metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(pyridine-κN)zinc(II)]-μ-benzene-1,4-di­carboxyl­ato-κ2O1:O4]

aCollege of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
*Correspondence e-mail: hehong@bjut.edu.cn

(Received 14 May 2010; accepted 11 June 2010; online 23 June 2010)

In the title coordination polymer, [Zn(C8H4O4)(C5H5N)2]n, the ZnII atom, located on a twofold rotation axis, is tetra­coordinated by two monodentate O atoms from two different carboxyl­ate groups and two pyridyl N atoms, forming a distorted tetra­hedral geometry. The ZnII atoms are bridged by terephthalate ligands, generating an infinite zigzag chain along [101].

Related literature

For related structures, see: Li et al. (2007[Li, J. K., Ma, C. L., He, G. F. & Qiu, L. L. (2007). J. Coord. Chem. 61, 251-261.]); Mori et al. (2004[Mori, W., Takamizawa, S., Kato, C. N., Ohmura, T. & Sato, T. (2004). Micropor. Mesopor. Mater. 73, 31-46.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H4O4)(C5H5N)2]

  • Mr = 387.68

  • Monoclinic, C 2/c

  • a = 20.054 (8) Å

  • b = 6.299 (2) Å

  • c = 14.761 (6) Å

  • β = 111.500 (6)°

  • V = 1734.9 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.44 mm−1

  • T = 173 K

  • 0.24 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.724, Tmax = 0.813

  • 7306 measured reflections

  • 1975 independent reflections

  • 1915 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.082

  • S = 1.03

  • 1975 reflections

  • 114 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

A great number of the crystal structures of one-dimensional chain complexes have been extensively investigated (Li et al. 2007; Mori et al. 2004), in most of which interchain hydrogen bonds or ππ interactions connect the chains to produce two-dimensional or three-dimensional structures. Here, we report the synthesis and crystal structure of a new one-dimensional zigzag coordination polymer.

In the title coordination polymer, each Zn(II) atom is four-coordinated. The coordination environment around the Zn(II) ions represents a slightly distorted tetrahedral geometry with two pyridyl N and two monodentate O atoms from two different carboxylates. The Zn centers are interconnected by terephthalate ligands to form an infinite zigzag chain. The Zn—O bond distance between Zn(II) and carboxylate O atom is 1.9622 (18) Å, and the Zn—N bond distance between Zn(II) and the N atom of the pyridine is 2.038 (2) Å.

Related literature top

For related structures, see: Li et al. (2007); Mori et al. (2004).

Experimental top

A solution containing a 2:1 molar ratio of 1,4-benzenedicarboxylic acid (0.022 g) and zinc nitrate hexahydrate (0.041 g) in a mixture of pyridine (2 ml) and N,N-dimethylformamide (2 ml) was sealed in a 5 ml transparent vitreous reactor and kept at 343 K for 5 days, and then cooled to room temperature. The mixture was filtered and colorless crystals suitable for the X-ray investigation were collected.

Refinement top

All H atoms were positioned geometrically (C—H = 0.95 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. An illustration of the zigzag chain formed by bridging terephthalate ligands. H atoms have been omitted.
catena-Poly[[bis(pyridine-κN)zinc(II)]-µ- benzene-1,4-dicarboxylato-κ2O1:O4] top
Crystal data top
[Zn(C8H4O4)(C5H5N)2]F(000) = 792
Mr = 387.68Dx = 1.484 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 968 reflections
a = 20.054 (8) Åθ = 2.2–27.5°
b = 6.299 (2) ŵ = 1.44 mm1
c = 14.761 (6) ÅT = 173 K
β = 111.500 (6)°Block, colorless
V = 1734.9 (11) Å30.24 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1975 independent reflections
Radiation source: sealed tube1915 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: numerical
(SADABS; Bruker, 1998)
h = 2619
Tmin = 0.724, Tmax = 0.813k = 88
7306 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.030P)2 + 3.5P]
where P = (Fo2 + 2Fc2)/3
1975 reflections(Δ/σ)max < 0.001
114 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Zn(C8H4O4)(C5H5N)2]V = 1734.9 (11) Å3
Mr = 387.68Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.054 (8) ŵ = 1.44 mm1
b = 6.299 (2) ÅT = 173 K
c = 14.761 (6) Å0.24 × 0.20 × 0.15 mm
β = 111.500 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1975 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 1998)
1915 reflections with I > 2σ(I)
Tmin = 0.724, Tmax = 0.813Rint = 0.039
7306 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.03Δρmax = 0.35 e Å3
1975 reflectionsΔρmin = 0.22 e Å3
114 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2 σ (F2) is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.39350 (5)0.25000.02669 (12)
O10.07418 (8)0.5959 (2)0.32459 (12)0.0340 (4)
O20.12091 (8)0.3122 (3)0.41504 (13)0.0409 (4)
N10.04941 (9)0.1981 (3)0.18419 (13)0.0300 (4)
C10.18900 (10)0.6311 (3)0.44879 (15)0.0245 (4)
C20.24474 (11)0.5421 (3)0.52709 (15)0.0271 (4)
H20.24100.39960.54570.032*
C30.19468 (11)0.8406 (3)0.42210 (15)0.0265 (4)
H30.15700.90280.36910.032*
C40.12371 (11)0.5003 (3)0.39400 (15)0.0271 (4)
C50.02091 (13)0.0111 (4)0.14623 (17)0.0343 (5)
H50.02490.02580.14650.041*
C60.05508 (15)0.1297 (4)0.10692 (19)0.0456 (6)
H60.03320.26120.08090.055*
C70.12141 (17)0.0777 (5)0.1057 (2)0.0539 (8)
H70.14600.17200.07840.065*
C80.15136 (16)0.1135 (5)0.1447 (2)0.0543 (8)
H80.19710.15320.14470.065*
C90.11451 (13)0.2473 (4)0.18390 (19)0.0411 (6)
H90.13590.37830.21150.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01866 (18)0.02270 (19)0.0321 (2)0.0000.00149 (14)0.000
O10.0219 (7)0.0257 (8)0.0404 (9)0.0005 (6)0.0049 (6)0.0005 (7)
O20.0300 (8)0.0289 (9)0.0483 (10)0.0076 (7)0.0041 (7)0.0063 (7)
N10.0251 (9)0.0318 (10)0.0317 (10)0.0023 (7)0.0087 (7)0.0032 (8)
C10.0182 (9)0.0249 (10)0.0265 (10)0.0011 (7)0.0036 (8)0.0023 (8)
C20.0231 (10)0.0205 (9)0.0318 (11)0.0005 (8)0.0033 (8)0.0014 (8)
C30.0190 (9)0.0270 (10)0.0274 (10)0.0024 (8)0.0011 (8)0.0021 (8)
C40.0200 (10)0.0258 (11)0.0299 (11)0.0003 (8)0.0025 (8)0.0010 (9)
C50.0328 (12)0.0342 (12)0.0334 (12)0.0020 (9)0.0090 (10)0.0010 (10)
C60.0526 (16)0.0428 (15)0.0383 (13)0.0090 (12)0.0131 (12)0.0037 (11)
C70.0598 (19)0.063 (2)0.0457 (16)0.0222 (15)0.0280 (14)0.0043 (14)
C80.0421 (15)0.075 (2)0.0576 (18)0.0072 (14)0.0328 (14)0.0088 (16)
C90.0349 (13)0.0465 (15)0.0450 (14)0.0031 (11)0.0185 (11)0.0069 (12)
Geometric parameters (Å, º) top
Zn1—O11.9621 (15)C3—C2i1.384 (3)
Zn1—N12.0363 (19)C3—H30.9500
O1—C41.286 (2)C5—C61.372 (3)
O2—C41.231 (3)C5—H50.9500
N1—C51.339 (3)C6—C71.377 (4)
N1—C91.343 (3)C6—H60.9500
C1—C31.394 (3)C7—C81.374 (4)
C1—C21.397 (3)C7—H70.9500
C1—C41.507 (3)C8—C91.380 (4)
C2—C3i1.384 (3)C8—H80.9500
C2—H20.9500C9—H90.9500
O1—Zn1—O1ii98.96 (9)O2—C4—O1123.93 (19)
O1—Zn1—N1ii121.77 (8)O2—C4—C1120.10 (18)
O1—Zn1—N1105.02 (8)O1—C4—C1115.94 (18)
O1ii—Zn1—N1121.77 (8)N1—C5—C6122.9 (2)
N1ii—Zn1—N1105.60 (11)N1—C5—H5118.6
C4—O1—Zn1110.39 (13)C6—C5—H5118.6
C5—N1—C9117.9 (2)C5—C6—C7119.1 (3)
C5—N1—Zn1121.59 (15)C5—C6—H6120.4
C9—N1—Zn1120.36 (17)C7—C6—H6120.4
C3—C1—C2119.33 (19)C8—C7—C6118.6 (3)
C3—C1—C4120.72 (18)C8—C7—H7120.7
C2—C1—C4119.95 (19)C6—C7—H7120.7
C3i—C2—C1120.8 (2)C7—C8—C9119.5 (3)
C3i—C2—H2119.6C7—C8—H8120.3
C1—C2—H2119.6C9—C8—H8120.3
C2i—C3—C1119.91 (19)N1—C9—C8122.1 (3)
C2i—C3—H3120.0N1—C9—H9119.0
C1—C3—H3120.0C8—C9—H9119.0
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C8H4O4)(C5H5N)2]
Mr387.68
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)20.054 (8), 6.299 (2), 14.761 (6)
β (°) 111.500 (6)
V3)1734.9 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.44
Crystal size (mm)0.24 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionNumerical
(SADABS; Bruker, 1998)
Tmin, Tmax0.724, 0.813
No. of measured, independent and
observed [I > 2σ(I)] reflections
7306, 1975, 1915
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.082, 1.03
No. of reflections1975
No. of parameters114
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.22

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National High Technology Research and Development Program ("863" Program) of China (No. 2009AA063201).

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, J. K., Ma, C. L., He, G. F. & Qiu, L. L. (2007). J. Coord. Chem. 61, 251–261.  Web of Science CSD CrossRef Google Scholar
First citationMori, W., Takamizawa, S., Kato, C. N., Ohmura, T. & Sato, T. (2004). Micropor. Mesopor. Mater. 73, 31–46.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds