organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1588-o1589

4-{(E)-[2-(4-Iodo­but­­oxy)benzyl­­idene]amino}-1,5-di­methyl-2-phenyl-1H-pyrazol-3(2H)-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Faculty of Science, King Abdu Aziz University, Jeddah, Saudi Arabia
*Correspondence e-mail: hkfun@usm.my

(Received 26 May 2010; accepted 28 May 2010; online 5 June 2010)

The title Schiff base compound, C22H24IN3O2, adopts an E configuration about the central C=N bond. The pyrazolone ring makes a dihedral angle of 49.68 (10)° with its attached phenyl ring. The phenolate plane makes dihedral angles of 16.78 (9) and 50.54 (9)°, respectively, with the pyrazolone ring and the terminal phenyl ring. An intra­molecular C—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal structure, an inter­molecular C—H⋯O hydrogen bond is also observed.

Related literature

For background to and applications of Schiff bases, see: Tarafder et al. (2002[Tarafder, M. T., Kasbollah, A., Saravan, N., Crouse, K. A., Ali, A. M. & Tin, O. K. (2002). J. Biochem. Mol. Biol. Biophys. 6, 85-91.]); Silver & Soderlund (2005[Silver, K. & Soderlund, D. M. (2005). Neuro Toxicol. 26, 397-406.]); Vicini et al. (2003[Vicini, P., Geronikaki, A., Incerti, M., Busonera, B., Poni, G., Kabras, C. A. & Colla, P. L. (2003). Bioorg. Med. Chem. 11, 4785-4789.]); Ozdemir et al. (2007[Ozdemir, A., Turan-Zitouni, G., Kaplancikli, Z., Revial, G. & Guven, K. (2007). Eur. J. Med. 42, 403-409.]); Joshi et al. (2004[Joshi, S., Khosla, N. & Tiwari, P. (2004). Bioorg. Med. Chem. 12, 571-576.]). For background to and the biological activity of 4-amino­anti­pyrene and its derivatives, see: Jain et al. (2003[Jain, S. C., Sinha, S., Bhagat, S., Errington, W. & Olsen, C. E. (2003). Synth. Commun. 33, 563-577.]); Filho et al. (1998[Filho, V. C., Correa, R., Vaz, Z., Calixto, J. B., Nunes, R. J., Pinheiro, T. R., Andrcopulo, A. D. & Yunes, R. A. (1998). Farmaco, 53, 55-58.]); Sondhi et al. (1999[Sondhi, S. M., Sharma, V. K., Verma, R. P., Singhal, N., Shukla, R., Raghubir, R. & Dubey, M. P. (1999). Synthesis, pp. 878-884.]); Mishra (1999[Mishra, A. P. (1999). J. Indian Chem. Soc. 76, 35-37.]); Sondhi et al. (2001[Sondhi, S. M., Singhal, N., Verma, R. P., Arora, S. K. & Dastidar, S. G. (2001). Indian J. Chem. Sect. B, 40, 113-119.]). For related structures, see: Eryigit & Kendi (1998[Eryigit, R. & Kendi, E. (1998). J. Chem. Crystallogr. 28, 145-147.]); Manikandan et al. (2000[Manikandan, P., Justin Thomas, K. R. & Manoharan, P. T. (2000). Acta Cryst. C56, 308-309.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C22H24IN3O2

  • Mr = 489.34

  • Monoclinic, P 21 /c

  • a = 11.5235 (10) Å

  • b = 16.4156 (14) Å

  • c = 11.2828 (9) Å

  • β = 94.010 (2)°

  • V = 2129.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.53 mm−1

  • T = 100 K

  • 0.41 × 0.34 × 0.29 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.571, Tmax = 0.663

  • 36214 measured reflections

  • 9632 independent reflections

  • 7935 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.159

  • S = 1.05

  • 9632 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 1.26 e Å−3

  • Δρmin = −1.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O1 0.93 2.30 2.995 (2) 132
C17—H17B⋯O1i 0.97 2.42 3.193 (2) 137
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases are generally synthesized from the condensation of primary amines and active carbonyl group. Various heterocyclic ring containing Schiff bases were reported to possess cytotoxic (Tarafder et al., 2002), anticonvulsant (Silver & Soderlund, 2005), antiproliferative (Vicini et al., 2003), anticancer and antifungal activities (Ozdemir et al., 2007). It's also used as ligands for the complexes synthesis (Joshi et al., 2004). As evident from the literature, it was noted that a lot of research has been carried out on Schiff bases but no work has been done on the long chain Schiff base. 4-Aminoantipyrene, which contain pyrazolone ring, is an important compound in the class analgesic agent in otic solutions in combination with other analgesic such as benzocaine and phenylephrine. Pyrazolone is a five-membered lactam ring compound containing two N atoms and ketone in the same molecule. Lactam structure is an active nucleus in pharmacological activity, especially in the class of nonsteroidal antiinflammatory agents used in the treatment of arthritis and other musculo skeletal and joint disorders. Pyrazolone derivatives, as lactam structure related compounds, are also widely used in preparing dyes and pigments. 4-Aminoantipyrene and its derivatives have potential biological activities (Jain et al., 2003). Analgesic and antiinflammatory activities of the 4-aminoantipyrene complexes were extensively studied and reported (Filho et al., 1998; Sondhi et al., 1999). Apart from that, antimicrobial and anticancer activity of the 4-aminoantipyrine derivatives and their metal complexes caught the attention of many researchers during last decade (Mishra, 1999; Sondhi et al., 2001). In this paper we report the synthesis and the crystal structure of a mono Schiff base bearing butyl iodide side chain. It is noteworthy that the alkylating agent used in this reaction is dibromo butyl, and after obtaining the O-alkylation product, the charge transfer catalyst used caused the free bromide atom to be substituted by an iodide atom.

The title compound (I) is shown in Fig. 1. The molecule adopts a trans configuration about the central C10N3 double bond. The C—N bond lengths of N1—C6 [1.422 (2) Å], N1—C9 [1.398 (2) Å], N2—C21 [1.459 (3) Å], N2—C7 [1.365 (2) Å] and N3—C8 [1.389 (2) Å] are normal for C—N single-bond distances. The distance between C10—N3 [1.290 (2) Å] is typical for a C N double-bond distance. These bonds are comparable with those in N-(1H-benzoimidazol-2-ylmethyl)-N-(2,6-dichlorophenyl) amine (Eryigit & Kendi, 1998). The N1—N2 [1.403 (2) Å] single-bond length is comparable with that in 2,6-bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine (Manikandan et al., 2000).

Atom O1 deviates from the pyrazoline mean plane by 0.028 (1) Å. The pyrazolone ring (C7–C9/N1/N2) is almost planar, with maximum deviation of 0.045 (2) Å for atom N2. It makes a dihedral angle of 49.68 (10)° with its attached phenyl ring (C1–C6). The phenolate residue (C11–C16/O2) is essentially planar, with maximum deviation of 0.031 (2) Å for O2. This plane makes dihedral angles of 16.78 (9) and 50.54 (9)°, respectively, with the pyrazolone ring (C7–C9/N1/N2) and the terminal (C1–C6) phenyl ring. The N2-N1-C6-C5 and C1-C6-N1-C9 torsion angles are -147.45 (18) and -116.1 (2)°, respectively.

In the crystal structure (Fig. 2), intramolecular C10—H10A···O1 hydrogen bond interactions generate an S(6) ring motif (Bernstein et al., 1995). The crystal packing is consolidated by weak non-classical intermolecular C17—H17B···O1 hydrogen bonds (Table 1). The combination of both intra and intermolecular C—H···O hydrogen bonds stabilize the crystal structure. There exists an unusual short contact between atoms I1 and C8 with a distance of 3.3606 (17) Å, which is shorter than the sum of their van der Waals radii.

Related literature top

For background to and applications of Schiff bases, see: Tarafder et al. (2002); Silver & Soderlund (2005); Vicini et al. (2003); Ozdemir et al. (2007); Joshi et al. (2004). For background to and the biological activity of 4-aminoantipyrene and its derivatives, see: Jain et al. (2003); Filho et al. (1998); Sondhi et al. (1999); Mishra (1999); Sondhi et al. (2001). For related structures, see: Eryigit & Kendi (1998); Manikandan et al. (2000). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by the reaction of mono Schiff base (1 g, 0.0032 mol) with dibromo butane (0.0016 mol) in the presence of freshly heated K2CO3 (0.0097 mol) and tetrabutylamonium iodide (PTC) (0.0004 mol) in dry acetone with continuous stirring at 40 °C for 8h. After the completion of the reaction, the product obtained was purified by passing through silica-gel column (60-120 mesh) and further crystallized from methanol. Yield: 65 %; m. p. 136 °C. IR (KBr) νmax cm-1: 3014 (C–H aromatic), 1666 (CO), 1571 (HCN), 1299 (C–O), 1108 (C–N). 1H-NMR (CDCl3) δ: 10.13 (s, 1H, C–H olefinic), 8.22-6.96 (m, 9H, C–H aromatic), 3.57 (s, O–CH2CH2), 3.33 (s, N–CH3), 2.92 (s, I–CH2), 2.22 (s,-CH3), 2.11 (s, 2×CH2).

Refinement top

All hydrogen atoms were positioned geometrically (C–H = 0.93–0.97 Å) and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was used for the methyl group. The highest peak of 1.26 eÅ3 was found at a distance of 0.70 Å from I1 and the deepest hole of -1.68 eÅ3 was at a distance of 0.54 Å from I1.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. An intramolecular hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) network. H atoms not involved in the hydrogen bond interactions are omitted for clarity.
4-{(E)-[2-(4-Iodobutoxy)benzylidene]amino}- 1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one top
Crystal data top
C22H24IN3O2F(000) = 984
Mr = 489.34Dx = 1.527 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9944 reflections
a = 11.5235 (10) Åθ = 2.7–35.4°
b = 16.4156 (14) ŵ = 1.53 mm1
c = 11.2828 (9) ÅT = 100 K
β = 94.010 (2)°Blcok, yellow
V = 2129.1 (3) Å30.41 × 0.34 × 0.29 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
9632 independent reflections
Radiation source: fine-focus sealed tube7935 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 35.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1618
Tmin = 0.571, Tmax = 0.663k = 2626
36214 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1027P)2 + 1.5532P]
where P = (Fo2 + 2Fc2)/3
9632 reflections(Δ/σ)max = 0.001
255 parametersΔρmax = 1.26 e Å3
0 restraintsΔρmin = 1.68 e Å3
Crystal data top
C22H24IN3O2V = 2129.1 (3) Å3
Mr = 489.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.5235 (10) ŵ = 1.53 mm1
b = 16.4156 (14) ÅT = 100 K
c = 11.2828 (9) Å0.41 × 0.34 × 0.29 mm
β = 94.010 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
9632 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7935 reflections with I > 2σ(I)
Tmin = 0.571, Tmax = 0.663Rint = 0.025
36214 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.05Δρmax = 1.26 e Å3
9632 reflectionsΔρmin = 1.68 e Å3
255 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.290561 (14)0.362436 (10)0.802978 (17)0.03475 (7)
O10.68399 (13)0.05872 (8)0.94462 (12)0.0192 (2)
O20.71122 (14)0.22745 (9)0.66181 (13)0.0206 (2)
N10.76696 (14)0.05557 (10)1.03829 (14)0.0182 (3)
N20.87138 (14)0.09878 (10)1.03161 (15)0.0200 (3)
N30.89080 (14)0.03071 (9)0.78003 (13)0.0163 (2)
C10.78638 (19)0.05051 (15)1.25448 (18)0.0266 (4)
H1A0.86690.05311.25310.032*
C20.7339 (2)0.04626 (17)1.36239 (19)0.0315 (5)
H2A0.77980.04611.43360.038*
C30.6135 (2)0.04230 (14)1.3637 (2)0.0275 (4)
H3A0.57910.03951.43570.033*
C40.54450 (18)0.04253 (12)1.25739 (19)0.0232 (3)
H4A0.46400.03921.25860.028*
C50.59526 (17)0.04769 (11)1.14967 (18)0.0199 (3)
H5A0.54920.04901.07860.024*
C60.71592 (17)0.05082 (11)1.14923 (16)0.0186 (3)
C70.92082 (16)0.07340 (11)0.93152 (15)0.0172 (3)
C80.85924 (15)0.00877 (10)0.88180 (15)0.0156 (3)
C90.75980 (16)0.00540 (10)0.95158 (15)0.0161 (3)
C100.82737 (16)0.09014 (10)0.73798 (15)0.0166 (3)
H10A0.76650.10920.78030.020*
C110.85006 (16)0.12799 (10)0.62451 (15)0.0160 (3)
C120.93106 (16)0.09552 (11)0.55089 (16)0.0184 (3)
H12A0.97680.05160.57750.022*
C130.94457 (18)0.12744 (12)0.43891 (17)0.0209 (3)
H13A0.99950.10570.39120.025*
C140.87488 (18)0.19228 (12)0.39885 (16)0.0210 (3)
H14A0.88140.21240.32260.025*
C150.79573 (17)0.22751 (11)0.47051 (16)0.0195 (3)
H15A0.75100.27170.44320.023*
C160.78371 (16)0.19599 (10)0.58414 (15)0.0167 (3)
C170.64112 (18)0.29607 (12)0.62471 (18)0.0224 (3)
H17A0.58860.28130.55720.027*
H17B0.69020.34030.60100.027*
C180.57265 (18)0.32256 (11)0.72692 (19)0.0229 (3)
H18A0.52200.36730.70100.027*
H18B0.62620.34260.79050.027*
C190.49946 (19)0.25498 (12)0.7752 (2)0.0244 (3)
H19A0.45050.23190.71030.029*
H19B0.55060.21220.80720.029*
C200.4233 (2)0.28321 (15)0.8710 (2)0.0301 (4)
H20A0.47090.31110.93270.036*
H20B0.38840.23620.90660.036*
C210.8675 (2)0.18482 (14)1.0635 (2)0.0313 (5)
H21A0.94380.20801.06130.047*
H21B0.81470.21291.00800.047*
H21C0.84140.19021.14210.047*
C221.02298 (18)0.11555 (13)0.88815 (18)0.0223 (3)
H22A1.08280.11960.95150.033*
H22B1.05170.08520.82360.033*
H22C1.00080.16920.86120.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02522 (9)0.03191 (10)0.04766 (12)0.00818 (5)0.00638 (7)0.01372 (6)
O10.0219 (6)0.0172 (5)0.0185 (5)0.0063 (4)0.0021 (4)0.0012 (4)
O20.0269 (7)0.0163 (5)0.0188 (5)0.0067 (5)0.0033 (5)0.0036 (4)
N10.0186 (6)0.0191 (6)0.0169 (6)0.0048 (5)0.0018 (5)0.0040 (5)
N20.0181 (6)0.0195 (6)0.0224 (7)0.0051 (5)0.0023 (5)0.0069 (5)
N30.0184 (6)0.0155 (6)0.0147 (6)0.0014 (5)0.0003 (4)0.0013 (4)
C10.0213 (8)0.0392 (11)0.0191 (8)0.0067 (7)0.0002 (6)0.0047 (7)
C20.0296 (10)0.0457 (13)0.0192 (8)0.0092 (9)0.0020 (7)0.0032 (8)
C30.0321 (10)0.0283 (9)0.0232 (8)0.0054 (8)0.0091 (7)0.0004 (7)
C40.0233 (8)0.0184 (7)0.0288 (9)0.0010 (6)0.0076 (7)0.0021 (6)
C50.0197 (7)0.0165 (7)0.0234 (8)0.0014 (5)0.0012 (6)0.0012 (6)
C60.0200 (7)0.0182 (7)0.0177 (7)0.0004 (5)0.0020 (5)0.0031 (5)
C70.0181 (7)0.0169 (6)0.0162 (6)0.0029 (5)0.0003 (5)0.0028 (5)
C80.0174 (6)0.0146 (6)0.0145 (6)0.0020 (5)0.0001 (5)0.0010 (5)
C90.0190 (7)0.0143 (6)0.0149 (6)0.0017 (5)0.0002 (5)0.0008 (5)
C100.0206 (7)0.0139 (6)0.0151 (6)0.0016 (5)0.0005 (5)0.0006 (5)
C110.0187 (7)0.0137 (6)0.0153 (6)0.0002 (5)0.0008 (5)0.0002 (5)
C120.0204 (7)0.0184 (7)0.0162 (6)0.0021 (6)0.0001 (5)0.0001 (5)
C130.0223 (8)0.0235 (8)0.0169 (7)0.0005 (6)0.0027 (6)0.0009 (6)
C140.0227 (8)0.0232 (8)0.0169 (7)0.0017 (6)0.0007 (6)0.0042 (6)
C150.0209 (7)0.0187 (7)0.0186 (7)0.0012 (6)0.0009 (6)0.0050 (5)
C160.0199 (7)0.0138 (6)0.0162 (6)0.0010 (5)0.0001 (5)0.0006 (5)
C170.0257 (8)0.0170 (7)0.0245 (8)0.0053 (6)0.0026 (6)0.0055 (6)
C180.0246 (8)0.0137 (6)0.0304 (9)0.0020 (6)0.0024 (7)0.0009 (6)
C190.0252 (8)0.0172 (7)0.0310 (9)0.0018 (6)0.0025 (7)0.0036 (6)
C200.0298 (10)0.0298 (10)0.0314 (10)0.0106 (8)0.0063 (8)0.0122 (8)
C210.0305 (10)0.0227 (9)0.0418 (12)0.0084 (8)0.0110 (9)0.0154 (8)
C220.0210 (8)0.0219 (7)0.0243 (8)0.0062 (6)0.0031 (6)0.0024 (6)
Geometric parameters (Å, º) top
I1—C202.111 (2)C11—C121.398 (3)
O1—C91.235 (2)C11—C161.410 (2)
O2—C161.355 (2)C12—C131.387 (3)
O2—C171.432 (2)C12—H12A0.9300
N1—C91.398 (2)C13—C141.390 (3)
N1—N21.403 (2)C13—H13A0.9300
N1—C61.422 (2)C14—C151.387 (3)
N2—C71.365 (2)C14—H14A0.9300
N2—C211.459 (3)C15—C161.398 (2)
N3—C101.289 (2)C15—H15A0.9300
N3—C81.389 (2)C17—C181.506 (3)
C1—C61.391 (3)C17—H17A0.9700
C1—C21.398 (3)C17—H17B0.9700
C1—H1A0.9300C18—C191.518 (3)
C2—C31.390 (3)C18—H18A0.9700
C2—H2A0.9300C18—H18B0.9700
C3—C41.392 (3)C19—C201.512 (3)
C3—H3A0.9300C19—H19A0.9700
C4—C51.388 (3)C19—H19B0.9700
C4—H4A0.9300C20—H20A0.9700
C5—C61.392 (3)C20—H20B0.9700
C5—H5A0.9300C21—H21A0.9600
C7—C81.374 (2)C21—H21B0.9600
C7—C221.478 (3)C21—H21C0.9600
C8—C91.454 (2)C22—H22A0.9600
C10—C111.463 (2)C22—H22B0.9600
C10—H10A0.9300C22—H22C0.9600
C16—O2—C17118.14 (15)C14—C13—H13A120.4
C9—N1—N2109.46 (14)C15—C14—C13121.23 (17)
C9—N1—C6124.67 (15)C15—C14—H14A119.4
N2—N1—C6118.95 (15)C13—C14—H14A119.4
C7—N2—N1107.41 (14)C14—C15—C16119.45 (17)
C7—N2—C21121.40 (17)C14—C15—H15A120.3
N1—N2—C21115.78 (16)C16—C15—H15A120.3
C10—N3—C8118.86 (15)O2—C16—C15123.87 (16)
C6—C1—C2118.8 (2)O2—C16—C11115.96 (15)
C6—C1—H1A120.6C15—C16—C11120.17 (17)
C2—C1—H1A120.6O2—C17—C18108.56 (15)
C3—C2—C1120.3 (2)O2—C17—H17A110.0
C3—C2—H2A119.9C18—C17—H17A110.0
C1—C2—H2A119.9O2—C17—H17B110.0
C2—C3—C4120.08 (19)C18—C17—H17B110.0
C2—C3—H3A120.0H17A—C17—H17B108.4
C4—C3—H3A120.0C17—C18—C19113.44 (16)
C5—C4—C3120.3 (2)C17—C18—H18A108.9
C5—C4—H4A119.9C19—C18—H18A108.9
C3—C4—H4A119.9C17—C18—H18B108.9
C4—C5—C6119.19 (18)C19—C18—H18B108.9
C4—C5—H5A120.4H18A—C18—H18B107.7
C6—C5—H5A120.4C20—C19—C18113.41 (18)
C1—C6—C5121.36 (18)C20—C19—H19A108.9
C1—C6—N1119.94 (18)C18—C19—H19A108.9
C5—C6—N1118.69 (17)C20—C19—H19B108.9
N2—C7—C8109.87 (15)C18—C19—H19B108.9
N2—C7—C22121.27 (16)H19A—C19—H19B107.7
C8—C7—C22128.82 (16)C19—C20—I1111.76 (15)
C7—C8—N3122.69 (16)C19—C20—H20A109.3
C7—C8—C9107.86 (15)I1—C20—H20A109.3
N3—C8—C9129.42 (15)C19—C20—H20B109.3
O1—C9—N1123.96 (16)I1—C20—H20B109.3
O1—C9—C8131.28 (16)H20A—C20—H20B107.9
N1—C9—C8104.73 (14)N2—C21—H21A109.5
N3—C10—C11120.79 (16)N2—C21—H21B109.5
N3—C10—H10A119.6H21A—C21—H21B109.5
C11—C10—H10A119.6N2—C21—H21C109.5
C12—C11—C16118.64 (16)H21A—C21—H21C109.5
C12—C11—C10121.71 (16)H21B—C21—H21C109.5
C16—C11—C10119.52 (16)C7—C22—H22A109.5
C13—C12—C11121.30 (17)C7—C22—H22B109.5
C13—C12—H12A119.3H22A—C22—H22B109.5
C11—C12—H12A119.3C7—C22—H22C109.5
C12—C13—C14119.12 (18)H22A—C22—H22C109.5
C12—C13—H13A120.4H22B—C22—H22C109.5
C9—N1—N2—C78.6 (2)C6—N1—C9—O121.4 (3)
C6—N1—N2—C7160.89 (17)N2—N1—C9—C86.5 (2)
C9—N1—N2—C21147.91 (19)C6—N1—C9—C8156.82 (17)
C6—N1—N2—C2159.8 (2)C7—C8—C9—O1175.93 (19)
C6—C1—C2—C30.1 (4)N3—C8—C9—O16.2 (3)
C1—C2—C3—C40.0 (4)C7—C8—C9—N12.11 (19)
C2—C3—C4—C50.8 (3)N3—C8—C9—N1175.74 (17)
C3—C4—C5—C61.4 (3)C8—N3—C10—C11173.62 (16)
C2—C1—C6—C50.5 (3)N3—C10—C11—C127.8 (3)
C2—C1—C6—N1179.6 (2)N3—C10—C11—C16176.25 (17)
C4—C5—C6—C11.3 (3)C16—C11—C12—C131.8 (3)
C4—C5—C6—N1179.60 (17)C10—C11—C12—C13174.17 (18)
C9—N1—C6—C1116.1 (2)C11—C12—C13—C140.9 (3)
N2—N1—C6—C131.7 (3)C12—C13—C14—C152.6 (3)
C9—N1—C6—C564.8 (3)C13—C14—C15—C161.6 (3)
N2—N1—C6—C5147.45 (18)C17—O2—C16—C151.2 (3)
N1—N2—C7—C87.2 (2)C17—O2—C16—C11179.42 (17)
C21—N2—C7—C8143.72 (19)C14—C15—C16—O2178.16 (18)
N1—N2—C7—C22170.71 (17)C14—C15—C16—C111.2 (3)
C21—N2—C7—C2234.2 (3)C12—C11—C16—O2176.58 (16)
N2—C7—C8—N3178.79 (16)C10—C11—C16—O27.4 (2)
C22—C7—C8—N33.5 (3)C12—C11—C16—C152.8 (3)
N2—C7—C8—C93.2 (2)C10—C11—C16—C15173.23 (17)
C22—C7—C8—C9174.55 (19)C16—O2—C17—C18177.32 (16)
C10—N3—C8—C7178.99 (17)O2—C17—C18—C1955.7 (2)
C10—N3—C8—C91.4 (3)C17—C18—C19—C20175.30 (18)
N2—N1—C9—O1171.71 (17)C18—C19—C20—I167.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O10.932.302.995 (2)132
C17—H17B···O1i0.972.423.193 (2)137
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC22H24IN3O2
Mr489.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.5235 (10), 16.4156 (14), 11.2828 (9)
β (°) 94.010 (2)
V3)2129.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.53
Crystal size (mm)0.41 × 0.34 × 0.29
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.571, 0.663
No. of measured, independent and
observed [I > 2σ(I)] reflections
36214, 9632, 7935
Rint0.025
(sin θ/λ)max1)0.819
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.159, 1.05
No. of reflections9632
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.26, 1.68

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O10.932.302.995 (2)132
C17—H17B···O1i0.972.423.193 (2)137
Symmetry code: (i) x, y+1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§On secondment to: The Center of Excellence for Advanced Materials Research, King Abdu Aziz University, Jeddah 21589, Saudi Arabia.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship. AMA and SAK thank the Chemistry Department, King Abdul Aziz University, Jeddah, for providing research facilities.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEryigit, R. & Kendi, E. (1998). J. Chem. Crystallogr. 28, 145–147.  Web of Science CSD CrossRef CAS Google Scholar
First citationFilho, V. C., Correa, R., Vaz, Z., Calixto, J. B., Nunes, R. J., Pinheiro, T. R., Andrcopulo, A. D. & Yunes, R. A. (1998). Farmaco, 53, 55–58.  CrossRef PubMed Google Scholar
First citationJain, S. C., Sinha, S., Bhagat, S., Errington, W. & Olsen, C. E. (2003). Synth. Commun. 33, 563–577.  Web of Science CrossRef CAS Google Scholar
First citationJoshi, S., Khosla, N. & Tiwari, P. (2004). Bioorg. Med. Chem. 12, 571–576.  Web of Science CrossRef PubMed CAS Google Scholar
First citationManikandan, P., Justin Thomas, K. R. & Manoharan, P. T. (2000). Acta Cryst. C56, 308–309.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMishra, A. P. (1999). J. Indian Chem. Soc. 76, 35–37.  CAS Google Scholar
First citationOzdemir, A., Turan-Zitouni, G., Kaplancikli, Z., Revial, G. & Guven, K. (2007). Eur. J. Med. 42, 403–409.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilver, K. & Soderlund, D. M. (2005). Neuro Toxicol. 26, 397–406.  CAS Google Scholar
First citationSondhi, S. M., Sharma, V. K., Verma, R. P., Singhal, N., Shukla, R., Raghubir, R. & Dubey, M. P. (1999). Synthesis, pp. 878–884.  CrossRef Google Scholar
First citationSondhi, S. M., Singhal, N., Verma, R. P., Arora, S. K. & Dastidar, S. G. (2001). Indian J. Chem. Sect. B, 40, 113–119.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T., Kasbollah, A., Saravan, N., Crouse, K. A., Ali, A. M. & Tin, O. K. (2002). J. Biochem. Mol. Biol. Biophys. 6, 85–91.  CrossRef PubMed CAS Google Scholar
First citationVicini, P., Geronikaki, A., Incerti, M., Busonera, B., Poni, G., Kabras, C. A. & Colla, P. L. (2003). Bioorg. Med. Chem. 11, 4785–4789.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1588-o1589
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds