metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m774-m775

Di­aqua­bis­­(hydrogen tartrato)copper(II) dihydrate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 31 May 2010; accepted 3 June 2010; online 16 June 2010)

The title complex, [Cu(C4H5O6)2(H2O)2]·2H2O, contains a CuII ion lying on an inversion centre. The coordination geometry of the CuII ion is a distorted octa­hedron with four O atoms from two hydrogen tartrate ions occupying the equatorial positions and two O atoms from two coordinated water mol­ecules occupying the axial positions. In the crystal structure, inter­molecular O—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For background to coordination polymers, see: Stang & Olenyuk (1997[Stang, P. J. & Olenyuk, B. (1997). Acc. Chem. Res. 30, 502-518.]); Aakeroy & Seddon (1993[Aakeroy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 6, 397-407.]); Munakata et al. (1999[Munakata, M., Wu, L. P. & Kuroda-sowa, T. (1999). Inorg. Chem. 46, 17-3.]); Fujita et al. (1994[Fujita, M., Kwon, Y. J., Miyazawa, M. & Ogura, K. (1994). J. Chem. Soc. Chem. Commun. 17, 1997-1998.]); Hagrman et al. (1997[Hagrman, D., Zubieta, C., Rose, D. J., Zubieta, J. & Haushalter, R. C. (1997). Angew. Chem. Int. Ed. Engl. 35, 873-877.]). For the optical activity of tartaric acid, see: Synoradzki et al. (2008[Synoradzki, L., Bernas, U. & Ruskowski, P. (2008). Org. Prep. Proced. Int. 40, 163-200.]). For related structures, see: Jian et al. (2005[Jian, F. F., Zhao, P. & Wang, Q. (2005). J. Coord. Chem. 58, 1133-1138.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C4H5O6)2(H2O)2]·2H2O

  • Mr = 433.76

  • Monoclinic, P 21 /c

  • a = 7.1577 (8) Å

  • b = 14.0989 (14) Å

  • c = 7.8910 (8) Å

  • β = 109.136 (2)°

  • V = 752.32 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.54 mm−1

  • T = 100 K

  • 0.42 × 0.15 × 0.08 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.563, Tmax = 0.885

  • 12361 measured reflections

  • 3298 independent reflections

  • 3001 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.082

  • S = 1.20

  • 3298 reflections

  • 121 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O1Wi 0.82 1.91 2.7200 (12) 170
O2—H5⋯O2Wii 0.72 (3) 1.82 (3) 2.5331 (12) 170 (3)
O6—H6⋯O3iii 0.82 1.70 2.5092 (12) 167
O1W—H11⋯O5iv 0.91 1.91 2.8119 (11) 175 (1)
O1W—H12⋯O4 0.96 1.85 2.8091 (11) 177
O2W—H21⋯O1v 0.90 1.94 2.8298 (12) 173
O2W—H22⋯O5i 0.89 1.98 2.8100 (12) 154
C2—H2⋯O6ii 0.98 2.43 3.2727 (12) 143
C3—H3⋯O4i 0.98 2.46 3.4160 (13) 166
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y, -z+1; (iii) x+1, y, z; (iv) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In recent years, there has been great interest in the study of coordination polymers with network structures due to their possible chemical and physical properties (Stang & Olenyuk, 1997; Aakeroy & Seddon, 1993; Munakata et al., 1999). A number of unique networks have been obtained by reactions between transition metal ions and rationally designed organic ligands (Fujita et al., 1994; Hagrman et al., 1997). Tartaric acid has been used as building blocks to construct 1D, 2D and 3D frameworks due to the diversity of binding modes of the carboxyl group and hydroxyl group in the tartaric acid. It has many applications such as in making silver mirrors, in the manufacture of soft drinks, to provide tartness to foods, in tanning leather, and in making blueprints. Tartaric acid also has optical activity (Synoradzki et al., 2008). We report the crystal structure of (I).

(I) consists of a copper ion lying on a crystallographic inversion centre, two hydrogen tartrate ions, two coordinated water molecules and two uncoordinated water molecules (Fig. 1). The environment about the copper(II) ion is a distorted octahedron with four oxygen atoms from two hydrogen tartrate ions and two oxygen atoms from the coordinated water molecules completing the coordination. All the four oxygen atoms from the two hydrogen tartrate anions occupy equatorial positions and the oxygen atoms from the water molecules occupy in the axial positions. The equatorial and axial distances of Cu—O [Cu—O1 = 1.9327 (7) Å; Cu—O2 = 1.9637 (7) Å and Cu—O1W = 2.4651 (8) Å] agree with those reported for similar systems (Jian et al., 2005).

In the crystal structure, intermolecular O1W—H12···O4, O4—H4···O1W, O2—H5···O2W, O6—H6···O3, O1W—H11···O5, O2W—H21···O1, O2W—H22···O5, C2—H2···O6 and C3—H3···O4 hydrogen bonds (Table 1) link the molecules into a three-dimensional network.

Related literature top

For background to coordination polymers, see: Stang & Olenyuk (1997); Aakeroy & Seddon (1993); Munakata et al. (1999); Fujita et al. (1994); Hagrman et al. (1997). For the optical activity of tartaric acid, see: Synoradzki et al. (2008). For related structures, see: Jian et al. (2005). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

DL-Tartaric acid (0.02 mol, 3.0 g) was dissolved in distilled water in a flat bottom flask with magnetic stirrer. CuCl2 (0.01 mol, 1.45 g) was added in small portions with continuous stirring for three hours at room temperature. The blue crystals formed were washed with N,N-dimethylformamide then with methanol and dried at 353 K.

Refinement top

Atom H5 was located in a difference Fourier map and refined freely. The remaining H atoms, excepting the water H atoms, were positioned geometrically (C—H = 0.98 Å and O—H = 0.82 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). The water H atoms were located in the difference map and then treated as riding atoms on the parent O atoms, with O—H = 0.8936–0.9551 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. C1A–C4A/O1A–O6A/O1WA/O2WA are generated by the symmetry code 1-x, -y, -z.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) network.
Diaquabis(hydrogen tartrato)copper(II) dihydrate top
Crystal data top
[Cu(C4H5O6)2(H2O)2]·2H2OF(000) = 446
Mr = 433.76Dx = 1.915 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6852 reflections
a = 7.1577 (8) Åθ = 3.6–35.0°
b = 14.0989 (14) ŵ = 1.54 mm1
c = 7.8910 (8) ÅT = 100 K
β = 109.136 (2)°Plate, blue
V = 752.32 (14) Å30.42 × 0.15 × 0.08 mm
Z = 2
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3298 independent reflections
Radiation source: fine-focus sealed tube3001 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 35.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.563, Tmax = 0.885k = 2122
12361 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.20 w = 1/[σ2(Fo2) + (0.0456P)2 + 0.1293P]
where P = (Fo2 + 2Fc2)/3
3298 reflections(Δ/σ)max = 0.001
121 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Cu(C4H5O6)2(H2O)2]·2H2OV = 752.32 (14) Å3
Mr = 433.76Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.1577 (8) ŵ = 1.54 mm1
b = 14.0989 (14) ÅT = 100 K
c = 7.8910 (8) Å0.42 × 0.15 × 0.08 mm
β = 109.136 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3298 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3001 reflections with I > 2σ(I)
Tmin = 0.563, Tmax = 0.885Rint = 0.023
12361 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.20Δρmax = 0.68 e Å3
3298 reflectionsΔρmin = 0.45 e Å3
121 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.00000.00000.00746 (6)
O10.39754 (10)0.03576 (5)0.18906 (9)0.00912 (12)
O20.75259 (11)0.04633 (5)0.16577 (9)0.00829 (12)
O30.48127 (11)0.11064 (5)0.45343 (10)0.00963 (12)
O40.69066 (11)0.24378 (5)0.22934 (10)0.00920 (12)
H40.62090.27640.27050.014*
O51.08144 (12)0.25669 (5)0.29938 (12)0.01450 (14)
O61.13354 (11)0.12193 (5)0.45912 (10)0.01096 (13)
H61.24070.12300.44240.016*
C10.52178 (13)0.07526 (6)0.32500 (12)0.00733 (14)
C20.73709 (13)0.08036 (6)0.33188 (11)0.00687 (14)
H20.81810.04050.43030.008*
C30.80915 (13)0.18289 (6)0.36467 (12)0.00714 (14)
H30.80080.20360.48050.009*
C41.02337 (14)0.19094 (6)0.37032 (12)0.00806 (14)
O1W0.46452 (11)0.16624 (5)0.10244 (10)0.01087 (13)
H110.33850.18780.13560.016*
H120.53890.19170.01200.016*
O2W0.94287 (12)0.05593 (6)0.78307 (13)0.01680 (16)
H210.83160.03150.79430.025*
H220.94920.11910.79090.025*
H50.832 (5)0.0119 (17)0.174 (4)0.034 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.00525 (8)0.00959 (9)0.00761 (8)0.00150 (5)0.00221 (6)0.00224 (4)
O10.0068 (3)0.0113 (3)0.0093 (3)0.0019 (2)0.0027 (2)0.0022 (2)
O20.0063 (3)0.0096 (3)0.0089 (3)0.0004 (2)0.0025 (2)0.0024 (2)
O30.0082 (3)0.0113 (3)0.0103 (3)0.0005 (2)0.0042 (2)0.0021 (2)
O40.0084 (3)0.0086 (3)0.0103 (3)0.0030 (2)0.0026 (2)0.0020 (2)
O50.0092 (3)0.0115 (3)0.0228 (4)0.0008 (2)0.0052 (3)0.0063 (3)
O60.0064 (3)0.0098 (3)0.0168 (3)0.0018 (2)0.0041 (2)0.0043 (2)
C10.0068 (3)0.0063 (3)0.0089 (3)0.0001 (3)0.0026 (3)0.0008 (3)
C20.0055 (3)0.0071 (3)0.0080 (3)0.0003 (2)0.0021 (3)0.0006 (3)
C30.0061 (3)0.0068 (3)0.0083 (3)0.0001 (3)0.0019 (3)0.0002 (2)
C40.0071 (3)0.0073 (3)0.0093 (3)0.0003 (3)0.0021 (3)0.0010 (3)
O1W0.0090 (3)0.0101 (3)0.0127 (3)0.0002 (2)0.0024 (2)0.0003 (2)
O2W0.0104 (3)0.0101 (3)0.0321 (4)0.0008 (2)0.0098 (3)0.0007 (3)
Geometric parameters (Å, º) top
Cu1—O11.9327 (7)O5—C41.2239 (12)
Cu1—O1i1.9327 (7)O6—C41.3027 (11)
Cu1—O2i1.9637 (7)O6—H60.8200
Cu1—O21.9637 (7)C1—C21.5259 (13)
Cu1—O1W2.4651 (8)C2—C31.5281 (13)
Cu1—O1Wi2.4651 (8)C2—H20.9800
O1—C11.2753 (11)C3—C41.5235 (13)
O2—C21.4339 (11)C3—H30.9800
O2—H50.73 (3)O1W—H110.9051
O3—C11.2461 (11)O1W—H120.9551
O4—C31.4152 (11)O2W—H210.8982
O4—H40.8200O2W—H220.8936
O1—Cu1—O1W88.90 (3)O3—C1—C2116.99 (8)
O1—Cu1—O1Wi91.11 (3)O1—C1—C2117.92 (8)
O1W—Cu1—O282.85 (3)O2—C2—C1109.36 (7)
O1W—Cu1—O1Wi180O2—C2—C3110.39 (7)
O1W—Cu1—O282.85 (3)C1—C2—C3109.36 (7)
O1Wi—Cu1—O2i82.85 (3)O2—C2—H2109.2
O1i—Cu1—O1Wi88.90 (3)C1—C2—H2109.2
O1—Cu1—O1i180.00 (6)C3—C2—H2109.2
O1—Cu1—O2i95.83 (3)O4—C3—C4108.99 (7)
O1i—Cu1—O2i84.17 (3)O4—C3—C2111.13 (7)
O1—Cu1—O284.17 (3)C4—C3—C2110.86 (7)
O1i—Cu1—O295.83 (3)O4—C3—H3108.6
O2i—Cu1—O2180.0C4—C3—H3108.6
C1—O1—Cu1115.26 (6)C2—C3—H3108.6
C2—O2—Cu1112.96 (5)O5—C4—O6125.12 (9)
C2—O2—H5116 (2)O5—C4—C3122.17 (8)
Cu1—O2—H5111 (2)O6—C4—C3112.71 (8)
C3—O4—H4109.5H11—O1W—H12110.0
C4—O6—H6109.5H21—O2W—H22113.7
O3—C1—O1125.09 (9)
O2i—Cu1—O1—C1176.70 (7)O3—C1—C2—O2173.54 (8)
O2—Cu1—O1—C13.30 (7)O1—C1—C2—O26.20 (11)
O1—Cu1—O2—C20.36 (6)O3—C1—C2—C352.55 (10)
O1i—Cu1—O2—C2179.64 (6)O1—C1—C2—C3127.19 (8)
O1W—Cu1—O1—C179.64 (6)O2—C2—C3—O462.36 (9)
O1Wi—Cu1—O1—C1100.37 (6)C1—C2—C3—O458.01 (9)
O1W—Cu1—O2—C289.98 (6)O2—C2—C3—C459.01 (9)
O1Wi—Cu1—O2—C290.02 (6)C1—C2—C3—C4179.37 (7)
Cu1—O1—C1—O3173.56 (7)O4—C3—C4—O516.25 (12)
Cu1—O1—C1—C26.17 (10)C2—C3—C4—O5138.88 (9)
Cu1—O2—C2—C13.22 (9)O4—C3—C4—O6164.52 (8)
Cu1—O2—C2—C3123.59 (6)C2—C3—C4—O641.90 (10)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1Wii0.821.912.7200 (12)170
O2—H5···O2Wiii0.72 (3)1.82 (3)2.5331 (12)170 (3)
O6—H6···O3iv0.821.702.5092 (12)167
O1W—H11···O5v0.911.912.8119 (11)175 (1)
O1W—H12···O40.961.852.8091 (11)177
O2W—H21···O1vi0.901.942.8298 (12)173
O2W—H22···O5ii0.891.982.8100 (12)154
C2—H2···O6iii0.982.433.2727 (12)143
C3—H3···O4ii0.982.463.4160 (13)166
Symmetry codes: (ii) x, y+1/2, z+1/2; (iii) x+2, y, z+1; (iv) x+1, y, z; (v) x1, y+1/2, z1/2; (vi) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C4H5O6)2(H2O)2]·2H2O
Mr433.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.1577 (8), 14.0989 (14), 7.8910 (8)
β (°) 109.136 (2)
V3)752.32 (14)
Z2
Radiation typeMo Kα
µ (mm1)1.54
Crystal size (mm)0.42 × 0.15 × 0.08
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.563, 0.885
No. of measured, independent and
observed [I > 2σ(I)] reflections
12361, 3298, 3001
Rint0.023
(sin θ/λ)max1)0.808
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.082, 1.20
No. of reflections3298
No. of parameters121
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.68, 0.45

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1Wi0.821.91002.7200 (12)170
O2—H5···O2Wii0.72 (3)1.82 (3)2.5331 (12)170 (3)
O6—H6···O3iii0.821.70002.5092 (12)167
O1W—H11···O5iv0.911.912.8119 (11)175.3 (2)
O1W—H12···O40.961.85002.8091 (11)177
O2W—H21···O1v0.901.94002.8298 (12)173
O2W—H22···O5i0.891.98002.8100 (12)154
C2—H2···O6ii0.982.43003.2727 (12)143
C3—H3···O4i0.982.46003.4160 (13)166
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y, z+1; (iii) x+1, y, z; (iv) x1, y+1/2, z1/2; (v) x+1, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: nornisah@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HHA gratefully acknowledges funding from Universiti Sains Malaysia (USM) under the University Research grant (No. 1001/PKIMIA/811142). HKF and MH thank the Malaysian Government and USM for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks USM for a post-doctoral research fellowship.

References

First citationAakeroy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 6, 397–407.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFujita, M., Kwon, Y. J., Miyazawa, M. & Ogura, K. (1994). J. Chem. Soc. Chem. Commun. 17, 1997–1998.  Google Scholar
First citationHagrman, D., Zubieta, C., Rose, D. J., Zubieta, J. & Haushalter, R. C. (1997). Angew. Chem. Int. Ed. Engl. 35, 873–877.  CSD CrossRef Web of Science Google Scholar
First citationJian, F. F., Zhao, P. & Wang, Q. (2005). J. Coord. Chem. 58, 1133–1138.  Web of Science CSD CrossRef CAS Google Scholar
First citationMunakata, M., Wu, L. P. & Kuroda-sowa, T. (1999). Inorg. Chem. 46, 17–3.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStang, P. J. & Olenyuk, B. (1997). Acc. Chem. Res. 30, 502–518.  Web of Science CrossRef CAS Google Scholar
First citationSynoradzki, L., Bernas, U. & Ruskowski, P. (2008). Org. Prep. Proced. Int. 40, 163–200.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m774-m775
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds