organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1559-o1560

3-Chloro-N-(4-sulfamoylphen­yl)propanamide

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Physics, Faculty of Arts and Sciences, Harran University, 63300 Şanlıurfa, Turkey, cDepartment of Chemistry, Faculty of Arts and Sciences, Harran University, 63300 Şanlıurfa, Turkey, and dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 26 May 2010; accepted 29 May 2010; online 5 June 2010)

In the title compound, C9H11ClN2O3S, the dihedral angle between the benzene ring and the amido –NHCO– plane is 15.0 (2)°. An intra­molecular C—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal structure, the amino NH2 group is involved in inter­molecular N—H⋯O hydrogen bonds, which connect the mol­ecules into a double layer structure expanding parallel to the bc plane. The layers are further linked by an amido N—H⋯O hydrogen bond. Between the layers, a weak ππ inter­action with a centroid–centroid distance of 3.7447 (12) Å is also observed.

Related literature

For the anti­bacterial and pharmacological properties of sulfonamides and their derivatives, see: Albala et al. (1994[Albala, D. M., Prien, E. L. & Galal, H. A. (1994). J. Endourol. 8, 401-403.]); Mann & Keilin (1940[Mann, T. & Keilin, D. (1940). Nature (London), 164, 146-148.]); Maren (1976[Maren, T. H. (1976). Annu. Rev. Pharmacol. Toxicol. 16, 309-327.]); Pastorekova et al. (2004[Pastorekova, S., Parkkila, S., Pastorek, J. & Supuran, C. T. J. (2004). J. Enzyme Inhib. Med. Chem. 19, 199-229.]); Reynolds (1996[Reynolds, J. E. F. (1996). Editor. Martindale: The Extra Pharmacopoeia, 31st ed. London: The Royal Pharmaceutical Society.]); Silverman (1992[Silverman, R. B. (1992). The Organic Chemistry of Drug Design and Drug Action. London: Academic.]); Supuran & Scozzafava (2001[Supuran, C. T. & Scozzafava, A. (2001). Curr. Med. Chem. Immunol. Endocrinol. Metab. Agent. 1, 61-97.], 2002[Supuran, C. T. & Scozzafava, A. (2002). Expert Opin. Ther. Patents, 12, 217-242.]); Supuran et al. (2003[Supuran, C. T., Scozzafava, A. & Casini, A. (2003). Med. Res. Rev. 23, 146-189.], 2004[Supuran, C. T., Vullo, D., Manole, G., Casini, A. & Scozzafava, A. (2004). Curr. Med. Chem. Cardiovasc. Hematol. Agents, 2, 49-68.]); Türkmen et al. (2005[Türkmen, H., Durgun, M., Yılmaztekin, S., Emul, M., Innocenti, A., Vullo, D., Scozzafava, A. & Supuran, C. T. (2005). Bioorg. Med. Chem. Lett. 15, 367-372.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11ClN2O3S

  • Mr = 262.72

  • Monoclinic, P 21 /c

  • a = 7.7554 (4) Å

  • b = 14.8191 (8) Å

  • c = 9.7482 (5) Å

  • β = 94.181 (4)°

  • V = 1117.36 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 296 K

  • 0.78 × 0.45 × 0.22 mm

Data collection
  • Stoe IPDS2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.754, Tmax = 0.892

  • 6023 measured reflections

  • 2294 independent reflections

  • 2007 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.106

  • S = 1.08

  • 2294 reflections

  • 153 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.859 (18) 2.14 (2) 2.926 (2) 151 (3)
N1—H1B⋯O3ii 0.85 (2) 2.12 (3) 2.923 (2) 158 (3)
N2—H2A⋯O2iii 0.86 2.13 2.991 (2) 175
C3—H3⋯O3 0.93 2.32 2.889 (3) 120
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z+1; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Sulfanilamide is a sulfonamide antibacterial. Chemically, it is a molecule containing the sulfonamide functional group attached to an aniline. As an antibiotic, it functions by competitively inhibiting (i.e, by acting as a substrate analogue) enzymatic reactions involving. Inhibition of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1) with sulfonamides may be exploited clinically for the treatment and prevention of a multitude of diseases (Pastorekova et al., 2004; Supuran et al., 2004; Mann & Keilin, 1940). With the early report that sulfanilamide acts as an inhibitor of CA, a great scientific adventure initiated, leading to the development of several classes of drugs based on the sulfonamide motif.

Sulfonamides and their derivatives have been the subject of investigation for many reasons. The amides are important constituent of many biologically significant compounds. The chemistry of sulfonamides is of interest as they show distinct physical, chemical and biological properties. The sulfonamide derivatives are known for their numerous pharmacological activities, antibacterial, antitumor, insulin-release stimulation and antithyroid properties (Maren, 1976). In addition, the unsubstituted aromatic/heterocyclic sulfonamides act as carbonic anhydrase inhibitors (Supuran & Scozzafava, 2001; Türkmen et al., 2005; Supuran et al., 2003) whereas other types of derivatives show diuretic activity (high-ceiling diuretics or thiadiazine diuretics), hypoglycemic activity and anti- cancer properties (Supuran & Scozzafava, 2002). Although sulfonamides are best known as bacteriostatic (Silverman, 1992) and antimalarial agents (Albala et al., 1994), there is now a range of drugs, possessing very different pharmacological activities, in which the sulfonamide group is present (Reynolds, 1996). Due to their significant pharmacology applications and widespread use in medicine, these compounds have gained attention in bio-inorganic and metal-based drug chemistry. In this work we report the crystal structure of 3-chloro-N-(4-sulfamoylphenyl)propanamide.

In the title molecule (I), (Fig. 1), the SO distances [1.4302 (14) and 1.4349 (16) Å] and the OSO angle [118.21 (9)°] are within the normal range as the values of the other geometric parameters of the molecule. The dihedral angle between the benzene ring and the amido –NHCO– plane is 15.0 (2)°.

The crystal structure is stabilized by N—H···O type hydrogen bonds (Table 1, Fig. 2). N1—H1A···O1 and N1—H1B···O3 generate the two-dimensional network (double layer structure), but N2—H2A···O2 links the layers into a three-dimensional network. An intramolecular hydrogen contact C3—H3···O3 generates a ring of graph-set motif S(6) (Bernstein et al., 1995) (Table 1). Furthermore, crystal packing is influenced by weak ππ stacking interactions between nearby aromatic rings of the adjacent molecules, [Cg···Cgiv = 3.7447 (12) Å; Cg is the centroid of the C1–C6 ring; symmetry code: (iv) 1 - x, 1 - y, 1 - z].

Related literature top

For the antibacterial and pharmacological properties of sulfonamides and their derivatives, see: Albala et al. (1994); Mann & Keilin (1940); Maren (1976); Pastorekova et al. (2004); Reynolds (1996); Silverman (1992); Supuran & Scozzafava (2001, 2002); Supuran et al. (2003, 2004); Türkmen et al. (2005). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

Sulfanilamide (2.00 g, 0.011 mol) and N-ethylmaleimide (NEM) (1.566 g, 0.016 mol) were stirred in tetrahydrofuran (THF) (200 ml) until most of the starting material had dissolved. 3-Chloropropanoylchloride (1.782 g, 0.014 mol) in THF was slowly added to the reaction mixture. The reaction was stirred at 258 K for 4 h under anhydrous conditions. After warming to room temperature the white precipitate of NEM/HCl salt filtered off. The THF was removed in vacuo and the resulting white solid dissolved in ethyl acetate. The organic extract was washed with 3M hydrochloric acid (20 ml) then with saturated sodium bicarbonate solution (20 ml) and finally with brine. Drying over magnesium sulfate and evaporation yielded a white solid which was recrystallized from water to give the title compound (yield: 70%, m.p: 501–503 K).

Refinement top

The H-atoms of the NH2 group were located in a difference Fourier map, and were refined with distance restraints of N—H = 0.86 (2) Å; their temperature factors were freely refined. The other H-atoms were placed in calculated positions with C—H = 0.93–0.97 Å and N—H = 0.86 Å, and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing of the molecules of (I) linked by of N—H···O hydrogen bonds, viewed down the c axis. All hydrogen atoms not involved in hydrogen bonding have been omitted for clarity. Hydrogen bonds are indicated by dotted lines.
3-Chloro-N-(4-sulfamoylphenyl)propanamide top
Crystal data top
C9H11ClN2O3SF(000) = 544
Mr = 262.72Dx = 1.562 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8775 reflections
a = 7.7554 (4) Åθ = 2.1–28.0°
b = 14.8191 (8) ŵ = 0.52 mm1
c = 9.7482 (5) ÅT = 296 K
β = 94.181 (4)°Prism, colourless
V = 1117.36 (10) Å30.78 × 0.45 × 0.22 mm
Z = 4
Data collection top
Stoe IPDS2
diffractometer
2294 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2007 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.040
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.5°
ω scansh = 89
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1618
Tmin = 0.754, Tmax = 0.892l = 1212
6023 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0602P)2 + 0.351P]
where P = (Fo2 + 2Fc2)/3
2294 reflections(Δ/σ)max < 0.001
153 parametersΔρmax = 0.28 e Å3
2 restraintsΔρmin = 0.44 e Å3
Crystal data top
C9H11ClN2O3SV = 1117.36 (10) Å3
Mr = 262.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7554 (4) ŵ = 0.52 mm1
b = 14.8191 (8) ÅT = 296 K
c = 9.7482 (5) Å0.78 × 0.45 × 0.22 mm
β = 94.181 (4)°
Data collection top
Stoe IPDS2
diffractometer
2294 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2007 reflections with I > 2σ(I)
Tmin = 0.754, Tmax = 0.892Rint = 0.040
6023 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.28 e Å3
2294 reflectionsΔρmin = 0.44 e Å3
153 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.18392 (12)0.00186 (4)0.38004 (9)0.0791 (3)
S10.31196 (6)0.73280 (3)0.40392 (4)0.0330 (1)
O10.2882 (2)0.75787 (10)0.54296 (14)0.0471 (5)
O20.4665 (2)0.76199 (10)0.34461 (15)0.0445 (5)
O30.1258 (2)0.28706 (10)0.52407 (19)0.0571 (6)
N10.1520 (2)0.77368 (12)0.31092 (18)0.0398 (5)
N20.3009 (2)0.33382 (11)0.36141 (18)0.0419 (5)
C10.3044 (2)0.61415 (12)0.39403 (17)0.0331 (5)
C20.2424 (3)0.56420 (15)0.4978 (2)0.0499 (7)
C30.2372 (4)0.47119 (15)0.4898 (2)0.0530 (7)
C40.2965 (2)0.42797 (13)0.37652 (19)0.0360 (5)
C50.3592 (3)0.47919 (15)0.2722 (2)0.0508 (7)
C60.3617 (3)0.57169 (15)0.2792 (2)0.0488 (7)
C70.2202 (3)0.27011 (13)0.4329 (2)0.0389 (6)
C80.2583 (3)0.17489 (14)0.3889 (2)0.0448 (6)
C90.1263 (4)0.10957 (16)0.4265 (4)0.0725 (10)
H1A0.153 (4)0.7665 (17)0.2235 (18)0.053 (7)*
H1B0.055 (3)0.7636 (17)0.342 (3)0.051 (7)*
H20.203400.593100.574300.0600*
H2A0.363100.314000.298400.0500*
H30.194000.437700.560300.0640*
H50.400200.450500.196200.0610*
H60.401500.605500.207600.0590*
H8A0.265400.173700.290000.0540*
H8B0.369900.156700.431400.0540*
H9A0.015600.125200.380000.0870*
H9B0.114900.112300.524900.0870*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1120 (6)0.0337 (3)0.0982 (6)0.0094 (3)0.0520 (5)0.0065 (3)
S10.0424 (3)0.0302 (2)0.0276 (2)0.0060 (2)0.0106 (2)0.0011 (2)
O10.0702 (10)0.0434 (8)0.0294 (7)0.0105 (7)0.0146 (6)0.0057 (5)
O20.0459 (8)0.0452 (8)0.0440 (8)0.0140 (6)0.0142 (6)0.0000 (6)
O30.0628 (10)0.0383 (8)0.0757 (11)0.0035 (7)0.0427 (9)0.0018 (7)
N10.0471 (10)0.0372 (9)0.0367 (9)0.0024 (7)0.0131 (7)0.0019 (7)
N20.0504 (10)0.0315 (8)0.0466 (9)0.0014 (7)0.0233 (7)0.0011 (7)
C10.0382 (10)0.0295 (9)0.0323 (8)0.0002 (7)0.0075 (7)0.0012 (6)
C20.0740 (15)0.0352 (10)0.0443 (11)0.0005 (10)0.0310 (10)0.0001 (8)
C30.0814 (16)0.0348 (11)0.0473 (11)0.0008 (11)0.0354 (11)0.0060 (9)
C40.0383 (10)0.0315 (9)0.0394 (9)0.0021 (8)0.0116 (8)0.0022 (7)
C50.0732 (15)0.0387 (10)0.0447 (11)0.0035 (10)0.0323 (11)0.0041 (9)
C60.0712 (15)0.0377 (10)0.0410 (10)0.0061 (10)0.0278 (10)0.0009 (8)
C70.0385 (10)0.0335 (10)0.0461 (11)0.0008 (8)0.0126 (8)0.0004 (8)
C80.0500 (12)0.0344 (10)0.0520 (11)0.0010 (9)0.0176 (9)0.0027 (8)
C90.0714 (18)0.0328 (11)0.118 (2)0.0020 (12)0.0382 (17)0.0012 (13)
Geometric parameters (Å, º) top
Cl1—C91.778 (3)C3—C41.384 (3)
S1—O11.4302 (14)C4—C51.385 (3)
S1—O21.4349 (16)C5—C61.373 (3)
S1—N11.6012 (17)C7—C81.510 (3)
S1—C11.7617 (18)C8—C91.475 (4)
O3—C71.218 (3)C2—H20.9300
N2—C41.404 (3)C3—H30.9300
N2—C71.354 (3)C5—H50.9300
N1—H1A0.859 (18)C6—H60.9300
N1—H1B0.85 (2)C8—H8A0.9700
N2—H2A0.8600C8—H8B0.9700
C1—C21.369 (3)C9—H9A0.9700
C1—C61.385 (3)C9—H9B0.9700
C2—C31.381 (3)
Cl1···N1i3.3993 (19)C3···O32.889 (3)
Cl1···C9ii3.543 (3)C7···O2vi3.173 (3)
Cl1···H9Bii3.0400C8···O2vi3.372 (3)
S1···O1iii3.5128 (14)C9···Cl1ii3.543 (3)
O1···N1iv2.926 (2)C7···H32.7900
O1···S1iv3.5128 (14)C8···H6x3.0400
O1···O2iv3.171 (2)H1A···O1iii2.14 (2)
O2···N2v2.992 (2)H1A···H2iii2.5800
O2···C8vi3.372 (3)H1B···O3vii2.12 (3)
O2···O1iii3.171 (2)H2···O12.5500
O2···C7vi3.173 (3)H2···H1Aiv2.5800
O3···N1vii2.923 (2)H2A···H52.2800
O3···C32.889 (3)H2A···H8A2.2100
O1···H6iv2.6900H2A···O2x2.1300
O1···H1Aiv2.14 (2)H3···O32.3200
O1···H22.5500H3···C72.7900
O2···H8Av2.8600H5···H2A2.2800
O2···H62.7100H6···O22.7100
O2···H2Av2.1300H6···C8v3.0400
O2···H8Bvi2.7200H6···H8Bv2.4300
O3···H9A2.8800H6···O1iii2.6900
O3···H9B2.5900H8A···H2A2.2100
O3···H32.3200H8A···O2x2.8600
O3···H1Bvii2.12 (3)H8A···O3xi2.8000
O3···H8Aviii2.8000H8B···H6x2.4300
N1···Cl1ix3.3993 (19)H8B···O2vi2.7200
N1···O3vii2.923 (2)H9A···O32.8800
N1···O1iii2.926 (2)H9B···O32.5900
N2···O2x2.991 (2)H9B···Cl1ii3.0400
O1—S1—O2118.21 (9)N2—C7—C8113.46 (18)
O1—S1—N1106.87 (9)O3—C7—C8122.71 (18)
O1—S1—C1107.76 (8)C7—C8—C9112.9 (2)
O2—S1—N1107.05 (9)Cl1—C9—C8110.8 (2)
O2—S1—C1107.72 (8)C1—C2—H2120.00
N1—S1—C1108.98 (9)C3—C2—H2120.00
C4—N2—C7128.58 (17)C2—C3—H3120.00
S1—N1—H1A117 (2)C4—C3—H3120.00
S1—N1—H1B113.8 (19)C4—C5—H5120.00
H1A—N1—H1B114 (3)C6—C5—H5119.00
C4—N2—H2A116.00C1—C6—H6120.00
C7—N2—H2A116.00C5—C6—H6120.00
S1—C1—C2120.76 (14)C7—C8—H8A109.00
S1—C1—C6119.09 (14)C7—C8—H8B109.00
C2—C1—C6120.15 (18)C9—C8—H8A109.00
C1—C2—C3120.56 (19)C9—C8—H8B109.00
C2—C3—C4119.8 (2)H8A—C8—H8B108.00
N2—C4—C5117.07 (17)Cl1—C9—H9A109.00
C3—C4—C5119.15 (19)Cl1—C9—H9B109.00
N2—C4—C3123.77 (18)C8—C9—H9A110.00
C4—C5—C6121.01 (19)C8—C9—H9B109.00
C1—C6—C5119.32 (19)H9A—C9—H9B108.00
O3—C7—N2123.84 (18)
O1—S1—C1—C214.47 (18)C2—C1—C6—C51.5 (3)
O2—S1—C1—C2143.03 (16)C6—C1—C2—C30.4 (3)
N1—S1—C1—C2101.16 (17)C1—C2—C3—C40.6 (4)
O1—S1—C1—C6165.74 (15)C2—C3—C4—N2178.1 (2)
O2—S1—C1—C637.18 (17)C2—C3—C4—C50.5 (3)
N1—S1—C1—C678.63 (17)N2—C4—C5—C6179.24 (19)
C7—N2—C4—C315.1 (3)C3—C4—C5—C60.6 (3)
C7—N2—C4—C5166.4 (2)C4—C5—C6—C11.6 (3)
C4—N2—C7—O31.0 (3)O3—C7—C8—C921.5 (3)
C4—N2—C7—C8178.99 (18)N2—C7—C8—C9158.5 (2)
S1—C1—C2—C3179.80 (19)C7—C8—C9—Cl1177.00 (18)
S1—C1—C6—C5178.75 (17)
Symmetry codes: (i) x, y1, z; (ii) x, y, z+1; (iii) x, y+3/2, z1/2; (iv) x, y+3/2, z+1/2; (v) x+1, y+1/2, z+1/2; (vi) x+1, y+1, z+1; (vii) x, y+1, z+1; (viii) x, y+1/2, z+1/2; (ix) x, y+1, z; (x) x+1, y1/2, z+1/2; (xi) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1iii0.859 (18)2.14 (2)2.926 (2)151 (3)
N1—H1B···O3vii0.85 (2)2.12 (3)2.923 (2)158 (3)
N2—H2A···O2x0.862.132.991 (2)175
C3—H3···O30.932.322.889 (3)120
Symmetry codes: (iii) x, y+3/2, z1/2; (vii) x, y+1, z+1; (x) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H11ClN2O3S
Mr262.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.7554 (4), 14.8191 (8), 9.7482 (5)
β (°) 94.181 (4)
V3)1117.36 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.78 × 0.45 × 0.22
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.754, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
6023, 2294, 2007
Rint0.040
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.08
No. of reflections2294
No. of parameters153
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.44

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.859 (18)2.14 (2)2.926 (2)151 (3)
N1—H1B···O3ii0.85 (2)2.12 (3)2.923 (2)158 (3)
N2—H2A···O2iii0.862.132.991 (2)175
C3—H3···O30.932.322.889 (3)120
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1, z+1; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAlbala, D. M., Prien, E. L. & Galal, H. A. (1994). J. Endourol. 8, 401–403.  CrossRef CAS PubMed Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMann, T. & Keilin, D. (1940). Nature (London), 164, 146–148.  Google Scholar
First citationMaren, T. H. (1976). Annu. Rev. Pharmacol. Toxicol. 16, 309–327.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPastorekova, S., Parkkila, S., Pastorek, J. & Supuran, C. T. J. (2004). J. Enzyme Inhib. Med. Chem. 19, 199–229.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReynolds, J. E. F. (1996). Editor. Martindale: The Extra Pharmacopoeia, 31st ed. London: The Royal Pharmaceutical Society.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilverman, R. B. (1992). The Organic Chemistry of Drug Design and Drug Action. London: Academic.  Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSupuran, C. T. & Scozzafava, A. (2001). Curr. Med. Chem. Immunol. Endocrinol. Metab. Agent. 1, 61–97.  CrossRef CAS Google Scholar
First citationSupuran, C. T. & Scozzafava, A. (2002). Expert Opin. Ther. Patents, 12, 217–242.  Google Scholar
First citationSupuran, C. T., Scozzafava, A. & Casini, A. (2003). Med. Res. Rev. 23, 146–189.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSupuran, C. T., Vullo, D., Manole, G., Casini, A. & Scozzafava, A. (2004). Curr. Med. Chem. Cardiovasc. Hematol. Agents, 2, 49–68.  CrossRef PubMed CAS Google Scholar
First citationTürkmen, H., Durgun, M., Yılmaztekin, S., Emul, M., Innocenti, A., Vullo, D., Scozzafava, A. & Supuran, C. T. (2005). Bioorg. Med. Chem. Lett. 15, 367–372.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1559-o1560
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds