid (0.1972 g, 1 mmol), ZnNO3 (0.1901 g, 1 mmol), and purified water (15 ml) was sealed in a 25 ml stainless steel reactor and kept at 393 K for 3 d. Then, the reactor was cooled to room temperature at a speed of 5 K/h. A large quantity of colorless single crystals were filtered out of the mixture with the yield of 85%.

Refinement top

The C-bound H atoms were positioned geometrically and included in the refinement using a riding model, with C—H = 0.93 or 0.97 Å, and with Uiso(H) = 1.2Ueq(C). The O-bound H atoms was located in a difference Fourier map and refined, with the distance restraint of O—H = 0.82 (2) Å, and with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Three-dimensional framework with hydrogen bonding interactions.
Pentaaqua[2-(5-carboxylato-2-oxido-1-pyridinio)acetato]zinc(II) monohydrate top
Crystal data top
[Zn(C8H5NO5)(H2O)5]·H2OF(000) = 760
Mr = 368.60Dx = 1.826 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6642 reflections
a = 10.9584 (4) Åθ = 1.9–27.6°
b = 7.5548 (4) ŵ = 1.89 mm1
c = 16.6510 (7) ÅT = 293 K
β = 103.498 (3)°Prism, colourless
V = 1340.43 (10) Å30.36 × 0.09 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3086 independent reflections
Radiation source: fine-focus sealed tube2233 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.100
ω scansθmax = 27.6°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.824, Tmax = 0.918k = 98
19343 measured reflectionsl = 2119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0382P)2]
where P = (Fo2 + 2Fc2)/3
3086 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.48 e Å3
18 restraintsΔρmin = 0.80 e Å3
Crystal data top
[Zn(C8H5NO5)(H2O)5]·H2OV = 1340.43 (10) Å3
Mr = 368.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.9584 (4) ŵ = 1.89 mm1
b = 7.5548 (4) ÅT = 293 K
c = 16.6510 (7) Å0.36 × 0.09 × 0.05 mm
β = 103.498 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
3086 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2233 reflections with I > 2σ(I)
Tmin = 0.824, Tmax = 0.918Rint = 0.100
19343 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03618 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.48 e Å3
3086 reflectionsΔρmin = 0.80 e Å3
226 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.14951 (2)0.39964 (4)0.404996 (17)0.02275 (11)
O10.56142 (14)0.8182 (2)0.07024 (11)0.0314 (4)
O1W0.0969 (2)0.0417 (3)0.59084 (15)0.0564 (6)
H1WA0.1593 (19)0.021 (4)0.592 (2)0.068*
H1WB0.038 (2)0.002 (4)0.5579 (17)0.068*
O20.70407 (16)0.6153 (2)0.01860 (11)0.0357 (5)
O2W0.16338 (18)0.1231 (2)0.40753 (11)0.0324 (5)
H2WA0.149 (2)0.061 (3)0.3650 (11)0.039*
H2WB0.207 (2)0.071 (3)0.4456 (11)0.039*
O30.30374 (16)0.1584 (2)0.26291 (11)0.0322 (4)
O3W0.13340 (17)0.6755 (3)0.41312 (11)0.0331 (5)
H3WA0.183 (2)0.732 (3)0.4479 (12)0.040*
H3WB0.120 (2)0.730 (3)0.3697 (10)0.040*
O40.08994 (16)0.4075 (2)0.22554 (10)0.0290 (4)
O4W0.12338 (18)0.3724 (2)0.52419 (11)0.0306 (4)
H4WA0.092 (2)0.452 (2)0.5466 (16)0.037*
H4WB0.103 (2)0.276 (2)0.5380 (16)0.037*
O50.04711 (15)0.3999 (2)0.36330 (10)0.0263 (4)
O5W0.33859 (16)0.4349 (3)0.45253 (12)0.0348 (5)
H5WA0.400 (2)0.396 (3)0.4376 (16)0.042*
H5WB0.357 (2)0.520 (3)0.4830 (15)0.042*
O6W0.17072 (18)0.3938 (2)0.28435 (11)0.0302 (4)
H6WB0.2178 (19)0.467 (3)0.2718 (16)0.036*
H6WA0.1020 (16)0.399 (3)0.2526 (15)0.036*
N10.34860 (18)0.4432 (3)0.22449 (12)0.0223 (5)
C10.4197 (2)0.5668 (3)0.17514 (15)0.0233 (6)
H1A0.39720.68540.18260.028*
C20.5222 (2)0.5226 (3)0.11561 (14)0.0224 (5)
C30.5541 (2)0.3417 (3)0.10731 (15)0.0287 (6)
H3A0.62600.30740.06870.034*
C40.4824 (2)0.2166 (3)0.15441 (15)0.0279 (6)
H4A0.50460.09810.14620.033*
C50.3744 (2)0.2628 (3)0.21590 (15)0.0248 (6)
C60.2487 (2)0.4933 (3)0.29580 (14)0.0269 (6)
H6A0.26990.44890.34550.032*
H6B0.24540.62140.29960.032*
C70.1195 (2)0.4249 (3)0.29292 (15)0.0216 (5)
C80.6009 (2)0.6622 (3)0.06435 (14)0.0240 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02172 (18)0.0210 (2)0.02425 (17)0.00083 (12)0.00280 (12)0.00019 (12)
O10.0270 (10)0.0199 (11)0.0432 (11)0.0037 (8)0.0001 (8)0.0073 (9)
O1W0.0464 (15)0.0551 (16)0.0705 (17)0.0124 (12)0.0194 (12)0.0136 (13)
O20.0303 (11)0.0272 (11)0.0393 (11)0.0024 (8)0.0125 (8)0.0002 (8)
O2W0.0466 (13)0.0209 (11)0.0242 (10)0.0051 (8)0.0032 (9)0.0027 (8)
O30.0332 (10)0.0268 (11)0.0346 (10)0.0082 (8)0.0040 (8)0.0064 (8)
O3W0.0361 (11)0.0223 (11)0.0341 (11)0.0003 (8)0.0053 (9)0.0004 (8)
O40.0275 (10)0.0371 (11)0.0215 (9)0.0010 (8)0.0042 (8)0.0006 (8)
O4W0.0394 (12)0.0296 (12)0.0237 (10)0.0038 (9)0.0093 (8)0.0017 (8)
O50.0196 (9)0.0366 (11)0.0205 (9)0.0013 (7)0.0003 (7)0.0007 (8)
O5W0.0203 (10)0.0372 (13)0.0448 (12)0.0009 (8)0.0036 (9)0.0134 (9)
O6W0.0278 (11)0.0356 (12)0.0258 (10)0.0059 (8)0.0035 (8)0.0019 (8)
N10.0183 (11)0.0221 (13)0.0242 (11)0.0009 (9)0.0002 (8)0.0009 (9)
C10.0237 (14)0.0203 (15)0.0260 (13)0.0004 (10)0.0058 (11)0.0006 (11)
C20.0210 (13)0.0208 (14)0.0239 (13)0.0004 (11)0.0026 (10)0.0001 (11)
C30.0243 (14)0.0286 (16)0.0298 (14)0.0037 (11)0.0004 (11)0.0039 (12)
C40.0286 (14)0.0187 (14)0.0339 (14)0.0023 (11)0.0025 (11)0.0032 (12)
C50.0255 (13)0.0245 (16)0.0262 (13)0.0031 (11)0.0096 (11)0.0031 (11)
C60.0263 (14)0.0267 (16)0.0247 (13)0.0027 (12)0.0002 (11)0.0034 (11)
C70.0221 (13)0.0142 (14)0.0267 (13)0.0036 (10)0.0021 (10)0.0005 (10)
C80.0225 (13)0.0264 (16)0.0223 (13)0.0027 (11)0.0034 (10)0.0002 (11)
Geometric parameters (Å, º) top
Zn1—O5W2.0554 (17)O5W—H5WA0.821 (16)
Zn1—O6W2.0759 (18)O5W—H5WB0.812 (16)
Zn1—O4W2.0805 (18)O6W—H6WB0.816 (15)
Zn1—O2W2.0945 (18)O6W—H6WA0.814 (16)
Zn1—O3W2.0988 (19)N1—C11.362 (3)
Zn1—O52.1039 (16)N1—C51.392 (3)
O1—C81.251 (3)N1—C61.464 (3)
O1W—H1WA0.829 (17)C1—C21.355 (3)
O1W—H1WB0.812 (17)C1—H1A0.9300
O2—C81.257 (3)C2—C31.409 (4)
O2W—H2WA0.832 (15)C2—C81.498 (3)
O2W—H2WB0.802 (15)C3—C41.356 (3)
O3—C51.246 (3)C3—H3A0.9300
O3W—H3WA0.813 (15)C4—C51.416 (3)
O3W—H3WB0.816 (15)C4—H4A0.9300
O4—C71.245 (3)C6—C71.518 (3)
O4W—H4WA0.823 (15)C6—H6A0.9700
O4W—H4WB0.809 (15)C6—H6B0.9700
O5—C71.267 (3)
O5W—Zn1—O6W92.57 (8)H6WB—O6W—H6WA110 (2)
O5W—Zn1—O4W89.79 (8)C1—N1—C5122.35 (19)
O6W—Zn1—O4W172.96 (8)C1—N1—C6121.7 (2)
O5W—Zn1—O2W93.41 (8)C5—N1—C6115.59 (19)
O6W—Zn1—O2W88.53 (7)C2—C1—N1122.1 (2)
O4W—Zn1—O2W84.70 (7)C2—C1—H1A118.9
O5W—Zn1—O3W86.50 (7)N1—C1—H1A118.9
O6W—Zn1—O3W96.52 (7)C1—C2—C3117.1 (2)
O4W—Zn1—O3W90.25 (7)C1—C2—C8120.8 (2)
O2W—Zn1—O3W174.95 (8)C3—C2—C8122.0 (2)
O5W—Zn1—O5171.74 (7)C4—C3—C2121.5 (2)
O6W—Zn1—O591.03 (7)C4—C3—H3A119.3
O4W—Zn1—O587.51 (7)C2—C3—H3A119.3
O2W—Zn1—O594.10 (7)C3—C4—C5121.4 (2)
O3W—Zn1—O585.71 (6)C3—C4—H4A119.3
H1WA—O1W—H1WB107 (3)C5—C4—H4A119.3
Zn1—O2W—H2WA123.1 (17)O3—C5—N1118.3 (2)
Zn1—O2W—H2WB122.1 (18)O3—C5—C4126.2 (2)
H2WA—O2W—H2WB111 (2)N1—C5—C4115.5 (2)
Zn1—O3W—H3WA120.8 (18)N1—C6—C7114.4 (2)
Zn1—O3W—H3WB116.6 (19)N1—C6—H6A108.7
H3WA—O3W—H3WB109 (2)C7—C6—H6A108.7
Zn1—O4W—H4WA121.7 (18)N1—C6—H6B108.7
Zn1—O4W—H4WB118.0 (19)C7—C6—H6B108.7
H4WA—O4W—H4WB111 (2)H6A—C6—H6B107.6
C7—O5—Zn1132.66 (16)O4—C7—O5125.4 (2)
Zn1—O5W—H5WA131.2 (19)O4—C7—C6120.3 (2)
Zn1—O5W—H5WB114.9 (18)O5—C7—C6114.1 (2)
H5WA—O5W—H5WB112 (2)O1—C8—O2124.0 (2)
Zn1—O6W—H6WB117.0 (19)O1—C8—C2118.4 (2)
Zn1—O6W—H6WA109.4 (19)O2—C8—C2117.6 (2)
O5W—Zn1—O5—C7103.1 (5)C1—N1—C5—C42.3 (3)
O6W—Zn1—O5—C712.8 (2)C6—N1—C5—C4171.2 (2)
O4W—Zn1—O5—C7174.1 (2)C3—C4—C5—O3178.9 (2)
O2W—Zn1—O5—C7101.4 (2)C3—C4—C5—N10.5 (4)
O3W—Zn1—O5—C783.6 (2)C1—N1—C6—C7121.4 (2)
C5—N1—C1—C21.6 (4)C5—N1—C6—C765.1 (3)
C6—N1—C1—C2171.5 (2)Zn1—O5—C7—O421.6 (4)
N1—C1—C2—C31.0 (3)Zn1—O5—C7—C6154.06 (16)
N1—C1—C2—C8177.9 (2)N1—C6—C7—O432.4 (3)
C1—C2—C3—C42.8 (4)N1—C6—C7—O5151.6 (2)
C8—C2—C3—C4179.6 (2)C1—C2—C8—O19.1 (3)
C2—C3—C4—C52.1 (4)C3—C2—C8—O1174.2 (2)
C1—N1—C5—O3179.1 (2)C1—C2—C8—O2170.0 (2)
C6—N1—C5—O37.4 (3)C3—C2—C8—O26.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2i0.83 (2)2.25 (2)2.972 (3)145 (3)
O1W—H1WB···O2Wii0.81 (2)2.58 (3)3.118 (3)125 (3)
O2W—H2WA···O4iii0.83 (2)1.89 (2)2.716 (2)169 (3)
O2W—H2WB···O2i0.80 (2)1.96 (2)2.742 (2)163 (2)
O3W—H3WA···O2iv0.81 (2)1.89 (2)2.701 (2)173 (2)
O3W—H3WB···O4v0.82 (2)2.04 (2)2.849 (2)170 (3)
O4W—H4WA···O5vi0.82 (2)2.02 (2)2.810 (2)160 (3)
O5W—H5WA···O1iii0.82 (2)1.90 (2)2.705 (2)166 (3)
O5W—H5WB···O1iv0.81 (2)1.95 (2)2.742 (2)164 (3)
O6W—H6WB···O3v0.82 (2)1.89 (2)2.697 (3)171 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y, z+1; (iii) x, y1/2, z+1/2; (iv) x+1, y+3/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C8H5NO5)(H2O)5]·H2O
Mr368.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.9584 (4), 7.5548 (4), 16.6510 (7)
β (°) 103.498 (3)
V3)1340.43 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.89
Crystal size (mm)0.36 × 0.09 × 0.05
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.824, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
19343, 3086, 2233
Rint0.100
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.084, 1.00
No. of reflections3086
No. of parameters226
No. of restraints18
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.80

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2i0.829 (17)2.25 (2)2.972 (3)145 (3)
O1W—H1WB···O2Wii0.812 (17)2.58 (3)3.118 (3)125 (3)
O2W—H2WA···O4iii0.832 (15)1.894 (16)2.716 (2)169 (3)
O2W—H2WB···O2i0.802 (15)1.964 (18)2.742 (2)163 (2)
O3W—H3WA···O2iv0.813 (15)1.892 (16)2.701 (2)173 (2)
O3W—H3WB···O4v0.816 (15)2.042 (17)2.849 (2)170 (3)
O4W—H4WA···O5vi0.823 (15)2.023 (18)2.810 (2)160 (3)
O5W—H5WA···O1iii0.821 (16)1.900 (18)2.705 (2)166 (3)
O5W—H5WB···O1iv0.812 (16)1.951 (18)2.742 (2)164 (3)
O6W—H6WB···O3v0.816 (15)1.889 (17)2.697 (3)171 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y, z+1; (iii) x, y1/2, z+1/2; (iv) x+1, y+3/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x, y+1, z+1.
 

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHe, Y.-H. & Feng, Y.-L. (2007). Acta Cryst. E63, o3422.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJiang, M.-X., Feng, Y.-L., He, Y.-H. & Su, H. (2009). Inorg. Chim. Acta, 362, 2856–2860.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzafran, M., Katrusiak, A., Koput, J. & Dega, S. Z. (2006). J. Mol. Struct. 784, 98–108.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, Q., Zhao, J.-P., Hu, B.-W., Zhang, X.-F. & Bu, X.-H. (2010). Inorg. Chem. 49, 3746–3751.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, B., Zhu, X.-Q., Lu, J.-Y., He, J., Wang, P. & Cheng, J.-P. (2003). J. Org. Chem. 68, 3295–3298.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds