metal-organic compounds
Diaquabis(hydrogen tartrato)copper(II) dihydrate
aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
The title complex, [Cu(C4H5O6)2(H2O)2]·2H2O, contains a CuII ion lying on an inversion centre. The coordination geometry of the CuII ion is a distorted octahedron with four O atoms from two hydrogen tartrate ions occupying the equatorial positions and two O atoms from two coordinated water molecules occupying the axial positions. In the intermolecular O—H⋯O and C—H⋯O hydrogen bonds link the molecules into a three-dimensional network.
Related literature
For background to coordination polymers, see: Stang & Olenyuk (1997); Aakeroy & Seddon (1993); Munakata et al. (1999); Fujita et al. (1994); Hagrman et al. (1997). For the optical activity of tartaric acid, see: Synoradzki et al. (2008). For related structures, see: Jian et al. (2005). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S160053681002115X/is2556sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681002115X/is2556Isup2.hkl
DL-Tartaric acid (0.02 mol, 3.0 g) was dissolved in distilled water in a flat bottom flask with magnetic stirrer. CuCl2 (0.01 mol, 1.45 g) was added in small portions with continuous stirring for three hours at room temperature. The blue crystals formed were washed with N,N-dimethylformamide then with methanol and dried at 353 K.
Atom H5 was located in a difference Fourier map and refined freely. The remaining H atoms, excepting the water H atoms, were positioned geometrically (C—H = 0.98 Å and O—H = 0.82 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). The water H atoms were located in the difference map and then treated as riding atoms on the parent O atoms, with O—H = 0.8936–0.9551 Å and Uiso(H) = 1.5Ueq(O).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. C1A–C4A/O1A–O6A/O1WA/O2WA are generated by the symmetry code 1-x, -y, -z. | |
Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) network. |
[Cu(C4H5O6)2(H2O)2]·2H2O | F(000) = 446 |
Mr = 433.76 | Dx = 1.915 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 6852 reflections |
a = 7.1577 (8) Å | θ = 3.6–35.0° |
b = 14.0989 (14) Å | µ = 1.54 mm−1 |
c = 7.8910 (8) Å | T = 100 K |
β = 109.136 (2)° | Plate, blue |
V = 752.32 (14) Å3 | 0.42 × 0.15 × 0.08 mm |
Z = 2 |
Bruker APEXII DUO CCD area-detector diffractometer | 3298 independent reflections |
Radiation source: fine-focus sealed tube | 3001 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
ϕ and ω scans | θmax = 35.0°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −11→11 |
Tmin = 0.563, Tmax = 0.885 | k = −21→22 |
12361 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.082 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.20 | w = 1/[σ2(Fo2) + (0.0456P)2 + 0.1293P] where P = (Fo2 + 2Fc2)/3 |
3298 reflections | (Δ/σ)max = 0.001 |
121 parameters | Δρmax = 0.68 e Å−3 |
0 restraints | Δρmin = −0.45 e Å−3 |
[Cu(C4H5O6)2(H2O)2]·2H2O | V = 752.32 (14) Å3 |
Mr = 433.76 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.1577 (8) Å | µ = 1.54 mm−1 |
b = 14.0989 (14) Å | T = 100 K |
c = 7.8910 (8) Å | 0.42 × 0.15 × 0.08 mm |
β = 109.136 (2)° |
Bruker APEXII DUO CCD area-detector diffractometer | 3298 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 3001 reflections with I > 2σ(I) |
Tmin = 0.563, Tmax = 0.885 | Rint = 0.023 |
12361 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | 0 restraints |
wR(F2) = 0.082 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.20 | Δρmax = 0.68 e Å−3 |
3298 reflections | Δρmin = −0.45 e Å−3 |
121 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.0000 | 0.0000 | 0.00746 (6) | |
O1 | 0.39754 (10) | 0.03576 (5) | 0.18906 (9) | 0.00912 (12) | |
O2 | 0.75259 (11) | 0.04633 (5) | 0.16577 (9) | 0.00829 (12) | |
O3 | 0.48127 (11) | 0.11064 (5) | 0.45343 (10) | 0.00963 (12) | |
O4 | 0.69066 (11) | 0.24378 (5) | 0.22934 (10) | 0.00920 (12) | |
H4 | 0.6209 | 0.2764 | 0.2705 | 0.014* | |
O5 | 1.08144 (12) | 0.25669 (5) | 0.29938 (12) | 0.01450 (14) | |
O6 | 1.13354 (11) | 0.12193 (5) | 0.45912 (10) | 0.01096 (13) | |
H6 | 1.2407 | 0.1230 | 0.4424 | 0.016* | |
C1 | 0.52178 (13) | 0.07526 (6) | 0.32500 (12) | 0.00733 (14) | |
C2 | 0.73709 (13) | 0.08036 (6) | 0.33188 (11) | 0.00687 (14) | |
H2 | 0.8181 | 0.0405 | 0.4303 | 0.008* | |
C3 | 0.80915 (13) | 0.18289 (6) | 0.36467 (12) | 0.00714 (14) | |
H3 | 0.8008 | 0.2036 | 0.4805 | 0.009* | |
C4 | 1.02337 (14) | 0.19094 (6) | 0.37032 (12) | 0.00806 (14) | |
O1W | 0.46452 (11) | 0.16624 (5) | −0.10244 (10) | 0.01087 (13) | |
H11 | 0.3385 | 0.1878 | −0.1356 | 0.016* | |
H12 | 0.5389 | 0.1917 | 0.0120 | 0.016* | |
O2W | 0.94287 (12) | 0.05593 (6) | 0.78307 (13) | 0.01680 (16) | |
H21 | 0.8316 | 0.0315 | 0.7943 | 0.025* | |
H22 | 0.9492 | 0.1191 | 0.7909 | 0.025* | |
H5 | 0.832 (5) | 0.0119 (17) | 0.174 (4) | 0.034 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.00525 (8) | 0.00959 (9) | 0.00761 (8) | −0.00150 (5) | 0.00221 (6) | −0.00224 (4) |
O1 | 0.0068 (3) | 0.0113 (3) | 0.0093 (3) | −0.0019 (2) | 0.0027 (2) | −0.0022 (2) |
O2 | 0.0063 (3) | 0.0096 (3) | 0.0089 (3) | 0.0004 (2) | 0.0025 (2) | −0.0024 (2) |
O3 | 0.0082 (3) | 0.0113 (3) | 0.0103 (3) | −0.0005 (2) | 0.0042 (2) | −0.0021 (2) |
O4 | 0.0084 (3) | 0.0086 (3) | 0.0103 (3) | 0.0030 (2) | 0.0026 (2) | 0.0020 (2) |
O5 | 0.0092 (3) | 0.0115 (3) | 0.0228 (4) | −0.0008 (2) | 0.0052 (3) | 0.0063 (3) |
O6 | 0.0064 (3) | 0.0098 (3) | 0.0168 (3) | 0.0018 (2) | 0.0041 (2) | 0.0043 (2) |
C1 | 0.0068 (3) | 0.0063 (3) | 0.0089 (3) | 0.0001 (3) | 0.0026 (3) | 0.0008 (3) |
C2 | 0.0055 (3) | 0.0071 (3) | 0.0080 (3) | −0.0003 (2) | 0.0021 (3) | −0.0006 (3) |
C3 | 0.0061 (3) | 0.0068 (3) | 0.0083 (3) | 0.0001 (3) | 0.0019 (3) | 0.0002 (2) |
C4 | 0.0071 (3) | 0.0073 (3) | 0.0093 (3) | −0.0003 (3) | 0.0021 (3) | −0.0010 (3) |
O1W | 0.0090 (3) | 0.0101 (3) | 0.0127 (3) | 0.0002 (2) | 0.0024 (2) | 0.0003 (2) |
O2W | 0.0104 (3) | 0.0101 (3) | 0.0321 (4) | 0.0008 (2) | 0.0098 (3) | 0.0007 (3) |
Cu1—O1 | 1.9327 (7) | O5—C4 | 1.2239 (12) |
Cu1—O1i | 1.9327 (7) | O6—C4 | 1.3027 (11) |
Cu1—O2i | 1.9637 (7) | O6—H6 | 0.8200 |
Cu1—O2 | 1.9637 (7) | C1—C2 | 1.5259 (13) |
Cu1—O1W | 2.4651 (8) | C2—C3 | 1.5281 (13) |
Cu1—O1Wi | 2.4651 (8) | C2—H2 | 0.9800 |
O1—C1 | 1.2753 (11) | C3—C4 | 1.5235 (13) |
O2—C2 | 1.4339 (11) | C3—H3 | 0.9800 |
O2—H5 | 0.73 (3) | O1W—H11 | 0.9051 |
O3—C1 | 1.2461 (11) | O1W—H12 | 0.9551 |
O4—C3 | 1.4152 (11) | O2W—H21 | 0.8982 |
O4—H4 | 0.8200 | O2W—H22 | 0.8936 |
O1—Cu1—O1W | 88.90 (3) | O3—C1—C2 | 116.99 (8) |
O1—Cu1—O1Wi | 91.11 (3) | O1—C1—C2 | 117.92 (8) |
O1W—Cu1—O2 | 82.85 (3) | O2—C2—C1 | 109.36 (7) |
O1W—Cu1—O1Wi | 180 | O2—C2—C3 | 110.39 (7) |
O1W—Cu1—O2 | 82.85 (3) | C1—C2—C3 | 109.36 (7) |
O1Wi—Cu1—O2i | 82.85 (3) | O2—C2—H2 | 109.2 |
O1i—Cu1—O1Wi | 88.90 (3) | C1—C2—H2 | 109.2 |
O1—Cu1—O1i | 180.00 (6) | C3—C2—H2 | 109.2 |
O1—Cu1—O2i | 95.83 (3) | O4—C3—C4 | 108.99 (7) |
O1i—Cu1—O2i | 84.17 (3) | O4—C3—C2 | 111.13 (7) |
O1—Cu1—O2 | 84.17 (3) | C4—C3—C2 | 110.86 (7) |
O1i—Cu1—O2 | 95.83 (3) | O4—C3—H3 | 108.6 |
O2i—Cu1—O2 | 180.0 | C4—C3—H3 | 108.6 |
C1—O1—Cu1 | 115.26 (6) | C2—C3—H3 | 108.6 |
C2—O2—Cu1 | 112.96 (5) | O5—C4—O6 | 125.12 (9) |
C2—O2—H5 | 116 (2) | O5—C4—C3 | 122.17 (8) |
Cu1—O2—H5 | 111 (2) | O6—C4—C3 | 112.71 (8) |
C3—O4—H4 | 109.5 | H11—O1W—H12 | 110.0 |
C4—O6—H6 | 109.5 | H21—O2W—H22 | 113.7 |
O3—C1—O1 | 125.09 (9) | ||
O2i—Cu1—O1—C1 | −176.70 (7) | O3—C1—C2—O2 | −173.54 (8) |
O2—Cu1—O1—C1 | 3.30 (7) | O1—C1—C2—O2 | 6.20 (11) |
O1—Cu1—O2—C2 | 0.36 (6) | O3—C1—C2—C3 | −52.55 (10) |
O1i—Cu1—O2—C2 | −179.64 (6) | O1—C1—C2—C3 | 127.19 (8) |
O1W—Cu1—O1—C1 | −79.64 (6) | O2—C2—C3—O4 | 62.36 (9) |
O1Wi—Cu1—O1—C1 | 100.37 (6) | C1—C2—C3—O4 | −58.01 (9) |
O1W—Cu1—O2—C2 | 89.98 (6) | O2—C2—C3—C4 | −59.01 (9) |
O1Wi—Cu1—O2—C2 | −90.02 (6) | C1—C2—C3—C4 | −179.37 (7) |
Cu1—O1—C1—O3 | 173.56 (7) | O4—C3—C4—O5 | 16.25 (12) |
Cu1—O1—C1—C2 | −6.17 (10) | C2—C3—C4—O5 | 138.88 (9) |
Cu1—O2—C2—C1 | −3.22 (9) | O4—C3—C4—O6 | −164.52 (8) |
Cu1—O2—C2—C3 | −123.59 (6) | C2—C3—C4—O6 | −41.90 (10) |
Symmetry code: (i) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O1Wii | 0.82 | 1.91 | 2.7200 (12) | 170 |
O2—H5···O2Wiii | 0.72 (3) | 1.82 (3) | 2.5331 (12) | 170 (3) |
O6—H6···O3iv | 0.82 | 1.70 | 2.5092 (12) | 167 |
O1W—H11···O5v | 0.91 | 1.91 | 2.8119 (11) | 175 (1) |
O1W—H12···O4 | 0.96 | 1.85 | 2.8091 (11) | 177 |
O2W—H21···O1vi | 0.90 | 1.94 | 2.8298 (12) | 173 |
O2W—H22···O5ii | 0.89 | 1.98 | 2.8100 (12) | 154 |
C2—H2···O6iii | 0.98 | 2.43 | 3.2727 (12) | 143 |
C3—H3···O4ii | 0.98 | 2.46 | 3.4160 (13) | 166 |
Symmetry codes: (ii) x, −y+1/2, z+1/2; (iii) −x+2, −y, −z+1; (iv) x+1, y, z; (v) x−1, −y+1/2, z−1/2; (vi) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C4H5O6)2(H2O)2]·2H2O |
Mr | 433.76 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 7.1577 (8), 14.0989 (14), 7.8910 (8) |
β (°) | 109.136 (2) |
V (Å3) | 752.32 (14) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.54 |
Crystal size (mm) | 0.42 × 0.15 × 0.08 |
Data collection | |
Diffractometer | Bruker APEXII DUO CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.563, 0.885 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12361, 3298, 3001 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.808 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.082, 1.20 |
No. of reflections | 3298 |
No. of parameters | 121 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.68, −0.45 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O1Wi | 0.82 | 1.9100 | 2.7200 (12) | 170 |
O2—H5···O2Wii | 0.72 (3) | 1.82 (3) | 2.5331 (12) | 170 (3) |
O6—H6···O3iii | 0.82 | 1.7000 | 2.5092 (12) | 167 |
O1W—H11···O5iv | 0.91 | 1.91 | 2.8119 (11) | 175.3 (2) |
O1W—H12···O4 | 0.96 | 1.8500 | 2.8091 (11) | 177 |
O2W—H21···O1v | 0.90 | 1.9400 | 2.8298 (12) | 173 |
O2W—H22···O5i | 0.89 | 1.9800 | 2.8100 (12) | 154 |
C2—H2···O6ii | 0.98 | 2.4300 | 3.2727 (12) | 143 |
C3—H3···O4i | 0.98 | 2.4600 | 3.4160 (13) | 166 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+2, −y, −z+1; (iii) x+1, y, z; (iv) x−1, −y+1/2, z−1/2; (v) −x+1, −y, −z+1. |
Acknowledgements
HHA gratefully acknowledges funding from Universiti Sains Malaysia (USM) under the University Research grant (No. 1001/PKIMIA/811142). HKF and MH thank the Malaysian Government and USM for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks USM for a post-doctoral research fellowship.
References
Aakeroy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 6, 397–407. CrossRef Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fujita, M., Kwon, Y. J., Miyazawa, M. & Ogura, K. (1994). J. Chem. Soc. Chem. Commun. 17, 1997–1998. Google Scholar
Hagrman, D., Zubieta, C., Rose, D. J., Zubieta, J. & Haushalter, R. C. (1997). Angew. Chem. Int. Ed. Engl. 35, 873–877. CSD CrossRef Web of Science Google Scholar
Jian, F. F., Zhao, P. & Wang, Q. (2005). J. Coord. Chem. 58, 1133–1138. Web of Science CSD CrossRef CAS Google Scholar
Munakata, M., Wu, L. P. & Kuroda-sowa, T. (1999). Inorg. Chem. 46, 17–3. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stang, P. J. & Olenyuk, B. (1997). Acc. Chem. Res. 30, 502–518. Web of Science CrossRef CAS Google Scholar
Synoradzki, L., Bernas, U. & Ruskowski, P. (2008). Org. Prep. Proced. Int. 40, 163–200. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, there has been great interest in the study of coordination polymers with network structures due to their possible chemical and physical properties (Stang & Olenyuk, 1997; Aakeroy & Seddon, 1993; Munakata et al., 1999). A number of unique networks have been obtained by reactions between transition metal ions and rationally designed organic ligands (Fujita et al., 1994; Hagrman et al., 1997). Tartaric acid has been used as building blocks to construct 1D, 2D and 3D frameworks due to the diversity of binding modes of the carboxyl group and hydroxyl group in the tartaric acid. It has many applications such as in making silver mirrors, in the manufacture of soft drinks, to provide tartness to foods, in tanning leather, and in making blueprints. Tartaric acid also has optical activity (Synoradzki et al., 2008). We report the crystal structure of (I).
(I) consists of a copper ion lying on a crystallographic inversion centre, two hydrogen tartrate ions, two coordinated water molecules and two uncoordinated water molecules (Fig. 1). The environment about the copper(II) ion is a distorted octahedron with four oxygen atoms from two hydrogen tartrate ions and two oxygen atoms from the coordinated water molecules completing the coordination. All the four oxygen atoms from the two hydrogen tartrate anions occupy equatorial positions and the oxygen atoms from the water molecules occupy in the axial positions. The equatorial and axial distances of Cu—O [Cu—O1 = 1.9327 (7) Å; Cu—O2 = 1.9637 (7) Å and Cu—O1W = 2.4651 (8) Å] agree with those reported for similar systems (Jian et al., 2005).
In the crystal structure, intermolecular O1W—H12···O4, O4—H4···O1W, O2—H5···O2W, O6—H6···O3, O1W—H11···O5, O2W—H21···O1, O2W—H22···O5, C2—H2···O6 and C3—H3···O4 hydrogen bonds (Table 1) link the molecules into a three-dimensional network.