organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1632-o1633

(Z)-3-(2-{2-[1-(4-Hy­dr­oxy­phen­yl)ethyl­­idene]hydrazin-1-yl}-1,3-thia­zol-4-yl)-2H-chromen-2-one

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 2 June 2010; accepted 7 June 2010; online 16 June 2010)

In the title compound, C20H15N3O3S, an intra­molecular C—H⋯O hydrogen bond generates an S(6) ring motif. The chromene ring system is inclined at dihedral angles of 14.21 (9) and 9.91 (10)°, respectively, with respect to the thia­zole and benzene rings. The thia­zole ring makes a dihedral angle of 24.06 (11)° with the benzene ring. In the crystal structure, O—H⋯O hydrogen bonds link the mol­ecules into a zigzag chain along [20[\overline{1}]]. Weak N—H⋯O and C—H⋯O inter­actions connect the chains into a three-dimensional network. ππ stacking inter­actions with a centroid–centroid distance of 3.4209 (14) Å are also observed between the chains.

Related literature

For a related structure, see: Arshad et al. (2010[Arshad, A., Osman, H., Lam, C. K., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o1446-o1447.]). For the synthesis, see: Siddiqui et al. (2009[Siddiqui, N., Faiz, M. A. & Suroor, A. K. (2009). Acta Pol. Pharm. Drug Research, 66, 161-167.]); Liu et al. (2008[Liu, J., Yei, W., Wan, Y., Ma, L. & Song, H. (2008). Bioorg. Med. Chem. 16, 1096-1102.]). For general background to and the biological activity of coumarin derivatives, see: Anderson et al. (2002[Anderson, D. M., Shelley, S., Crick, N. & Buraglio, L. (2002). J. Clin. Pharmacol. 42, 1358-1365.]); Finn et al. (2004[Finn, G. J., Creaven, B. S. & Egan, D. A. (2004). Cancer Lett. 214, 43-54.]); Hofmanova et al. (1998[Hofmanova, J., Kozubik, A., Dusek, L. & Pachernik, J. (1998). Eur. J. Pharmacol. 350, 273-284.]). For the biological activity of amino­thia­zole derivatives, see: Hiremath et al. (1992[Hiremath, S. P., Swamy, K. M. K. & Mrnthyunjayaswamy, B. H. M. (1992). J. Indian Chem. Soc. 69, 87-89.]); Gursoy & Karah (2000[Gursoy, A. & Karah, N. (2000). Arzneim. Forsch. 50, 167-172.]); Jayashree et al. (2005[Jayashree, B. S., Anuradha, D. & Venugopala, N. K. (2005). Asian J. Chem. 17, 2093-2097.]); Patt et al. (1992[Patt, W. C., Hamilton, H. W., Taylor, M. D., Ryan, M. J., Taylor, D. G., Conolly, C. J. C., Doherty, A. M., Klutchko, S. R., Sircar, I., Steinbaugh, B. A., Batley, B. L., Painchaud, C. A., Rapundalo, S. T., Michniewicz, B. M. & Olson, S. C. (1992). J. Med. Chem. 35, 2562-2572.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15N3O3S

  • Mr = 377.41

  • Monoclinic, P 21 /c

  • a = 9.1117 (16) Å

  • b = 16.225 (3) Å

  • c = 12.113 (2) Å

  • β = 104.657 (3)°

  • V = 1732.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.38 × 0.06 × 0.05 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.922, Tmax = 0.990

  • 16535 measured reflections

  • 3957 independent reflections

  • 2932 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.161

  • S = 1.10

  • 3957 reflections

  • 253 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H12N⋯O3i 0.88 (2) 2.36 (2) 3.213 (3) 164 (2)
O3—H13O⋯O2ii 0.89 (4) 1.87 (4) 2.743 (3) 169 (3)
C5—H5A⋯O3iii 0.93 2.46 3.386 (3) 173
C11—H11A⋯O2 0.93 2.39 2.915 (3) 115
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x-1, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Aminothiazole ring is found to be associated with diverse pharmacological activities such as antifungal (Hiremath et al., 1992), anti-tuberculosis (Gursoy & Karah, 2000), anti-inflammation (Jayashree et al., 2005) and antihypertensive (Patt et al., 1992). In addition, coumarin and its derivatives also exhibit significant enzyme inhibition (Hofmanova et al., 1998), anticoagulant (Anderson et al., 2002) and free radical scavenging (Finn et al., 2004) activities. The title compound is a new derivative of thiazolyl coumarin. We present here its crystal structure.

Bond lengths (Allen et al., 1987) and the angles of the title compound (Fig. 1), are within the normal range and comparable with a related structure (Arshad et al., 2010). The molecular structure is stabilized by intramolecular C11—H11A···O2 hydrogen bond which generates an S(6) ring motif (Bernstein et al., 1995). The chromene (O1/C1–C9) ring system and thiazole (S1/N1/C10–C12) ring are approximately planar, with the maximum deviation of 0.021 (2) Å for atom O1 and 0.008 (2) Å for atom C10. The chromene ring system is inclined at angles of 14.21 (9) and 9.91 (10)° with respect to the thiazole and benzene (C14–C19) rings, respectively. The thiazole ring makes a dihedral angle of 24.06 (11)° with the benzene ring.

In the crystal packing (Fig.2), the N2—H12N···O3 and C5—H5A···O3 interactions form a pair of bifurcated acceptor bonds which together with O3—H13O···O2 interactions link the independent molecules into a three-dimensional network. The short intermolecular distance [3.4209 (14) Å] between symmetry-related S1/N1/C10–C12 (centroid Cg1) and O1/C1/C2/C7–C9 (centroid Cg2) rings [symmetry code: -x, -y, -z] indicates the existence of ππ stacking interaction.

Related literature top

For a related structure, see: Arshad et al. (2010). For the synthesis, see: Siddiqui et al. (2009); Liu et al. (2008). For general background to and the biological activity of coumarin derivatives, see: Anderson et al. (2002); Finn et al. (2004); Hofmanova et al. (1998). For the biological activity of aminothiazole derivatives, see: Hiremath et al. (1992); Gursoy & Karah (2000); Jayashree et al. (2005); Patt et al. (1992). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

4-Hydroxyacetophenone thiosemicarbazone (Liu et al., 2008) and 3-[ω-bromoacetyl coumarin] (Siddiqui et al., 2009) were synthesized as reported in the literature. The title compound was obtained by the cyclocondensation of 4-hydroxyacetophenone thiosemicarbazone with 3-[ω-bromoacetyl coumarin]. A solution of 3-[ω-bromoacetyl coumarin] (2.5 mmol) and 4-hydroxyacetophenone thiosemicarbazone (2.5 mmol) in chloroform-ethanol (2:1) was refluxed for 45 minutes at 60 °C to get dense yellow precipitates. The reaction mixture was cooled in ice bath and basified with ammonia to pH 7–8. The title compound was recrystallized from ethanol-chloroform (3:2) as yellow needle-like crystals.

Refinement top

Atoms H12N and H13O were located in a difference Fourier map and allowed to be refined freely. The rest of H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. Intramolecular interaction is shown by a dashed line.
[Figure 2] Fig. 2. The crystal structure of the title compound viewed along the c axis. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
(Z)-3-(2-{2-[1-(4-Hydroxyphenyl)ethylidene]hydrazin-1-yl}-1,3- thiazol-4-yl)-2H-chromen-2-one top
Crystal data top
C20H15N3O3SF(000) = 784
Mr = 377.41Dx = 1.447 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2347 reflections
a = 9.1117 (16) Åθ = 2.8–27.3°
b = 16.225 (3) ŵ = 0.21 mm1
c = 12.113 (2) ÅT = 100 K
β = 104.657 (3)°Needle, yellow
V = 1732.5 (5) Å30.38 × 0.06 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
3957 independent reflections
Radiation source: fine-focus sealed tube2932 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.922, Tmax = 0.990k = 2121
16535 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0927P)2]
where P = (Fo2 + 2Fc2)/3
3957 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C20H15N3O3SV = 1732.5 (5) Å3
Mr = 377.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1117 (16) ŵ = 0.21 mm1
b = 16.225 (3) ÅT = 100 K
c = 12.113 (2) Å0.38 × 0.06 × 0.05 mm
β = 104.657 (3)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
3957 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2932 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.990Rint = 0.060
16535 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.40 e Å3
3957 reflectionsΔρmin = 0.41 e Å3
253 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.38934 (7)0.12646 (3)0.08727 (5)0.01862 (18)
O10.03963 (18)0.12925 (9)0.20648 (14)0.0161 (4)
O20.05580 (19)0.00659 (10)0.25771 (15)0.0200 (4)
O30.8063 (2)0.48865 (10)0.15666 (16)0.0223 (4)
N10.2563 (2)0.00002 (11)0.02742 (17)0.0157 (4)
N20.4034 (2)0.07847 (12)0.12284 (19)0.0180 (4)
N30.4819 (2)0.15129 (11)0.11761 (17)0.0153 (4)
C10.0479 (3)0.06337 (13)0.1917 (2)0.0155 (5)
C20.0638 (2)0.19722 (13)0.1346 (2)0.0148 (5)
C30.1574 (3)0.25933 (14)0.1574 (2)0.0181 (5)
H3A0.20420.25440.21700.022*
C40.1785 (3)0.32860 (14)0.0888 (2)0.0198 (5)
H4A0.24060.37080.10250.024*
C50.1085 (3)0.33653 (14)0.0009 (2)0.0212 (5)
H5A0.12370.38380.04580.025*
C60.0166 (3)0.27378 (14)0.0225 (2)0.0190 (5)
H6A0.02950.27890.08250.023*
C70.0075 (2)0.20265 (13)0.0454 (2)0.0152 (5)
C80.1015 (3)0.13536 (13)0.0300 (2)0.0147 (5)
H8A0.14990.13810.02890.018*
C90.1230 (2)0.06783 (13)0.0976 (2)0.0146 (5)
C100.2180 (2)0.00109 (13)0.07732 (19)0.0138 (5)
C110.2764 (3)0.06418 (14)0.1475 (2)0.0194 (5)
H11A0.25820.07300.21880.023*
C120.3457 (2)0.06236 (13)0.0311 (2)0.0151 (5)
C130.5341 (3)0.17206 (13)0.2030 (2)0.0160 (5)
C140.6101 (2)0.25398 (13)0.1918 (2)0.0150 (5)
C150.5766 (3)0.31265 (14)0.1168 (2)0.0184 (5)
H15A0.50770.29960.07450.022*
C160.6444 (3)0.38995 (14)0.1045 (2)0.0207 (5)
H16A0.62130.42800.05410.025*
C170.7469 (3)0.41031 (13)0.1679 (2)0.0177 (5)
C180.7836 (3)0.35256 (13)0.2415 (2)0.0159 (5)
H18A0.85410.36550.28260.019*
C190.7150 (3)0.27562 (13)0.2536 (2)0.0166 (5)
H19A0.73920.23770.30380.020*
C200.5172 (3)0.12174 (14)0.3094 (2)0.0208 (5)
H20A0.41220.10840.34030.031*
H20B0.57490.07180.29140.031*
H20C0.55370.15280.36440.031*
H12N0.364 (3)0.0512 (15)0.186 (2)0.016 (7)*
H13O0.894 (4)0.491 (2)0.176 (3)0.060 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0201 (3)0.0173 (3)0.0188 (3)0.0056 (2)0.0057 (3)0.0023 (2)
O10.0168 (8)0.0155 (8)0.0185 (9)0.0017 (6)0.0093 (7)0.0006 (6)
O20.0204 (9)0.0213 (8)0.0198 (9)0.0021 (6)0.0081 (8)0.0047 (7)
O30.0233 (10)0.0163 (8)0.0321 (11)0.0043 (7)0.0162 (9)0.0022 (7)
N10.0157 (10)0.0157 (9)0.0173 (11)0.0020 (7)0.0070 (9)0.0005 (7)
N20.0210 (11)0.0158 (9)0.0193 (12)0.0052 (8)0.0089 (9)0.0005 (8)
N30.0126 (9)0.0149 (9)0.0176 (11)0.0022 (7)0.0023 (8)0.0020 (7)
C10.0134 (11)0.0169 (10)0.0156 (12)0.0005 (8)0.0024 (9)0.0012 (9)
C20.0131 (11)0.0149 (10)0.0152 (12)0.0017 (8)0.0016 (9)0.0007 (8)
C30.0165 (11)0.0222 (11)0.0162 (12)0.0000 (9)0.0053 (10)0.0032 (9)
C40.0169 (12)0.0190 (11)0.0236 (14)0.0052 (9)0.0050 (10)0.0024 (9)
C50.0224 (13)0.0186 (11)0.0213 (14)0.0040 (9)0.0033 (11)0.0030 (10)
C60.0200 (12)0.0212 (11)0.0162 (13)0.0018 (9)0.0055 (10)0.0020 (9)
C70.0141 (11)0.0162 (10)0.0143 (12)0.0013 (8)0.0017 (9)0.0010 (8)
C80.0144 (11)0.0188 (11)0.0114 (12)0.0017 (8)0.0041 (9)0.0018 (8)
C90.0122 (11)0.0164 (10)0.0161 (12)0.0010 (8)0.0054 (9)0.0020 (9)
C100.0109 (11)0.0170 (10)0.0127 (12)0.0016 (8)0.0018 (9)0.0028 (8)
C110.0227 (12)0.0187 (11)0.0194 (13)0.0024 (9)0.0100 (11)0.0000 (9)
C120.0129 (11)0.0161 (10)0.0159 (12)0.0014 (8)0.0029 (9)0.0017 (9)
C130.0129 (11)0.0174 (11)0.0178 (13)0.0009 (8)0.0041 (10)0.0027 (9)
C140.0127 (11)0.0179 (11)0.0140 (12)0.0011 (8)0.0027 (9)0.0037 (9)
C150.0174 (12)0.0202 (11)0.0207 (13)0.0025 (9)0.0106 (10)0.0015 (9)
C160.0243 (13)0.0168 (11)0.0246 (14)0.0010 (9)0.0127 (12)0.0037 (9)
C170.0183 (12)0.0125 (10)0.0233 (14)0.0009 (8)0.0073 (10)0.0027 (9)
C180.0139 (11)0.0193 (11)0.0162 (12)0.0004 (8)0.0067 (10)0.0028 (9)
C190.0166 (11)0.0188 (11)0.0149 (12)0.0033 (8)0.0049 (10)0.0015 (9)
C200.0208 (12)0.0223 (12)0.0198 (13)0.0039 (9)0.0061 (11)0.0015 (10)
Geometric parameters (Å, º) top
S1—C111.730 (2)C6—H6A0.9300
S1—C121.735 (2)C7—C81.429 (3)
O1—C11.372 (3)C8—C91.352 (3)
O1—C21.388 (3)C8—H8A0.9300
O2—C11.210 (3)C9—C101.472 (3)
O3—C171.375 (3)C10—C111.351 (3)
O3—H13O0.89 (4)C11—H11A0.9300
N1—C121.307 (3)C13—C141.489 (3)
N1—C101.399 (3)C13—C201.500 (3)
N2—C121.369 (3)C14—C191.400 (3)
N2—N31.374 (3)C14—C151.401 (3)
N2—H12N0.88 (3)C15—C161.389 (3)
N3—C131.288 (3)C15—H15A0.9300
C1—C91.471 (3)C16—C171.391 (3)
C2—C31.393 (3)C16—H16A0.9300
C2—C71.397 (3)C17—C181.391 (3)
C3—C41.382 (3)C18—C191.387 (3)
C3—H3A0.9300C18—H18A0.9300
C4—C51.397 (3)C19—H19A0.9300
C4—H4A0.9300C20—H20A0.9600
C5—C61.385 (3)C20—H20B0.9600
C5—H5A0.9300C20—H20C0.9600
C6—C71.402 (3)
C11—S1—C1287.85 (11)C11—C10—C9128.6 (2)
C1—O1—C2122.81 (18)N1—C10—C9115.73 (19)
C17—O3—H13O112 (2)C10—C11—S1110.99 (18)
C12—N1—C10108.79 (19)C10—C11—H11A124.5
C12—N2—N3115.41 (19)S1—C11—H11A124.5
C12—N2—H12N117.1 (17)N1—C12—N2123.1 (2)
N3—N2—H12N124.5 (17)N1—C12—S1116.75 (18)
C13—N3—N2118.8 (2)N2—C12—S1120.13 (17)
O2—C1—O1116.5 (2)N3—C13—C14114.7 (2)
O2—C1—C9126.0 (2)N3—C13—C20124.7 (2)
O1—C1—C9117.55 (19)C14—C13—C20120.6 (2)
O1—C2—C3117.3 (2)C19—C14—C15117.8 (2)
O1—C2—C7120.29 (19)C19—C14—C13122.7 (2)
C3—C2—C7122.4 (2)C15—C14—C13119.5 (2)
C4—C3—C2117.9 (2)C16—C15—C14121.3 (2)
C4—C3—H3A121.1C16—C15—H15A119.4
C2—C3—H3A121.1C14—C15—H15A119.4
C3—C4—C5121.4 (2)C15—C16—C17119.8 (2)
C3—C4—H4A119.3C15—C16—H16A120.1
C5—C4—H4A119.3C17—C16—H16A120.1
C6—C5—C4119.7 (2)O3—C17—C16117.8 (2)
C6—C5—H5A120.1O3—C17—C18122.3 (2)
C4—C5—H5A120.1C16—C17—C18119.8 (2)
C5—C6—C7120.5 (2)C19—C18—C17120.0 (2)
C5—C6—H6A119.8C19—C18—H18A120.0
C7—C6—H6A119.8C17—C18—H18A120.0
C2—C7—C6118.1 (2)C18—C19—C14121.3 (2)
C2—C7—C8117.6 (2)C18—C19—H19A119.4
C6—C7—C8124.3 (2)C14—C19—H19A119.4
C9—C8—C7122.7 (2)C13—C20—H20A109.5
C9—C8—H8A118.7C13—C20—H20B109.5
C7—C8—H8A118.7H20A—C20—H20B109.5
C8—C9—C1119.0 (2)C13—C20—H20C109.5
C8—C9—C10121.0 (2)H20A—C20—H20C109.5
C1—C9—C10120.02 (19)H20B—C20—H20C109.5
C11—C10—N1115.6 (2)
C12—N2—N3—C13177.2 (2)C8—C9—C10—N112.9 (3)
C2—O1—C1—O2177.4 (2)C1—C9—C10—N1166.16 (19)
C2—O1—C1—C92.4 (3)N1—C10—C11—S11.4 (3)
C1—O1—C2—C3178.8 (2)C9—C10—C11—S1176.69 (18)
C1—O1—C2—C72.9 (3)C12—S1—C11—C100.95 (18)
O1—C2—C3—C4177.9 (2)C10—N1—C12—N2180.0 (2)
C7—C2—C3—C40.3 (4)C10—N1—C12—S10.4 (2)
C2—C3—C4—C50.0 (4)N3—N2—C12—N1173.3 (2)
C3—C4—C5—C60.4 (4)N3—N2—C12—S16.3 (3)
C4—C5—C6—C70.4 (4)C11—S1—C12—N10.31 (19)
O1—C2—C7—C6177.9 (2)C11—S1—C12—N2179.3 (2)
C3—C2—C7—C60.3 (3)N2—N3—C13—C14176.85 (19)
O1—C2—C7—C81.6 (3)N2—N3—C13—C200.7 (3)
C3—C2—C7—C8179.8 (2)N3—C13—C14—C19158.3 (2)
C5—C6—C7—C20.1 (3)C20—C13—C14—C1924.1 (3)
C5—C6—C7—C8179.4 (2)N3—C13—C14—C1521.8 (3)
C2—C7—C8—C90.1 (3)C20—C13—C14—C15155.9 (2)
C6—C7—C8—C9179.6 (2)C19—C14—C15—C160.4 (4)
C7—C8—C9—C10.5 (3)C13—C14—C15—C16179.6 (2)
C7—C8—C9—C10178.6 (2)C14—C15—C16—C170.4 (4)
O2—C1—C9—C8179.2 (2)C15—C16—C17—O3177.3 (2)
O1—C1—C9—C80.7 (3)C15—C16—C17—C181.4 (4)
O2—C1—C9—C100.1 (4)O3—C17—C18—C19177.0 (2)
O1—C1—C9—C10179.81 (19)C16—C17—C18—C191.6 (4)
C12—N1—C10—C111.2 (3)C17—C18—C19—C140.9 (4)
C12—N1—C10—C9177.19 (19)C15—C14—C19—C180.1 (3)
C8—C9—C10—C11165.2 (2)C13—C14—C19—C18179.8 (2)
C1—C9—C10—C1115.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H12N···O3i0.88 (2)2.36 (2)3.213 (3)164 (2)
O3—H13O···O2ii0.89 (4)1.87 (4)2.743 (3)169 (3)
C5—H5A···O3iii0.932.463.386 (3)173
C11—H11A···O20.932.392.915 (3)115
Symmetry codes: (i) x+1, y1/2, z1/2; (ii) x+1, y+1/2, z1/2; (iii) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC20H15N3O3S
Mr377.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.1117 (16), 16.225 (3), 12.113 (2)
β (°) 104.657 (3)
V3)1732.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.38 × 0.06 × 0.05
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.922, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
16535, 3957, 2932
Rint0.060
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.161, 1.10
No. of reflections3957
No. of parameters253
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.41

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H12N···O3i0.88 (2)2.36 (2)3.213 (3)164 (2)
O3—H13O···O2ii0.89 (4)1.87 (4)2.743 (3)169 (3)
C5—H5A···O3iii0.93002.46003.386 (3)173.00
C11—H11A···O20.93002.39002.915 (3)115.00
Symmetry codes: (i) x+1, y1/2, z1/2; (ii) x+1, y+1/2, z1/2; (iii) x1, y1, z.
 

Footnotes

Additional correspondence author, e-mail: ohasnah@usm.my.

§Thomson Reuters ResearcherID: A-5525-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

We thank the Malaysian Government and Universiti Sains Malaysia (USM) for a Short Term grant (304/PKIMIA/639004) and an RU Grant (1001/PKIMIA/811133) to conduct this work. HKF and CKQ thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012). AA thanks the Pakistan Government and PCSIR for financial scholarship support. CKQ also thanks USM for the award of USM Fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAnderson, D. M., Shelley, S., Crick, N. & Buraglio, L. (2002). J. Clin. Pharmacol. 42, 1358–1365.  Web of Science CrossRef PubMed CAS Google Scholar
First citationArshad, A., Osman, H., Lam, C. K., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o1446–o1447.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFinn, G. J., Creaven, B. S. & Egan, D. A. (2004). Cancer Lett. 214, 43–54.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGursoy, A. & Karah, N. (2000). Arzneim. Forsch. 50, 167–172.  CAS Google Scholar
First citationHiremath, S. P., Swamy, K. M. K. & Mrnthyunjayaswamy, B. H. M. (1992). J. Indian Chem. Soc. 69, 87–89.  CAS Google Scholar
First citationHofmanova, J., Kozubik, A., Dusek, L. & Pachernik, J. (1998). Eur. J. Pharmacol. 350, 273–284.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJayashree, B. S., Anuradha, D. & Venugopala, N. K. (2005). Asian J. Chem. 17, 2093–2097.  CAS Google Scholar
First citationLiu, J., Yei, W., Wan, Y., Ma, L. & Song, H. (2008). Bioorg. Med. Chem. 16, 1096–1102.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPatt, W. C., Hamilton, H. W., Taylor, M. D., Ryan, M. J., Taylor, D. G., Conolly, C. J. C., Doherty, A. M., Klutchko, S. R., Sircar, I., Steinbaugh, B. A., Batley, B. L., Painchaud, C. A., Rapundalo, S. T., Michniewicz, B. M. & Olson, S. C. (1992). J. Med. Chem. 35, 2562–2572.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, N., Faiz, M. A. & Suroor, A. K. (2009). Acta Pol. Pharm. Drug Research, 66, 161–167.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1632-o1633
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds